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Talbot Suite:

a parallel software collection for the numerical

inversion of Laplace Transforms.

L. Antonelli, S. Corsaro, Z. Marino, M. Rizzardi

Abstract

This report presents Talbot Suite, a parallel software collection for the
numerical inversion of Laplace Transforms, based on Talbot’s method. It
is designed to fit both single and multi-point Laplace inversion problems,
which arise in several application and research fields.
High accuracy and efficiency are reached making full use of modern High
Performance Computing (HPC) architectures. Talbot Suite is oriented
to modern hybrid architectures. Different software versions have been im-
plemented in the collection, specifically designed for distributed memory
(MPI-based implementation), shared memory (OMP-based implementa-
tion) and hybrid (combined MPI/OMP-based implementation) systems.
In this paper we discuss our design guidelines, the software organization
and we report some performance results.

1 Introduction

In this paper we discuss the development of a parallel software collection for the
numerical inversion of Laplace Transforms (LT). The Laplace Transform F (s)
of a function f(t) is defined as follows

F (s) = L [f(t)] =

∫
∞

0

e−st f(t) dt, Re(s) > σ0

where the abscissa of convergence σ0 is defined in such a way that the integral
converges uniformly if Re(s) > σ0. The Inverse Laplace problem is that of
reconstructing f(t) from F (s).
The importance of this research topic arises from the applicability of the Laplace
Transform to the solution of Differential Equations (DE), so that it covers all
the areas of engineering and science whose phenomena are modelled by DE.
Among them we cite fields such as electromagnetic theory, to which pioneering
applications refer, wave propagation problems and finance. In particular, most
applications in finance concerning option pricing recognized that LT approach
is able to provide more accurate results than Monte Carlo simulations under
certain circumstances [6].
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Numerical inversion of Laplace Transforms is well-known to be an ill-conditioned
problem [5, 4]. For this reason, to obtain reliable results, time-consuming pro-
cesses are often required: this makes them of no practical use in some contexts,
for instance in financial applications, where time-to-response is a crucial factor.
High performance resources and methodologies allow to develop efficient inver-
sion algorithms. Moreover, parallelism is now affecting all kinds of software
development processes, from large-scale numerical simulations to desktop com-
modity applications, because of the paradigm shift towards multi-core techno-
logies, thus raising the request of HPC software. Nevertheless, not much has
been done in this framework. In [25] a parallel software for distributed memory
environments for the numerical inversion of the LT is presented. The author
proposes a parallel algorithm based on a Fourier series method. In [7] a paral-
lel algorithm for Talbot’s method, designed for distributed memory machines,
is introduced. In [11] an implementation of another well-known LT inversion
method, the Weeks method, is presented. GPU acceleration is used to speed-
up the algorithm for the selection of the two free parameters of the method.
A MATLAB implementation of the algorithm is also available [10]. At our
knowledge, other previous works on the development of parallel software for
LT inversion mainly concern with the parallelization of LT based methods for
the solution of Partial Differential Equations arising from specific applications
[12, 13, 20]. A parallel library for the numerical inversion of LT is actually
lacking.

The work described in this paper is part of a research project aimed at
producing a parallel software collection for the numerical inversion of Laplace
Transforms, specifically oriented to modern hybrid architectures and designed to
fit single and multi-point inversion problems, typically arising when the Laplace
Transform is applied to solve a differential equation. The collection will integrate
different numerical inversion methods since it is widely recognized that their
effectiveness depends upon certain properties of the LT function. Our purpose
is to collect methods such that a wide range of transforms can be accurately
and efficiently inverted.

In this paper we describe Talbot Suite, a subset of the entire collection
based on Talbot’s method [23]. The development of other suites is work in
progress.

2 Outline of theory and sketch of Talbot’s al-

gorithm

In this section we briefly recall some basic theoretical results on the Laplace
Transform and its inverse; moreover we outline Talbot’s algorithm.

Theorem 2.1 Existence of F (s) [19]
If the function f(t) is piecewise continuous for t ≥ 0 and is of exponential order
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α 1 then its Laplace transform F (s) = L (f) exists for Re(s) > α and it con-
verges absolutely.

