
 
 

 
 

 
 

 

Consiglio Nazionale delle Ricerche 

Istituto di Calcolo e Reti ad Alte Prestazioni 
 
 
 
 
 
 
 
 
 

 
 

Hierarchical Approach for 

Efficient Workload Management 

in Geographical Data Centers  

 
 

 

 

 
 

Agostino Forestiero
(1,2)

, Carlo Mastroianni
(1,2)

, Michela Meo
(3)

, 

Mehdi Sheikhalishahi
(4)

, Giuseppe Papuzzo
(1,2)

 
 

 

 

 

 

 

 

(1) ICAR-CNR 

(2) Eco4Cloud – www.eco4cloud.com 

(3) Department of Electronics and Telecommunications at Politecnico di Torino, Italy 

(4)  CREATE-NET, Trento, Italy 
 

 

 

 
 
 

 

   Technical Report ICAR-CS 2015/02, March 2015 
 

 
 

National Research Council, Institute for High Performance Computing and Networking 

(ICAR-CNR) 

Via P. Bucci 41C, 87036 Rende, Italy, URL: www.icar.cnr.it 

 

http://www.icar.cnr.it/
http://www.eco4cloud.com/
http://www.det.polito.it/personale/scheda/%28nominativo%29/michela.meo
https://www.create-net.org/it
http://www.icar.cnr.it/


TECHNICAL REPORT ICAR-CNR 2015-02 1

Hierarchical Approach for Efficient Workload
Management in Geographical Data Centers

Agostino Forestiero, Member, IEEE, Carlo Mastroianni, Member, IEEE, Michela Meo, Member, IEEE,
Mehdi Sheikhalishahi, Member, IEEE, and Giuseppe Papuzzo, Member, IEEE

Abstract—Geographically distributed data centers offer
promising business opportunities to both big companies that
own several sites and multi-owner Inter-Cloud infrastructures.
In these scenarios, workload management is a particularly
challenging task, since the autonomy of single data centers should
be preserved while global objectives, such as cost reduction
and load balance, should be achieved. In this paper, a hier-
archical approach for workload management in geographically
distributed data centers is presented. The proposed solution is
composed of two algorithms devoted to workload assignment
and migration. Both algorithms are based on the computation
of a simple function that represents the cost of running some
workload in the different sites of the distributed data center. The
framework requires a very limited exchange of state information
among the sites and preserves the autonomy of single data centers
and, at the same time, allows for an integrated management of
heterogeneous platforms. Performance is analyzed for a specific
infrastructure composed of four data centers, with two goals:
load balance and energy cost reduction. Results show that the
proposed approach smoothly adapts the workload distribution to
variations of energy cost and load, while achieving the desired
combination of management objectives.

Index Terms—Cloud Computing, Geographical Data Centers,
Energy Saving, Cost Saving, Load Balancing, VM Migrations.

I. INTRODUCTION

The ever increasing demand for computing resources has
led companies and resource providers to build private data
centers (DCs), or to offload applications and services to the
DCs owned by a Cloud company. Due to this process, the
number and scale of data centers are rapidly increasing. It is
estimated1 that data center electricity consumption is projected
to increase to roughly 140 billion kilowatt-hours annually by
2020, corresponding to about 50 large power plants, with
annual carbon emissions of nearly 150 million metric tons.
The financial impact for the DC management is also huge,
since a DC spends between 30% to 50% of its operational
expenditure in electricity: the expected figure for the sector in
2020 is $13 billion per year of electricity bills.
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The efficient utilization of resources in the data centers
is therefore essential to reduce costs, energy consumption,
carbon emissions and also to ensure that the quality of service
experienced by users is adequate and adherent to the stipulated
Service Level Agreements. Through the allocation of multiple
Virtual Machines (VMs) on the same physical server, the
virtualization technology helps to increase the efficiency of
DCs. A good level of efficiency must be guaranteed also
in geographically distributed DCs, whose adoption is rapidly
increasing. Major cloud service providers, such as Amazon,
Google, and Microsoft, are deploying distributed DCs to match
the increasing demand for resilient and low-latency cloud ser-
vices, or to interconnect heterogeneous DCs owned by differ-
ent companies, in the so-called “Inter-Cloud” scenario. In this
scenario, the dynamic allocation and migration of workload
among DCs has become also an opportunity to reduce costs,
moving the workload where the energy is cheaper/cleaner
and/or cooling costs are lower, according to what is called the
“follow the moon” paradigm. Inter-site migration is enabled by
the availability of a high network capacity achievable thanks
to physical improvements and logical/functional enhancements
(e.g., the adoption of Software Defined Networks).

While workload assignment and migration can be very ef-
fective for cost reduction, the associated decision processes are
made particularly complex by the time-variability of electricity
cost, and by the workload variability both within single sites
and across the whole infrastructure. Workload management
is typically solved as an optimization problem, often in a
centralized way. This approach has three main implications:
(i) poor scalability, due to the large number of parameters
and servers; (ii) poor ability to adapt to changing conditions,
as massive migrations of VMs may be needed to match a
new decision on of the workload distribution; (iii) limitation
to the autonomy of the sites, which are often required to share
the same strategies and algorithms. The need for autonomous
management is self-explanatory in multi-owned DCs, and is
crucial even within a single-owner infrastructure, for example
in the case that one or several sites are hosted by co-located
multi-tenant facilities.

To tackle these challenging issues, this paper proposes
EcoMultiCloud, a hierarchical framework for the efficient
distribution of the workload on a multi-site platform. The
framework allows for an integrated and homogeneous man-
agement of heterogeneous platforms but at the same time
preserves the autonomy of single sites. It also gives the
data center administrators the opportunity of specifying the
business goals that are mostly relevant for the specific scenario
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– minimization of energy costs, load balancing, reduction of
carbon emission, etc. – and their relative importance, as well as
constraints on the minimum values of the objectives. Another
key feature is the self-organizing and adaptive nature of the ap-
proach: VM migrations are performed asynchronously, when
and where needed, and their rate is tunable by administrators.

The framework is composed of two layers: at the lower
layer, each site adopts its own strategy to distribute and
consolidate the workload internally. At the upper layer, a set
of algorithms – shared by all the sites – are used to evaluate
the behavior of single sites and distribute the workload among
them, both at the time that new applications/VMs are assigned
and when some workload migration from one site to another
is deemed appropriate. At each site a Data Center Manager
(DCM) periodically sends to other sites’ DCMs a number
of parameters that summarize the state of the site: possible
parameters include the overall utilization of resources, the
efficiency of computation, the energy costs, the amount of
CO2 emissions. Upon reception of such data from the other
sites, the DCM executes the upper layer algorithms to: (i)
determine the target data center to which a new application
or VM should be assigned, in accordance to the specified
goals; (ii) check if the workload is efficiently distributed
among the different sites and trigger migration of applications
when needed. This strategy resembles the one used to cope
with traffic routing in the Internet, where a single protocol –
Border Gateway Protocol – is used to interconnect different
Autonomous Systems (ASs), while every AS is free to choose
its own protocol – e.g., RIP or OSPF – for internal traffic
management.

The EcoMultiCloud framework was firstly presented in [1],
where it was also compared to ECE (Energy and Carbon-
Efficient VM Placement Algorithm) [2], the reference of non-
hierarchical approaches that have full visibility about all VMs
and servers. There, it was shown that the hierarchical approach
does not cause performance degradation with respect to single
layer algorithms, and in addition it offers notable advantages
in terms of time to convergence (because the bigger problem
is decomposed in several smaller ones), scalability, autonomy
of sites, overall administration, information management. With
respect to [1], here the work is significantly extended in many
directions: (i) the algorithm for the assignment of VMs is
generalized to include and balance several business goals; (ii)
a new algorithm for triggering inter-DC VM migrations is
defined and evaluated; (iii) a mathematical analysis is provided
to confirm the validity of the approach; (iv) a thorough per-
formance evaluation shows how energy costs can be reduced
exploiting the time and space variability of energy prices.

The contribution of the paper is the following: Section II
summarizes related work in the fields of data center opti-
mization and geographical workload distribution; Section III
presents the EcoMultiCloud architecture and specifies the
roles assigned to the upper and lower layers, as well as their
interaction; Section IV illustrates the algorithms adopted for
the assignment and migration of applications, and offers a
mathematical analysis that can be used both to predict the
performance and tune the algorithms depending on the desired
objectives; Section V illustrates the performance results ob-

tained with a simulation study for a specific scenario including
four data centers located in North America and Europe; finally,
Section VI concludes the paper.

II. RELATED WORK

Many successful efforts have been done to increase the
physical efficiency of data centers, for example of its com-
ponents devoted to cooling and power distribution, and this is
confirmed by the general decrease of the PUE (Power Usage
Effectiveness Index), the ratio between the overall power
entering the data center and the power needed for the IT
infrastructure. However, much remains to be done in terms of
the computational efficiency: for example, on average only a
fraction of CPU capacity of servers – between 15% and 30%
– is actually exploited, and this leads to huge inefficiencies
due to the lack of proportionality between resources usage and
energy consumption [3]. Improvements in this field are related
to a more efficient management of the workload and a better
use of the opportunities offered by virtualization. The efforts
may be categorized in two big fields: workload consolidation
within a single data center, and efficient workload management
in geographical infrastructures that include several remote data
centers.

Workload consolidation is a powerful means to improve
IT efficiency and reduce power consumption within a data
center [4] [5] [6] [7]. In [8], authors presented a multi-
resource scheduling technique to provide a higher degree of
consolidation in multi-dimensional computing systems. Some
approaches - e.g., [9] and [10] - try to forecast the processing
load and aim at determining the minimum number of servers
that should be switched on to satisfy the demand, so as to re-
duce energy consumption and maximize data center revenues.
However, even a correct setting of this number is only a part
of the problem: algorithms are needed to decide how the VMs
should be mapped to servers in a dynamic environment, and
how live migration of VMs can be exploited to unload servers
and switch them off when possible, or to avoid SLA violations.

Self-organizing and decentralized algorithms have been pro-
posed to improve scalability, as the problem of consolidation
is known to be NP-hard when addressed with a centralized
approach. In [11], the data center is modeled as a P2P
network, and ant-like agents explore the network and collect
information needed to migrate VMs and reduce power con-
sumption. The approach presented in [12] decentralizes part
of the intelligence to single servers that take decisions based
on local information, using probabilistic functions, while a
central manager coordinates servers’ decisions to efficiently
consolidate the workload.

The problem is even more complex in geographically dis-
tributed data centers. Research efforts are focused on two re-
lated but different aspects [13]: the routing of service requests
to the most efficient data center, in the so called assignment
phase, and the live migration of portions of the workload when
conditions change and some data centers become preferable in
terms of electricity costs, emission factors, or more renewable
power generation.

Several studies explore the opportunity of energy cost-
saving by routing jobs when/where the electricity prices are
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lower [14], [15]. Some prior studies assume that the electricity
price variations and/or job arrivals follow certain stationary
(although possibly unknown) distributions [16], [17], [18]. Rao
et al. [19] tackle the problem taking into account the spatial
and time diversity in dynamic electricity markets. They attempt
to minimize overall costs for multiple data centers located in
different energy marketing regions. Shao et al. in [20] study
the effect of transmission delay introduced by the routing of
service requests and related data across DCs. Authors in [17]
propose a solution in which the power cost can be reduced
under delay tolerant workloads. By exploiting temporal and
spatial variations of both workload and electricity prices, they
provide a power cost-delay trade off which is exploited to
minimize power expenses at the cost of service delay. The
considered target applications that can generate delay tolerant
workloads are based on MapReduce programming, including
searching, social networking, data analytics.

Liu, et al. in [14] propose a geographical load balancing
(GLB) approach to route general Internet service-requests to
data centers located in various geographical regions, by com-
puting the optimal number of active servers at each data center.
In [21], Yu et al. propose a GLB algorithm to minimize energy
cost and control the risks at the same time, as they model
the uncertainties of price and workload as risk constraints.
In [22], Luo et al. exploit temporal and spatial diversities of
energy price to trade service delay for energy cost. The authors
proposed a novel spatio-temporal load balancing approach to
minimize energy cost for distributed IDCs. The algorithms
presented in [23] and [24] tackle the problem considering the
user’s point of view, and aim to choose the most convenient
data center to which the user should consign a service or VM.