Corollary 2.2 If f(t) satisfies the hypotheses of Theorem 2.1, then

lim
s→∞

F (s) = 0

Theorem 2.3 Uniqueness of f(t) - Lerch’s Theorem [19]
Suppose that the functions f(t) and g(t) satisfy the hypothesis of Theor. 2.1 (so
that both their Laplace transforms F (s) and G(s) exist) with a common expo-
nential order α. If F (s) = G(s), for all s ≥ α then f(t) = g(t), ∀t ∈ [0,+∞),
and both f and g are continuous.

Let us suppose that Theor. 2.3 holds, then the Riemann Inversion Formula
gives, for f(t), an integral representation in the complex plane along the Brom-
wich contour

B = {s ∈ C : Re(s) = σ ∧ Im(s) ∈ R}

expressed by

f(t) =
1

2πi

∫

B

F (s) est ds =
1

2πi

∫ σ+i∞

σ−i∞

F (s) est ds (2.1)

where, since F (s) may be considered as the analytic continuation of a complex
function with singularities only in the half-plane Re(s) ≤ σ0, the hypothesis
σ > σ0 guarantees that F (s) is analytic on B. In such a way the exponential
order constant is related to σ0.

Talbot’s method has been proposed by Talbot [23] and implemented in FOR-
TRAN 77 by one of the authors [15]; it falls within the class of inversion methods
based on the integration of (2.1) along a special contour.
The underlying idea is to apply the composite trapezoidal rule for approximat-
ing (2.1) where the Bromwich contour has been suitably replaced by the Talbot
contour, which depends on the location of the singularities of F (s) and on the
value of the argument of f(t). To do this, the following statements must hold

• the integration contour must enclose all the singularities of F (s);

• F (s) has to become negligible on the Talbot contour, as s → ∞, so that
(2.1) may be accurately approximated by the trapezoidal rule.

1The function f(t) is said to be of exponential order α, as t → +∞, if there exist non-
negative constants M > 0, α ∈ R and t0 ≥ 0 such that

|f(t)| ≤Meαt, for t ≥ t0
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More precisely, assumptions for Talbot’s method applicability are:

• σ0 < ∞
• F (s) has singularities with finite imaginary parts
• lim

s→∞

|F (s)| = 0 uniformly in Re(s) ≤ σ0

(2.2)

According to the second requirement in (2.2), Talbot’s method cannot be applied
to Laplace Transforms with infinite singularities along a vertical line.
The Talbot integration contour L⋆

ν has equation

L⋆
ν : s = σ + λθ cot θ + iλνθ, θ ∈]− π, π[; (2.3)

where the geometrical parameters λ, σ, ν, as well as the accuracy parameter N ,
that is the number of nodes in the trapezoidal rule, depend on t, on the sin-
gularities of F (s), on the input accuracy requirement and on the floating-point
arithmetic system. Talbot’s error analysis allows to compute nearly optimal
values for λ, σ, ν and N .

The approximation formula is (see [23] for details on its derivation)

f(t) ≈ f̃(t) = λ eσt
TN(t)

N

with

TN (t) =
ν

2
eλtF (σ + λ) +

N−1∑

j=1

(xj cosφj − yj sinφj) (2.4)

where φj = λtνπj/N and xj , yj depend on the values of F along the contour.
Formula (2.4) appears as a difference between two Clenshaw sums; in the fol-
lowing we refer to it as Talbot-Clenshaw sum.
Talbot’s algorithm is outlined in Algorithm 1, where the names TAPAR and
TSUM are derived from Algorithm 682 in Collected Algorithms of ACM [1].

ALGORITHM 1: Talbot’s algorithm

Input: LT function F (s), t, error tolerance, singularities of F (s)

Output: f̃(t)

1: compute the method parameters λ, σ, ν, N (TAPAR);

2: compute the Talbot-Clenshaw sum and f̃(t) (TSUM).

3 Parallelization strategy

The starting point was to analyze the performance of TAPAR and TSUM by means
of TAU (Tuning and Analysis Utilities) profiler [21]. The tests were aimed at
highlighting the computational cost of each step in Algorithm 1. Complete
performance analysis of Talbot Suite can be found in [2, 3]; here we just report
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two of them for supporting the discussion. Fig. 1 shows the percentages of the
execution time spent in TAPAR and TSUM, which are called inside a driver function
called itself by a main program. These times are related to the same LT function
(labelled as F24 from a data set of test functions listed in Appendix A) and the
same error tolerance tol= 10−12, but they refer to different values of t where
f(t) has to be approximated: t = 10 on the left side of Fig. 1 and t = 3000 on
the right side. The former (a small value of t) requires only N = 59 addends
in the summation, while the latter requires N = 645087, so that almost all the
time is spent by the summation process.

Figure 1: Percentages of the execution time in TAPAR and TSUM.

In any case, computing the sum is the most time consuming process, thus we par-
allelized only this step by implementing the parallel Goertzel-Reinsch algorithm
for a Talbot-Clenshaw sum as described in [7].

Furthermore we designed Talbot Suite to deal with the multi-point Laplace
Transform inversion for its importance in many applications. The natural
strategy to parallelize a multi-point inversion problem is to distribute a set T of
values among processes. Uniform partitioning of T could lead to load imbalance,
since for LT with complex singularities the number of addends strongly varies
with respect to t ∈ T. To overcome the load imbalance problem, we implemen-
ted the modified Talbot method presented in [17]: this method approximates the
inverse LT function f(t) at several values of t ∈ T using a fixed set of paramet-
ers, estimated at an optimal t⋆. In the cited paper the root mean square error
is proved to be minimum provided that parameters are chosen for t⋆ equal to
the midpoint of the interval enclosing T. In the following, we refer to Talbot’s
method as classical Talbot’s method to distinguish it from the modified one.

Therefore we developed two parallel algorithms relying on the classical and
modified methods. In such a way two levels of parallelism have been introduced:
a coarse grain parallelism based on data partitioning (sketched inAlgorithm 2)
and a fine grain parallelism which parallelizes the summation process (sketched
in Algorithm 3).
The two proposed parallel strategies may be applied in conjunction; so, aimed at
hybrid architectures, we include in Talbot Suite a two-level parallel algorithm
(sketched in Algorithm 4) based on a combination of the coarse grain and the
fine grain parallelism.

4 Talbot Suite

Talbot Suite is written in C (double precision). We started by implementing
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ALGORITHM 2: Coarse grain parallelism

Input: LT function F (s), NTval, T = {t1, . . . , tNTval}, error tolerance, singularities
of F ,
midpoint t⋆ of the range of T, number of processes np

Output: f̃(t), ∀t ∈ T

1: compute λ, σ, ν, N for t = t⋆;

2: for each process i : i = 0, 1, . . . , np− 1 do
• compute NTvalloc(i), the local number of t values;

• define Ti, the local set of t values;

• for each value t ∈ Ti do

compute f̃(t);

end

end

ALGORITHM 3: Fine grain parallelism

Input: LT function F (s), t, error tolerance, singularities of F , number of processes
np

Output: f̃(t)

1: compute λ, σ, ν, N ;

2: compute f̃(t) in parallel.

the classical Talbot method included in the Collected Algorithms of ACM [1, 15].
The original source codes have been translated from FORTRAN 77 to C: to
this purpose the code has been suitably rearranged; for example, all the goto

statements have been removed following the structured programming paradigm
and, according to the IEEE 754 (IEEE Standard for Floating-Point Arithmetic)
[9], floating-point environment variables (such as machine epsilon, overflow/un-
derflow limits and so on) have been introduced where necessary, removing all
the machine constants and every call to related functions such as (FORTRAN)
D1MACH [22].

Talbot Suite aims at HPC architectures, thus we provide implementations
of parallel Talbot’s algorithms (Algorithm 2, 3) for both shared and distrib-
uted memory environments. We employ OpenMP (OMP) [16] for the shared
memory model and MPI [14] for the distributed one.
Since OMP is fully supported by several compilers (such as recent versions of
gcc) and most PCs and Laptops are equipped with a multicore CPU, the OMP-
based implementation of Talbot Suite runs almost everywhere with a full ex-
ploitation of computing resources. Another significant advantage is that OMP
parallel codes can be executed as sequential, with no modification, on machines
which do not support OMP, since the specific directives are ignored. Some
preliminary performance tests motivated us to avoid, when possible, explicit
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ALGORITHM 4: Two-level hybrid parallelism

Input: LT function F (s), NTval, T = {t1, . . . , tNTval}, error tolerance, singularities
of F ,
midpoint t⋆ of the range of T, number of processes np

Output: f̃(t), ∀t ∈ T

1: compute λ, σ, ν, N for t = t⋆;

2: for each process i : i = 0, 1, . . . , np− 1 do
• compute NTvalloc(i), the local number of t values;

• define Ti, the local set of t values;

• for each value t ∈ Ti do

compute f̃(t) in parallel;

end

end

parallel for-loop statements. Therefore, the parallelism realized in summation
functions obeys a SPMD programming model.