Inter-DC VM migration is a more novel research topic, as
virtualization infrastructures have not offered such features so
far. However they will do in the near future: for example, the
vSphere 6.0 release of VMware, launched in February 2015,
includes new long-distance live migration capabilities, which
will enable VM migrations across remote virtual switches and
data centers. While opportunities opened by long distance
migrations are big, involved issues are also extremely com-
plex: among them, determine whether the benefits of workload
migrations overcome the drawbacks, from which site and to
which site to migrate, what specific portion of the workload
should be migrated, how to reassign the migrating workload
in the target site, etc.

Some significant efforts have been done in this area. The
electricity price variation, both across time and location, is
exploited to reduce overall costs using different strategies. The
Stratus approach [25] exploits Voronoi partitions to determine
to which data center requests should be routed or migrated.
Ren et al. [26] use an online scheduling algorithm based on
Lyapunov optimization techniques. In [27], Kayaaslan et al.
propose an optimization framework based on the observation
that energy prices and query workloads show high spatio-
temporal variation for throughput-intensive applications like
Web search engines. The optimization framework is based on a
workload shifting algorithm considering both electricity prices,
to reduce the energy cost, and workload of data centers at the
time of shifting, to reduce response time. Le et al. consider VM

placement in cloud for high performance applications [28].
The authors propose VM migration policies across multiple
data centers in reaction to variable power pricing. In order
to adapt to the dynamic availability of renewable energy,
the authors in [29] argue for either pausing VM executions
or migrating VMs between sites based on local and remote
energy availability.

The cited approaches aim to solve the problem as a whole,
in a centralized fashion, undergoing the risk of originating
three main issues, as discussed in the introductory section:
poor scalability due to the size of the problem and the
heterogeneity of involved business objectives, poor ability
to adapt to changing conditions (e.g., changes in amount
of workload, electricity price or carbon taxes) and lack of
autonomy of single data centers. To efficiently cope with these
issues, we believe that it is necessary to decentralize part
of the intelligence and distribute the decisions points, while
still exploiting the centralized architecture and functionalities
offered by virtualization infrastructures in single data centers.
This naturally leads to a hierarchical infrastructure, in which
single data centers manage the local workload autonomously
but communicate with each other to route and migrate VMs
among them. A self-organizing hierarchical architecture is
proposed in [30], but so far it is limited to the management of a
single data center. A recent study [31] proposes a hierarchical
approach that combines inter-DC and intra-DC request routing.
The VM scheduling problem is decomposed and solved at
single data centers, and is able to combine different objectives,
e.g., minimize electricity cost, carbon taxes and bandwidth
cost. While the work certainly deserves attention, it only solves
the routing problem and does not exploit the opportunity of
dynamic workload migration, nor the approach seems to be
easily extensible in that direction.

To the best of our knowledge, our approach is among the
first to offer a solution for the multi-DC scenario that exploits
the benefits of a hierarchical architecture, balances multiple
business objectives and constraints, and integrates algorithms
for the assignment/routing problem and algorithms that trigger
inter-DC migrations to adapt the workload distribution to
varying conditions.

The integration with electrical grid is an emerging op-
portunity for both DCs and electrical grid operators for
mutual benefits [32] [33] [34]. More specifically, DCs are
concerned about electricity quality, cost, environmental impact
and availability, while Electricity Service Providers (ESPs)
are concerned about electrical grid reliability, particularly in
terms of energy consumption, peak power demands and power
fluctuations.

In [35], the authors present a low cost workload migration
mechanism as a strategy to match electricity supply and
address the grid balancing problem in the Pacific North-
west. Bates et al. in [36] evaluate relationships, potential
partnerships and possible integration between supercomputing
centers and their ESPs. In order to reduce electricity costs
in supercomputing centers without degrading their utilization,
power-aware resource management is proposed in [37][38].
The novelty of the proposed job scheduling mechanism is its
ability to use the variation in electricity price as a means to
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make better decisions about job start times. Experiments on
an IBM Blue Gene/P and a cluster system as well as a case
study on Argonne’s 48-rack IBM Blue Gene/Q system have
demonstrated the effectiveness of this scheduling approach,
with a 23% reduction in the cost of electricity.

III. ARCHITECTURE FOR INTER-DC WORKLOAD
DISTRIBUTION

This section describes the hierarchical architecture of
EcoMultiCloud for the efficient management of the workload
in a multi-site scenario. The architecture is composed of two
layers: (i) the upper layer is used to exchange information
among the different sites and drive the distribution of VMs
among the DCs and (ii) the lower layer is used to allocate the
workload within single DCs.
EcoMultiCloud extends the decentralized/self-organizing

approach, recently presented in [12] and referred to as
EcoCloud, for the consolidation of the workload in a sin-
gle data center. With EcoCloud key decisions regarding the
local data center are delegated to single servers, which au-
tonomously decide whether or not to accommodate a VM or
trigger a VM migration. The data center manager has only a
coordination role. In a similar fashion, the EcoMultiCloud
architecture leaves most of the intelligence to single DCs.
At the lower layer, each DC is fully autonomous, and can
manage the internal workload using either EcoCloud or any
other consolidation algorithm. At the upper layer, coordinating
decisions, for example about the necessity of migrating an
amount of workload from one site to another, are taken
combining the information related to single DCs. The upper
layer algorithms may be tuned or modified without causing
any impact on the operation of single sites.

The reference scenario is depicted in Figure 1, which shows
the upper and lower layer for two interconnected DCs, as well
as the main involved components. At each DC, a data center
manager (DCM) runs the algorithms of the upper layer, while
the local manager (LM) performs the functionalities of the
lower layer. In the most typical case, both the DCM and LM
may be deployed on the same host as the manager of the local
virtualization infrastructure, e.g., the vCenter in the case of
VMware. The DCM integrates the information coming from
the lower layer and uses it to implement the functionalities
of the upper layer. The DCM is required to: (i) communicate
with the local LM in order to acquire detailed knowledge about
the current state of the local DC, for example regarding the
usage of host resources and the state of running VMs; (ii)
extract relevant high level information about the state of the
DC; (iii) transmit/receive such high level information to/from
all the other DCMs; (iv) execute the algorithms of the upper
layer to combine the collected information and take decisions
about the distribution of the workload among the DCs. For
example, the assignment algorithm is used to decide to which
DC a new VM should be assigned. Once the VM is delivered
to the target site, the local LM runs the lower layer algorithms
to assign the VM to a specific host.

As depicted in Figure 2, the framework is designed so that
all the DCMs execute the upper layer algorithms and, for

Fig. 1. EcoMultiCloud scenario: upper and lower layer of two intercon-
nected data centers.

Fig. 2. EcoMultiCloud scenario: the DCMs of four data centers exchange
high level information about the state of local data centers. Such information
is used, for example, to decide which site should accommodate a new VM.

example, choose the target DC for a VM originated locally.
This requires an all-to-all data transmission among the DCMs,
but this is not an issue due to the relatively low number
of interconnected sites and the tiny amount of transmitted
data. On the other hand, this strategy avoids the choice of
a single coordination point that in a multi-site scenario may
be unappropriate for administrative reasons. If the number of
interconnected DCs becomes relatively large, e.g., more than
a few tens, the DCMs may be organized in a hierarchical or
peer-to-peer architecture.

Since the single DCs are autonomous regarding the choice
of the internal algorithms for workload management, the focus
here is on the algorithms of the upper layer. Two basic algo-
rithms are executed at each DCM: (i) the assignment algorithm
that determines the appropriate target DC for each new VM;
(ii) the migration algorithm that periodically evaluates whether
the current load distribution is appropriate, decides whether an
amount of workload should be migrated and, if so, determines
from which source site to which target site.
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IV. EcoMultiCloud ALGORITHMS FOR WORKLOAD
ASSIGNMENT AND MIGRATION

As mentioned in the previous section, a key responsibility of
the DCM is to analyze detailed data about the local data center
and summarize relevant information that is then transmitted to
remote DCMs and used for the assignment and redistribution
of workload. The nature of the high level information depends
on the objectives that must be achieved. Some important goals
are:

1) Reduction of consumed energy. Moderns DCs are
equipped with instrumentation to monitor the energy
consumed in computational resources. The total energy,
including that needed for cooling and power distribution,
is obtained by multiplying the power used for computa-
tion by the PUE (Power Usage Efficiency) index;

2) Reduction of energy costs. The cost of electricity is
generally different from site to site and also varies with
time, even on a hour-to-hour basis, therefore the overall
cost may be reduced by shifting portions of the workload
to more convenient sites;

3) Reduction of carbon emissions. Companies are today
strongly encouraged to reduce the amount of carbon
emissions, not only to compel to laws and rules, but
also to advertise their green effort and attract customers
that are increasingly careful about sustainability issues;

4) Quality of service. The workload must be distributed
without overloading any single site, as this may affect
the quality of the service perceived by users. The quality
of service may also be improved by properly combining
applications having different characteristics, for exam-
ple, CPU-bound and RAM-bound applications;

5) Load balancing among different sites. Among the ra-
tionales are: a better balance may help improve the
responsiveness of the sites, decrease the impact on phys-
ical infrastructure – e.g., in terms of cooling and power
distribution – and help prevent overload situations;

6) Inter-DC data transmission. The assignment/migration
of VMs to remote sites should take into account many
factors, among which the type of application hosted by
the VM, the amount of involved data and the available
inter-DC bandwidth. For example, migrating a VM may
not be convenient in the case that the VM hosts a
database server, while it may be appropriate if it runs
a Web application, especially in the frequent case that
Web services are replicated on several DCs.

All the above mentioned goals are important, yet different
data centers may focus on different aspects, depending on the
specific operating conditions and on the priorities prescribed
by the management. It is up to the company’s management to
specify the objectives and their relative weights. For example,
let us assume that the primary objectives are the reduction of
overall carbon emissions, the load balancing and the reduction
of costs. These goals are representative of opposite needs, the
need for optimizing the overall efficiency (in terms of costs and
carbon emissions) and the need for guaranteeing the fairness
among data centers. Such opposite needs are to be combined
through properly defined weights, as described in the next

section.
Next sections are devoted to the description of the two

basics algorithms executed by the DCMs: the assignment and
migration algorithms.

A. Assignment Algorithm

The optimal distribution of the workload among the data
centers is driven by a purposely defined assignment function,
which balances and weighs the chosen business goals. This
function associates to each DC a value that represents the cost
to run some workload in that DC, low values correspond to low
overall cost of the DC. The strategy, then, is to assign a VM
to the DC with the lowest value of the function. For example,
if the objectives are the balance of load, the minimization
of carbon emissions and the minimization of costs related to
energy, the assignment function f i

assign, for each DC i, is
defined as follows:

f i
assign = α · Ci

Cmax
+ β · Ui

Umax
+ γ · Ei

Emax
(1)

where the coefficients α, β and γ are positive and α+β+γ =
1.

The three parameters Ci, Ui and Ei, are related, respec-
tively, to carbon emissions, overall utilization and energy
costs. The parameters are normalized with respect to the
maximum values communicated by DCs. The three mentioned
goals – reduction of costs, reduction of carbon emissions
and load balancing – are weighted through the values of the
coefficients. After computing the values of fassign for each
DC, the VM is assigned to the data center having the lowest
value. Once consigned to the target DC, the VM is allocated
to a physical host using the local assignment algorithm, for
example EcoCloud [12]. The assignment function and its
effects will be discussed with more details in Section IV-C,
with the help of a mathematical model.

To compute the assignment function, it is required that the
DCM of each data center transmits to the others some very
simple pieces of data, which are then used to compute the
three mentioned parameters. In the examined case, relevant
information is: (i) the best available carbon footprint rate of a
local server, cs, (ii) the utilization of the bottleneck resource,
Ui, and (iii) the energy cost, Ei. The PUE value of each data
center, which is generally a much more stable information, is
also assumed to be known.