In order to take full advantage of recent hybrid architectures, we developed
a parallel two-level algorithm which combines the two strategies (Algorithm

4) and employs MPI for the coarse grain parallelism (data partitioning) and
OMP for the fine grain parallelism (parallel summation).
The organization of Talbot Suite is illustrated in Fig. 2.

Figure 2: Structure of Talbot Suite.

The design of Talbot Suite is aimed at different end-users; we introduced a
driver function at user level where all the method-specific parameters have been
removed. Nevertheless, expert users can directly call skill-level functions to
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customize the method according to their needs.
In order to assemble together other suites, which are work in progress, we fix

some conventions (rules) as follows. Each suite refers to a particular numerical
inversion method; to define a standard notation, all the functions at user level
in the same suite have been named as the method with the addition of a prefix
related to a specific implementation and a suffix related to a level of parallelism,
while, at skill level, the names of internal functions have been modified introdu-
cing an explicit reference to the method so that they are directly related to their
driver function. Moreover parameters common to all inversion methods (such
as Laplace Transform function, abscissa of convergence, t, etc.) are listed first
in function prototypes, followed by parameters specific to an inversion method
(such as σ, λ, ν for Talbot’s method) and, if needed, followed by parameters
related to the parallel environment (such as the MPI communicator for MPI
version).
The driver functions have been named as follows

VER Method level

where

• VER is MPI (pure MPI), OMP (pure OMP) or HYB (hybrid MPI-OMP);

• Method is Talbot for Talbot Suite;

• level contains 1 for the coarse grain parallelism, 2 for the fine grain par-
allelism or 3 for the hybrid one.

For example, OMP Talbot2 is the driver function for the OMP-based imple-
mentation with the fine grain parallelism and HYB Talbot3 is the driver routine
corresponding to the hybrid two-level parallel strategy.

5 Numerical results

In this section we report some results on performance of Talbot Suite. We
perform our tests using a set of Laplace Transform functions with different
analytical properties and known inverse functions [18]. Appendix A contains
the complete list of LT test functions.
To summarize main results, we refer only to the following test function

F24(s) = s/
(
s2 + 9

)2
f24(t) := L −1 [F24(s)] = t sin(3t)/6

having complex polar singularities. It has been chosen because, as t becomes
large, complex singularities may lead to many terms in the summation, so that
F24(s) is suitable to test the fine grain parallelism. For moderate values of t it
behaves like any other LT test function.
As regards accuracy, we just focus on the impact of parallelization on results.
Because of the new recurrence formula in the parallel version of Goertzel-Reinsch
algorithm, the fine grain parallelism may slightly alter the accuracy with respect
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to the sequential algorithm. In Fig. 3 the relative error of a multi-point inversion
problem with t ∈]0, 10000] is reported and the error tolerance, tol= 10−12,
is represented by the horizontal line. On the left side, the plot refers to the
sequential classical Talbot method and, on the right side, the three plots refer
to the fine grain parallel algorithm with 64, 96 and 128 processes respectively.
Errors from sequential and parallel algorithms show a similar behavior.

0 2000 4000 6000 8000 10000
10

−16

10
−15

10
−14

10
−13

10
−12

10
−11

10
−10

10
−9

t

Relative Error for F(s)=s/(s2+9)2

 

 

0 2000 4000 6000 8000 10000
10

−16

10
−15

10
−14

10
−13

10
−12

10
−11

10
−10

10
−9

t

Relative Error for F(s)=s/(s2+9)2

 

 

  64 procs
  96 procs
128 procs

Figure 3: Tolerance and local errors in sequential and parallel Goertzel-Reinsch
algorithm.

In order to test efficiency under different conditions, we chose for t the intervals
[10, 50] and [1000, 3000] since, as already pointed out, the number of terms in
the sum strongly increases with respect to t for LT functions with complex
singularities. Moreover, two problem sizes have been applied to each interval:
that of inverting a LT at a few tens or at some hundreds of points, suitable to
test the coarse grain parallelism.
In Fig. 4 the number N of summands in classical and modified Talbot’s methods
is plotted, for F24(s) and tol= 10−12, to emphasize its dependence on t.
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Figure 4: Number of terms in the Talbot-Clenshaw sums for classical and mod-
ified Talbot’s method.

The horizontal straight line refers to the modified method, the other is related
to the classical method. In the same figure the two pictures compare the above-
mentioned intervals: on the left side, the interval [10, 50], with moderate values
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num. of t values t ∈ [10, 50] t ∈ [1000, 3000]
classical modified classical modified

24 3473 3552 5679999 4367976

120 17385 17760 27976610 21839880

Table 1: Total number of terms in the Talbot-Clenshaw sum for tol= 10−12

and F24(s).

of t, requires a summation with approximately a hundred of terms while, on the
right side, the interval [1000, 3000], with larger values, requires from 104 to 106

addends.
We recall that the modified method computes only once the parameters at the
middle point of the interval, while the classical one repeats this computation
for each t. However, the former may require a larger total number of additions
since N does not vary linearly with t in the classical method. Tab. 1 reports
the values of N used by the two methods when F24(s) has to be inverted for 24
or 120 values of t in the selected intervals; these test problems are discussed in
the following.

We now focus on efficiency exhibited by the parallel algorithms. In order
to test the impact of architectures on software performance, we ran our tests
on different machines with different compilers; in this paper we refer to the
following ones:

• Blade Server: it consists of 4 blades, each one equipped with

CPU Intel Xeon Quad-Core E5540 2.53 GHz processor with Hyper-Threading
Technology.

RAM 6 GB and three levels of cache memory (8 MB L3 shared cache
memory and 256KB L2, 32KB L1 cache memories for each core).

Connection 1 Gigabit Ethernet network.

Software Compiler: GNU gcc v. 4.6.1 [8]; MPI API: mpicc/mpiexec for
MPICH2 version 1.4.

• Beowulf Cluster: it consists of 12 nodes, each one equipped with

CPU Intel Core2 Quad-Core Q9550 2.83GHz processor 2.

RAM 8 GB and 12 MB L2 cache shared memory.

Connection 1 Gigabit Ethernet network.

Software Compiler: PGI pgcc v.12.3 [24] and GNU gcc v. 4.4.3; MPI
API: mpicc/mpiexec for MPICH2 version 1.4.1.

2 This processor is not equipped with Hyper-Threading Technology.
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Almost all the results reported in this paper refer to Blade Server. Only for
the hybrid implementation we present results obtained on both the systems,
since its performance is more dependent on the computing environment than
the other implementations.

Different strategies for mapping MPI processes can be considered. We tested
three of them: the first one, by node, also known as round robin mapping; the
second strategy, by slot, assigns processes to each blade/node up to the core
level; the third strategy fills up to the processing unit (PU) level. On Blade
Server the first mapping strategy exhibited, in most cases, the largest efficiency,
thus results given below refer to it. For the sake of brevity we do not report
here the results concerning comparison among the mapping strategies, referring
readers to [3].

For the OMP implementation up to eight parallel processes have been ac-
tivated taking full advantage of quad-core processors equipped with Hyper-
Threading Technology. Moreover static and dynamic runtime adjustment of
the number of threads within a team has been tested: with GNU gcc compilers
better performance has been achieved by setting it to “static”, while for PGI
pgcc compiler no significant difference has been observed. Even in the HYB im-
plementation the runtime adjustment has no effect. The reported results refer
to static adjustment of the number of threads.
Figs. 5 and 6 compare, for MPI and OMP implementations respectively, Al-