The carbon parameter Ci of a DC i, measured in
Tons/MWh, defines the best available carbon rate, i.e., the
carbon footprint rate (carbon emitted per consumed energy)
of the most efficient available server [2], and is computed as:

Ci = PUEi ·min{cs| server s is available} (2)

The rationale is that, when assigning a VM, the target DC
should be chosen so as to minimize the incremental increase
of the carbon footprint. To this aim, a DCM does not need
to know the carbon footprint rate of all the servers of remote
sites: it only needs to know, per each site, the minimum rate
among the servers that are available to host the VM.
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function AssignmentAlgorithm(α, β, γ)
while VM arrives

for each remote datacenter DCi

Request parameters Ci, Ui, Ei

end for
Cmax = Max{Ci| i = 1 · · ·NDC}
Umax = Max{Ui| i = 1 · · ·NDC}
Emax = Max{Ei| i = 1 · · ·NDC}
for each DCi : DCi is not full, that is, Ui < UTi

f i
assign = α · Ci

Cmax
+ β · Ui

Umax
+ γ · Ei

Emax

end for
DCtarget = DCj such that f j

assign = min{f i
assign| i = 1 · · ·NDC}

Assign VM to DCtarget

end while
end function

Fig. 3. The EcoMultiCloud assignment algorithm, executed by the DCM of each data center.

The utilization of the bottleneck resource is determined by
computing the overall utilization of each hardware resource:
CPU, RAM, storage, etc. For example, the utilization of CPU
is defined as the total amount of CPU utilized by servers
divided by the CPU capacity of the entire DC, and the
utilization of other resources is computed in a similar way.
The bottleneck resource for a DC i is the one with the highest
value of utilization, and this value is denoted as Ui.

Finally, the energy cost parameter, Ei, is defined as:

Ei = PUEi · Pi (3)

where Pi is the price of electricity ($/kWh) and is assumed
to be the same on all the servers of a data center. Indeed, the
overall cost of energy is obtained by multiplying the energy
consumed by the IT component of the data center first by
the PUE – which gives the total amount of consumed energy,
including power distribution and cooling – and then by the
price of energy.

In conclusion, each DCM transmits to the other DCMs, the
following vector of values, that corresponds to the state of the
DC:

si = {Ci, Ui, Ei} (4)

Figure 3 reports the pseudo-code used by a data center
DCM to choose the target data center, among the NDC data
centers of the system, for a VM originated locally. First, the
DCM requests the values of Ci, Ui and Pi to all the remote
data centers2. Then, it computes the maximum values of the
parameters, for the normalization, and computes expression (1)
for any data center that has some spare capacity, i.e., for which
the utilization of the bottleneck resource has not exceeded a
given threshold UTi . Finally, the VM is assigned to the DC
that has the lowest value of (1). Once consigned to the target
DC, the VM is allocated to a physical host using the local
assignment algorithm.

2As an alternative, values can be transmitted periodically in a push fashion.
In both cases the amount of transmitted information is tiny.

B. Migration Algorithm

The assignment algorithm optimizes the distribution of the
VMs on the basis of the chosen objectives and their respective
weights. The values of the fassign function tend to be equal
in the different data centers, as discussed in detail in Section
IV-C. However, the distribution may become inefficient when
the conditions change, e.g., the load or the price of energy
vary in one or more data centers. In such cases, inter-DC VM
migrations are performed to redistribute the workload.

The migration algorithm is triggered when the values of
the fassign functions of two DCs differ by more than a
predetermined threshold, for example in what follows we will
use 3%. The frequency at which this condition is evaluated
should depend on the dynamism of the specific scenario, for
example on the frequency at which the price of energy varies.
When such an imbalance is detected, VMs are migrated from
the data center having the highest value of fassign to the data
center with the minimum value, until the values reenter within
the tolerance range. The frequency of migrations is limited by
the bandwidth between the source and target data centers. This
bandwidth may correspond to the physical bandwidth of inter-
DC connections or may be a portion of the physical bandwidth
reserved by data center administrators for this purpose.

Here, we would like to highlight the adaptive and self-
organizing nature of the algorithm, as migrations are per-
formed only when needed, asynchronously, and at predeter-
mined and controlled rates. This is in contrast with most
migration algorithms which require that the assignment of
VMs is recomputed at fixed time intervals and generally need
lots of concurrent migrations to achieve the new assignment
pattern, possibly deteriorating the quality of service.

C. Analysis of the Assignment and Migration Algorithms

We now analyze the effect of the assignment function (1).
The function represents a metric of cost, that is the cost

to run a VM in a given DC. As mentioned before, in the
case of (1), three objectives are considered: reduction of
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cost, reduction of carbon emissions and load balance. Other
objectives can also be considered and, in the general case, the
expression to define the assignment function becomes:

f i
assign =

M∑
k=1

βk
F k
i

F k
max

with
M∑
k=1

βk = 1 (5)

where M objectives are defined, based on the costs F k
i ,

normalized with respect to the maximum cost F k
max. The

weights βk sum to 1 to represent the relative importance of
the various components of cost.

In what follows, the focus is shifted to the minimization of
costs in the case that price energy varies both among different
data centers, located in different countries, and with time. The
general assignment function, given in (5), is thus instantiated to
take into account two objectives, load balancing and monetary
cost minimization, thus obtaining:

f i
assign = β · Ui

Umax
+ (1− β) · Ei

Emax
(6)

The utilization U , defined as the overall utilization of the
bottleneck hardware resource, and the energy cost E, are used
to balance two opposite needs: the optimization of the overall
efficiency and the fairness among data centers.

We order the DCs based on the value of Ei, so that, Ei < Ej

if i < j; in other words, we order the DCs from the best
performing in terms of energy cost to the least performing one.
Given a total load Λ, at the steady-state, the load distributes
among the DCs in such a way that all the DCs exhibit the
same value of f i

assign. Indeed, the DCM allocates a VM to
the DC i with the smallest value of f i

assign; but, the allocation
of the VM to the DC makes f i

assign increase and get closer
to the other functions f j

assign. Thus, differences among the
values of f i

assign reduce and at the steady-state vanish.
The steady-state distribution of the load, denoted by the

terms U∗
i , can be derived by the solution of the system of

linear equations,{
β

U∗
i

U∗
max

+ (1− β) Ei

Emax
= β

U∗
j

U∗
max

+ (1− β)
Ej

Emax∑NDC

i=1 U∗
i = Λ with 0 ≤ U∗

i ≤ UTi

(7)

Given the chosen DC ordering, E1 ≤ Ei and U1 ≥ Ui for all
i. The DC 1 is, thus, the most loaded DC and Umax = U1.
We call DC 1 the reference DC. The system (7) leads to the
following solution,{

U∗
i = U∗

1

[
1− 1−β

βEmax
(Ei − E1)

]
= U∗

1 vi∑D
i=1 U

∗
i = Λ

(8)

The load distributes in such a way that the larger the terms
(Ei − E1) is (that means the larger the cost to run a VM in
DC i is), the smaller the load allocated to DC i is.

The terms vi = 1− (1−β)/(βEmax) (Ei − E1) define the
relative load of the DCs with respect to the best performing
DC (the reference DC). The term β corresponds to the weight
of load balance with respect to monetary costs; as β → 1, the
policy tends to a pure load balance in which the load is the
same for all the DCs; i.e., vi → 1.

As an example, Figure 4 shows the relative load for the case
with NDC=4 DCs, with energy prices and PUE values taken
from the scenario that will be discussed in Sec. V. Clearly,
as the weight β decreases, the importance of load balance
decreases, and the gap among values of the load in the various
DCs increases. Figure 4 can be used to define the setting of β.
Assume, for example, that a load balance target imposes that
the relative load between DCs cannot be smaller than 0.5, i.e.,
one DC cannot have more than twice the load of another DC.
Then, from the figure, we can find that the minimum possible
value for β that guarantees this load balance target is 0.52.
This value, or a slightly higher one, should then be used if the
objective is to minimize the monetary cost while respecting
the constraint on the load balance.

Fig. 4. Relative load versus β for a case with 4 DCs.

In the solution of (7), some values of U∗
i might turn to be

negative. These are the cases in which the corresponding DC
i has such a high cost that it is more convenient to allocate the
VMs to the other most performing DCs, i.e., DC j, with j < i.
In Figure 4, for example, when β = 0.3, the VMs are assigned
to DC 1, 2, 3 while the fourth DC is not used. Moreover,
when Λ is large, the solution of (7) leads to some Ui > 1.
Clearly, these solutions are not acceptable. In these cases, the
corresponding DCs are fully loaded and the additional load is
distributed among the less performing DCs.

One of the main characteristics of the proposed solution is
the possibility to adapt the load allocation to changes of the
considered parameters, that is, in the case considered above,
to changes of the electricity cost. When the cost Ei varies, for
example due to electricity tariffs that have daily variations, the
system adapts to it by changing the allocation of the load to
the DCs, i.e., the values of Ui. In particular, the variations of
load must follow those of Ei according to the derivative of
(8),

dUi

dEi
= −1− β

β
(9)

An increase of Ei causes a decrease of the load associated to
DC i; the decrease depends on the parameter β.

The effectiveness of the adaptation of load to variations of
cost depends on the relative timescale of tariff variations with
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respect to VM arrivals and departures. For example, when
electricity tariffs change a few times per day, as is usually the
case, systems with highly dynamic VM arrivals and departures
easily and quickly adapt to tariff changes. Conversely, when
VMs lifetime is of the order of days, the system is too slow
to adapt to tariff variations; in this case, VM migrations are
needed to make the system adaptive.

Assume that, at some time of the day, the cost Ei increases
of a quantity ∆Ei and that the relative load of a VM in DC
i is given by ui. The variation of the number of VMs in DC
i that is needed to reach the new optimal load allocation, is
given by

X = −∆Ei

ui

1− β

β
(10)

If the VMs dynamicity is such that VMs leave the DC at rate µ
VMs/s, and we want to guarantee that the optimal allocation
after the tariff change is reached in a time Tm, we need to
guarantee that the speed v of VMs migration is such that

(µ+ v)Tm ≥ X (11)

and, thus, the migration speed must be,

v ≥ X

Tm
− µ = − ∆Ei

Tmui

1− β

β
− µ (12)

Given migration speed v according to (12), during the tran-
sient periods in which migrations and VM lifetime completion
make the system reach its new optimal steady-state, there is
some energy wastage with respect to the optimal allocation.
The waste can be computed by,

W =

∫ Tm

0

∆Ei [X − (v + µ) t] dt

= (∆Ei)
2 1− β

β

Tm

ui
−∆Ei (v + µ)

T 2
m

2
(13)

As an example, Figure 5 reports the energy waste versus
variations ∆E, when β=0.5 and for some values of the
migration speed, reported in VMs that migrate per hour.
Clearly, for small values of v the transient phase lasts more
and the waste is larger.
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Fig. 5. Waste versus variations of energy cost, for several values of the
migration speed; β = 0.5.

TABLE I
PUE AND LOCAL TIME OF THE FOUR DCS IN THE EXAMINED SCENARIO.

Data center PUE Local time
DC 1 1.56 UTC-8
DC 2 1.7 UTC-5
DC 3 1.9 UTC
DC 4 2.1 UTC+1

V. PERFORMANCE EVALUATION

This section is devoted to the performance evaluation of
EcoMultiCloud. The evaluation is organized in two main
parts. In the first one, we focus on the potential cost into which
the system incurs if it does not adapt to time-varying energy
price, and to isolate this effect we assume a stable load and
observe the system working conditions after the assignment
phase. In the second part, we examine how migrations can
help to make the workload distribution adaptive to changes of
the electricity price.

As mentioned in the introductory section, a careful analysis
of the hierarchical approach was already performed in a
previous work [1] by comparing the results of EcoMultiCloud
with the reference of non-hierarchical approaches, namely
ECE (Energy and Carbon-Efficient VM Placement Algorithm)
[2]. Thus, our purpose here is not to validate the hierarchical
approach, but, rather, to focus on the minimization of costs in
the case that the energy price varies both among DCs located
in different countries, and with time.