gorithms 2 (coarse grain parallelism) and 3 (fine grain parallelism) when ap-
plied to test cases of Tab. 1.
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Figure 5: Efficiency of Talbot Suites’s MPI implementation.
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In the case 24 t ∈ [10, 50] efficiency is acceptable only when the number of
processes is small since there are a few values of t and their moderate values
involve Talbot-Clenshaw sums with a few addends. Figures clearly show that
parallelism becomes effective when we increase just one of the two parameters
or both of them.
The coarse grain parallel algorithm (VER Talbot1) is particularly designed for
multi-point inversion problems and, since it is embarrassingly parallel, exhibits
a good efficiency especially when the number of t values is large. It usually out-
performs the fine grain parallel algorithm (VER Talbot2), but the gap between
them decreases for larger values of N ; in fact, the latter requires just a single re-
duction operation to collect the local Talbot-Clenshaw sums, so communication
overhead decreases with respect to the number N of addends.
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Figure 6: Efficiency of Talbot Suites’s OMP implementation.

On the other hand, when the numerical inversion is required for a few large
values of t, the fine grain parallel algorithm allows to preserve the point-wise
accuracy of classical Talbot’s method with levels of efficiency comparable to the
coarse grain one. In Fig. 6 performance exhibits a slight decline as soon as
Hyper-Threading is activated (p> 4).

Fig. 7 reports the efficiency of the HYB implementation, measured on Blade
Server and on Beowulf Cluster, for the largest problem size applied to the largest
interval.
Different combinations of MPI processes (coarse grain parallelism) and OMP
threads (fine grain parallelism) are considered; on the horizontal axis the overall
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Figure 7: Efficiency of Talbot Suite’s HYB implementation on Blade Server
with gcc and on Beowulf Cluster with pgcc.

number of parallel processes involved in the computation is reported; bar labels
specify the number of MPI processes (P) and the number of OMP threads (T)
related to P×T total parallel processes: for instance, the label “P=3, T=4”
refers to a run with 3 MPI processes and 4 OMP threads. These results show
that performance depends on the particular combination of P and T, on process
mapping strategies as well as on the particular problem to be solved, i.e. a
combination of the number of t values and of addends. We also emphasize that
efficiency on Blade Server reduces for T > 4, due to Hyper-Threading.

Comparing efficiency in Fig. 7, we note that performance strongly varies on
the two systems with different compilers. Since the gcc compiler is available on
Beowulf Cluster too, we tested the HYB implementation also with this compiler.
Using the gcc compiler, performance is similar on both the systems. So we argue
that the use of the pgcc compiler motivates the better performance, observed
on Beowulf Cluster with respect to Blade Server, probably because it manages
for-loop statements more efficiently than gcc. Another reason for this lies in
activation of Hyper-Threading, which occurs on Blade Server only. For example,
although the number of parallel processes goes up to 32=P×T on both the
architectures, for Beowulf Cluster it is given by P=8, T=4 (node’s CPUs do not
offer Hyper-Threading) while for Blade Server it is given by P=4, T=8 (blade’s
CPUs are equipped with Hyper-Threading).

6 Concluding remarks

In this report we present Talbot Suite, a C software collection for the numer-
ical inversion of Laplace Transforms, based on classical and modified Talbot’s
method.
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Its release is the first stage of a research project aimed at developing a parallel
software collection, which will integrate different numerical inversion methods
such that a wide range of transforms can be accurately and efficiently inverted.
The motivation for this project is the current lack of a parallel software for this
problem, in spite of its applicability to several research fields.

Talbot Suite has been designed to fit both single and multipoint LT in-
version problems, which are typically modelled by differential equations. We
developed both a fine grain and a coarse grain parallel algorithm. The former
is preferable when the inverse LT has to be approximated at a few points with
very large values, while the latter is preferable when the number of inversions
is high.

To benefit from modern HPC architectures, Talbot Suite provides three
different subcollections specifically designed for distributed memory, shared
memory and hybrid systems: they consist of a MPI-based implementation, an
OMP-based implementation and a combined MPI/OMP-based one respectively.
The hybrid one implements the coarse grain parallel algorithm by means of MPI
and the fine grain parallel algorithm by means of OMP.