We consider a system with two objectives, load balancing
and cost minimization, that are reflected by the assignment
function in (6), reported here for the reader’s convenience,

f i
assign = β · Ui

Umax
+ (1− β) · Ei

Emax

The function works with two parameters per DC: the utiliza-
tion Ui and the energy cost Ei. The scenario under analysis is
the same of [1] and [2], with four interconnected DCs and
values of the PUE as reported in Table I; time zones are
also indicated with respect to UTC, assuming that the DC
locations are, respectively, California, Ontario (Canada), UK
and Germany. Table II reports energy prices in a 24 hours
interval, again time is expressed in UTC3. To simplify the
analysis, it is assumed that the prices repeat periodically for
a few days. The parameter Ei is obtained by multiplying the
PUE of DC i as in Table I by the electricity price reported in
Table II.

Data about VMs and physical hosts are taken from the logs
of a Proof of Concept performed by the company Eco4Cloud
srl (www.eco4cloud.com), spin-off from the National Research
Council of Italy, on the DC of a telecommunication operator.
The DC contains 112 servers virtualized with the platform
VMware vSphere 5.0. Among the servers, 76 are equipped

3Energy prices are taken or extrapolated from the following web sites:
• California: www.pge.com/tariffs/IndustrialCurrent.xls
• Ontario: www.hydroone.com/RegulatoryAffairs/RatesPrices/Pages
• UK: en.wikipedia.org/wiki/Electricity billing in the UK
• Germany: www.iwr-institut.de/en/press/background-informations
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TABLE II
ENERGY PRICE, EXPRESSED AS $/kWh, FOR THE 4 DCS. THE TABLE

SHOWS ONLY THE TIME, EXPRESSED IN UTC, CORRESPONDING TO THE
ENERGY PRICE CHANGE IN AT LEAST ONE DC.

Time (UTC) DC1 DC2 DC3 DC4

0:00 am 0.15 0.07 0.09 0.11
2:00 am 0.11 0.07 0.09 0.11
6:00 am 0.08 0.07 0.09 0.11
7:00 am 0.08 0.07 0.14 0.21

11:00 am 0.08 0.07 0.19 0.21
12:00 am 0.08 0.12 0.19 0.21
2:00 pm 0.08 0.12 0.14 0.21
4:00 pm 0.08 0.10 0.19 0.21
5:00 pm 0.11 0.10 0.19 0.21
7:00 pm 0.11 0.10 0.14 0.11
8:00 pm 0.15 0.10 0.14 0.11

10:00 pm 0.15 0.12 0.14 0.11
11:00 pm 0.15 0.12 0.09 0.11

with processor Xeon 24 cores and 100-GB RAM, and 36 with
processor Xeon 16 cores and 64-GB RAM. All the servers
have network adapters with bandwidth of 10 Gbps. The servers
host 2000 VMs which are assigned a number of virtual cores
varying between 1 and 8 and an amount of RAM varying
between 1 GB and 16 GB. The most utilized resource in
this scenario is the RAM, therefore the RAM utilization of
DC i is considered when computing the utilization Ui in
(6). A constraint imposed by the DC administrators was that
the utilization of server resources must not exceed 80%, i.e.,
UTi = 0.8. Servers and VMs are replicated for all the DCs,
while the values of PUE and energy price are differentiated as
described above.

The performance is analyzed with an event-based Java
simulator that was previously validated with respect to real
data for the case of a single DC [12]. At a time UTC=0,
corresponding to midnight for DC 3 that is located in UK,
all the VMs are assigned one by one by executing the
assignment algorithm described in Sec. IV-A: (i) each VM
is delivered by the local DCM to the DC having the lowest
value of the assignment function fassign; (ii) within the target
DC, the VM is assigned to a specific host using, as local
assignment algorithm, the EcoCloud algorithm presented in
[12], which proved to achieve a nearly optimal degree of
workload consolidation4.

Results are obtained, unless otherwise stated, for β=0.5 and
total load Λ=50%. Since the RAM is the bottleneck resource,
the overall load Λ of the system is defined as the ratio between
the total amount of RAM utilized by the VMs and the RAM
capacity of the entire system. Thus, the overall number of VMs
is chosen so as to load the whole system to the desired extent.

A. Constant load, no migration

In the first scenario, the number of running VMs is assumed
to be stable: no VM terminates or is generated, and inter-DC
migrations are not allowed5.

4Any other efficient consolidation algorithm can be adopted as local
assignment algorithm, with no remarkable effect on the overall performance
of multi-DC assignment.

5The hardware requirements of single VMs, as extracted by the real traces
used for the experiment, are dynamic.

TABLE III
RAM UTILIZATION OF THE DCS WITH DIFFERENT VALUES OF β AND

OVERALL LOAD Λ, AT THE END OF THE ASSIGNMENT PHASE.

Λ β U1 U2 U3 U4

50% 0 0.0% 79.9% 79.9% 36.4%
50% 0.5 36.2% 69.4% 51.3% 39.2%
50% 1 49.9% 49.9% 49.9% 49.9%
75% 0 55.8% 79.9% 79.9% 79.9%
75% 0.5 66.1% 79.9% 79.9% 69.6%
75% 1 75.0% 75.0% 75.0% 75.0%

Table III reports the values of RAM utilization of the DCs,
at the end of the assignment phase, for different values of the
overall load Λ (50% and 75%) and β (0, 0.5 and 1). The table
shows that, for any given load, the parameter β can be used to
tune the two objectives, cost minimization and load balance.
With β=1, all the DCs are equally loaded since load balancing
is the only objective. With β=0, the load is preferably assigned
to the DCs with lowest energy price, which are loaded up
to their maximum capacity. With β=0.5, there is a tradeoff
between the two objectives: for example, with overall load
equal to 50%, the RAM utilization ranges between 36.2% (at
the most expensive DC at time of assignment, namely DC 1)
to 69.4% (at the most convenient DC, DC 2).
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Figure 6 shows the values of the fassign function for
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the different DCs, as obtained from simulations and from
the mathematical analysis illustrated in Section IV-C, for the
scenario with β=0.5 and overall load Λ=50%. Right after
the assignment phase (executed at time 0), the values of
the fassign function for the different DCs are the same, as
discussed and anticipated in Section IV-C. Subsequently, due
to energy price variations during the day, the values of fassign
vary and differentiate from each other, which is a sign that
the initial assignment becomes inefficient (and it cannot be
modified since migrations are not allowed and VMs do not
start or terminate). For example, at time UTC=7 the fassign
value of DC 4 is higher than the value of DC 1, therefore
it would be advantageous to move a portion of the workload
from the former DC to the latter.