Programming guidelines and software organization are described in the pa-
per. Moreover, in order to share our experiences, some efficiency results, from
tests carried out on different hardware/software systems, have been discussed.
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A The database of test functions

Laplace Transform test functions Fn(s) with real singularities

n Laplace Transform function F (s) σ0 sings mult Inverse Laplace Transform function f(t)

01 1/s 0 0 1 u(t) =







0 t < 0
0.5 t = 0
1 t > 0

u unit step function

02 1/(s+ 1) 0 −1 1 e−t

03 1/(s+ 0.5) 0 −0.5 1 e−0.5t

04 1/(s− 1) 1 1 1 e+t

05 1/s2 0 0 2 t

06
999

(s+ 1)(s+ 1000)
=

1

s+ 1
− 1

s+ 1000
0

−1
−1000

1
1

e−t − e−1000t

07 1/(s+ 1)2 0 −1 2 t e−t

08 1/(s+ 1)5 0 −1 5 t4 e−t/24

09 1/(s− 2)5 2 2 5 t4 e2t/24

10 e−5s/s 0 0 1 u(t − 5), u unit step function

11 e−
√
s 0 0 0

e−1/(4t)

2t
√
π t

t ≥ 0

12 e−4
√

s 0 0 0
2 e−4/t

t
√
π t

t ≥ 0

13 1/
√
s 0 0 0 1/

√
π t t > 0

14
√

s+ 1
2
−

√

s+ 1
4

0
−0.5
−0.25

0
0

e−t/4 − e−t/2

2t
√
π t

t > 0

15
2√

s+
√
s+ 1

= 2(
√
s+ 1−

√
s) 0

−1
0

0
0

1− e−t

t
√
π t

t > 0

16 log(s)/s 0 0 0 −γ − log(t) t > 0 [Euler const γ = ψ(1)]

17 log

(

s+ 1

s

)

0
−1
0

0
0

1− e−t

t
t ≥ 0

18 log

(

s+ 1

s− 1

)

1
−1
+1

0
0

2
sinh t

t
t ≥ 0

19 e−1/s/
√
s [essential sing.] 0 0 0 cos

(

2
√
t
)

/
√
π t t > 0
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Laplace Transform test functions Fn(s) with complex singularities

n Lap. Transf. fun. F (s) σ0 sings mult Inv. Lap. Transf. f(t)

20 1/(s2 + 1) 0
−i
+i

1
1

sin(t)

21 1/
(

(s+ 0.2)2 + 1
)

0
−0.2− i
−0.2 + i

1
1

sin(t)e−0.2t

22 1/
(

s2 + s+ 1
)

0
0.5(−1− i

√
3)

0.5(−1 + i
√
3)

1
1

2/
√
3 e−t/2 sin(t

√
3/2)

23 1/(s2 + 1)2 0
−i
+i

2
2

[sin(t) − t cos(t)] /2

24 s/(s2 + 9)2 0
−3i
+3i

2
2

t sin(3t)/6

25 (s2 − 1)/(s2 + 1)2 0
−i
+i

2
2

t cos(t)

26 s2/(s3 + 8) 1

−2

1− i
√
3

1 + i
√
3

1
1
1

(e−2t + 2et cos(t
√
3)/3

27 s3/(s4 + 4) 1

−1− i
−1 + i
+1− i
+1 + i

1
1
1
1

cos(t) cosh(t)

28 1/(s4 − 1) 1

−1
+1
−i
+i

1
1
1
1

(sinh(t) − sin(t))/2

29 arctan(1/s) 0
−i
+i

0
0

sin(t)/t t ≥ 0

30 log

(

s2 + 1

s2 + 4

)

0

−i
+i
−2i
+2i

0
0
0
0

2(cos(2t) − cos(t))/t t ≥ 0

31 1/
√
s2 + 1 0

−i
+i

0
0

J0(t) Bessel fun of first kind

Composite Laplace Transform test functions Fn(s)

n LT function F (s)

101

F101(s) = F3(s) + F5(s) + F21(s)

=
1

s+ 0.5
+

1

s2
+

1

1 + (s+ 0.2)2

102

F102(s) = F12(s) + F25(s) + F29(s)

= e−4∗
√

s +
s2 − 1

(s2 + 1)2
+ arctan(1/s)

18


	Introduction
	Outline of theory and sketch of Talbot's algorithm
	Parallelization strategy
	Talbot Suite
	Numerical results
	Concluding remarks
	The database of test functions