Figure 7 shows the hourly cost of the energy consumption
for the single DCs as well as the total cost. Clearly, the costs
are heavily affected by the variations of energy price along the
24 hours. In the next section, it is shown that the costs can be
notably reduced through inter-DC migrations.

B. Dynamic load and migrations

The second set of experiments is performed in a scenario
in which two phenomena are enabled: the turnover of VMs
and the inter-DC migration process. The first phenomenon is
related to the arrival and departure of VMs. We assume that
new VMs are launched at different rates during the day and
the night, namely λday and λnight, and that λday = 2 ·λnight.
Figure 8 reports the arrival rates at the four DCs in a 24 hours
interval, and the overall arrival rate to the whole system. We
also assume that the average lifetime of a VM, denoted as
1/µ, is equal to 180 hours.
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Fig. 8. Arrival rate of new VMs per hour.

The variations of energy price and the arrival/departure
process contribute to break the equilibrium achieved at the
assignment phase. Inter-DC migrations are then used to prop-
erly redistribute the workload, as explained in Section IV-B.
Workload migration is triggered when fassign values of two
DCs differ by more than 3%, which is checked at intervals
of 60 minutes. Experiments were performed with different
values of the bandwidth that is available or reserved for
DC migrations: 0.5 Gbps, 1 Gbps, 2 Gbps and 5 Gbps. In
the examined scenario, such values of bandwidth enable the
migration, respectively, of about 50 VMs, 100 VMs, 200 VMs

and 500 VMs per hour. When it is not specified, a bandwidth
of 2 Gbps is assumed. The results reported in the following
are related to a 24-hour interval corresponding to the third day
after the initial assignment of VMs. This allows the results to
become independent from the conditions experienced at the
time of the initial assignment, in particular from the price of
energy at that time. Indeed, it was observed that the biasing
caused by the initial conditions vanishes after the first day,
thanks to inter-DC migrations that are performed during this
time. This can be observed in Figure 9: values of fassign repeat
cyclically every 24 hours, starting from the second day.
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Figure 10 focuses on the values of fassign during the third
day. While the variations of energy prices tend to stretch
fassign values apart, as previously seen in Figure 6, inter-
DC migrations let the functions approach each other, making
the workload distribution more efficient. Figure 11 shows that
the load of DCs adapts to the energy price variations. For
example, at the time labeled as 60 (12 am UTC of the third
day), the most loaded DCs are DC 1 and DC 2, because in
the preceding hours they have been the DCs with the lowest
energy price – see Table II – and have then attracted VMs
from the other two DCs.

Figure 12 shows the energy costs of the four DCs. The
inter-DC migration process makes costs closer to each other,
as can be observed by comparing this figure to Figure 7. Most
importantly, the total cost notably reduces: Figure 13 reports
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assignment.
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the total energy cost obtained with two different values of
inter-DC bandwidth and, for the sake of comparison, in the
case that migrations are disabled (curve “no migrations”) and
in the case that the migrations are instantaneous, taken as a
theoretical limit. Cost savings clearly increase with the allowed
bandwidth.

The total daily cost of energy is reported in Figure 14,
for different values of inter-DC bandwidth and β. In the case
examined so far, with β=0.5, the daily cost is equal to about
$973,000 if migrations are not allowed, while it is about
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Fig. 16. Utilization of DCs vs. time during the third day after the initial
assignment. Overall load Λ=75%.

$860,000 when the bandwidth is 2 Gbps, resulting in a cost
saving of about $113,000, corresponding to 11%. Cost savings
are even higher with β=0, since the load balancing is not taken
into account, and cheaper DCs are able to attract more VMs.
In this case, the daily saving increases to about $219,000,
or 21%. Conversely, with β=1, all the DCs support the same
load and, since the load balance is the only objective, no inter-
DC migrations are triggered even when allowed, and no cost
saving can be achieved. It is also noticed that lower values of
β correspond to lower values of daily cost, as expected, except
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when no inter-DC migrations are allowed.
Figure 15 helps to understand the effect on the load balanc-

ing objective. The figure reports the value of the coefficient
of variation in the third day of operation with three different
values of β. The index is computed by considering the RAM
utilization of the four DCs and dividing the standard deviation
by the average. With β=1 the DCs are equally loaded, as
desired. With β=0 the distribution of load is completely deter-
mined by costs, so the imbalance is maximum. Finally, with
β=0.5 the values are intermediate between the two extreme
cases, and the large fluctuations reflect the fact that inter-DC
migrations are used to dynamically redistribute the load as
required by the varying values of energy price.

Finally, Figure 16 shows the utilization of the DCs for the
case of a higher overall load, i.e., Λ = 0.75, for β = 0.5. It is
observed that when the load is high, the most convenient DCs
may reach full utilization, but the actual load distribution still
depends also on the energy cost.

VI. CONCLUSIONS

The paper focused on the challenging task of workload
management in multi-site data centers. A new hierarchical
approach, named EcoMultiCloud, was presented and eval-
uated. The proposed solution is based on a function that
defines the cost of running some workload on the various sites
of the distributed data center. The function can be tailored
to properly trade-off the various possible management goals,
such as energy cost reduction and load balance. Moreover, the
solution preserves the autonomy of the sites for the internal
management. The presented results show that the proposed
solution, despite being simple and requiring a very limited
information exchange among the sites, smoothly adapts the
workload distribution to variations of the working conditions,
such as changes of the energy cost and daily load fluctuations.
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