

Consiglio Nazionale delle Ricerche
Istituto di Calcolo e Reti ad Alte Prestazioni

ETLs for importing NCBI Entrez Gene,
miRBase, mirCancer and microRNA
into a bioinformatics graph database

A. Messina

Rapporto Tecnico N.:
RT-ICAR-PA-15-08 Dicembre 2015

Consiglio Nazionale delle Ricerche, Istituto di Calcolo e Reti ad Alte Prestazioni (ICAR) –
Sede di Cosenza, Via P. Bucci 41C, 87036 Rende, Italy, URL: www.icar.cnr.it
– Sede di Napoli, Via P. Castellino 111, 80131 Napoli, URL: www.na.icar.cnr.it
– Sede di Palermo, Viale delle Scienze, 90128 Palermo, URL: www.pa.icar.cnr.it

Non è possibile visualizzare questa immagine.

Consiglio Nazionale delle Ricerche
Istituto di Calcolo e Reti ad Alte Prestazioni

ETLs for importing NCBI Entrez Gene,
miRBase, mirCancer and microRNA
into a bioinformatics graph database

A. Messina1

Rapporto Tecnico N.:
RT-ICAR-PA-15-08 Dicembre 2015

1 Istituto di Calcolo e Reti ad Alte Prestazioni, ICAR-CNR, Sede di Palermo, Viale

delle Scienze edificio 11, 90128 Palermo.

I rapporti tecnici dell’ICAR-CNR sono pubblicati dall’Istituto di Calcolo e Reti ad Alte
Prestazioni del Consiglio Nazionale delle Ricerche. Tali rapporti, approntati sotto l’esclusiva
responsabilità scientifica degli autori, descrivono attività di ricerca del personale e dei
collaboratori dell’ICAR, in alcuni casi in un formato preliminare prima della pubblicazione
definitiva in altra sede.

Non è possibile visualizzare questa immagine.

Index

1	 INTRODUCTION	...	5	

2	 ORIENTDB	...	6	

2.1	 Introduction	..	6	

2.2	 Brief	features	overview	...	6	

3	 GENERAL	ETLS	TEMPLATE	..	8	

3.1	 Introduction	..	8	

3.2	 Initialization	part	..	8	

3.3	 Main	loop	part	..	9	

3.4	 Finalization	part	..	9	

4	 NCBI	ENTREZ	GENE	..	10	

4.1	 Introduction	..	10	

4.2	 Data	source	...	10	

4.3	 ETL	..	11	

5	 MIRBASE	..	12	

5.1	 Introduction	..	12	

5.2	 Data	source	...	12	

5.2.1	 The	EMBL	format	...	12	

5.2.2	 The	ID	Line	...	13	

5.2.3	 The	AC	Line	..	13	

5.2.4	 The	PR	Line	..	14	

5.2.5	 The	DT	Line	..	14	

5.2.6	 The	DE	Line	..	14	

5.2.7	 The	KW	Line	...	15	

5.2.8	 The	OS	Line	..	15	

5.2.9	 The	OC	Line	...	15	

5.2.10	 The	OG	Line	..	16	

5.2.11	 The	Reference	(RN,	RC,	RP,	RX,	RG,	RA,	RT,	RL)	Lines	...	16	

5.2.12	 The	DR	Line	...	18	

5.2.13	 The	AH	Line	(in	TPA	and	TSA	records	only)	..	19	

5.2.14	 The	AS	Line	(in	TPA	and	TSA	records)	...	19	

5.2.15	 The	CO	Line	(in	CON	records	only)	...	19	

5.2.16	 The	FH	Line	...	19	

5.2.17	 The	FT	Line	..	20	

5.2.18	 The	SQ	Line	...	20	

5.2.19	 The	Sequence	Data	Line	...	20	

5.2.20	 The	CC	Line	...	20	

5.2.21	 The	XX	Line	...	21	

5.2.22	 The	//	Line	..	21	

5.3	 ETL	..	21	

6	 MIRCANCER	..	23	

6.1	 Introduction	..	23	

6.2	 Data	source	...	23	

6.3	 ETL	..	23	

7	 MICRORNA	..	25	

7.1	 Introduction	..	25	

7.2	 Data	source	...	25	

7.3	 ETL	..	25	

8	 REFERENCES	..	28	

1 Introduction

This	work	is	the	first	of	a	series	of	technical	report	documenting	the	performed	
activities	to	build	a	big	bioinformatics	database.	

Current	 available	 bioinformatics	 databases	 provide	 huge	 amounts	 of	 different	
biological	 entities	 such	 as	 genes,	 proteins,	 diseases,	 microRNA,	 annotations,	
literature	 references.	 But	 in	many	 case	 studies,	 a	 bioinformatician	 often	 needs	
more	than	one	type	of	resource	in	order	to	full	analyze	his	data.	

The	 bioinformatics	 database	 object	 of	 this	 work	 will	 allow	 the	 integration	 of	
different	 types	of	 data	 sources,	 so	 that	 it	 is	 possible	 to	perform	bioinformatics	
analysis	using	only	one	comprehensive	system.	

The	integrated	database	will	be	structured	as	a	NoSQL	graph	database,	based	on	
the	OrientDB	platform,	exploiting	this	way	the	advantages	of	that	technology	in	
terms	of	scalability	and	efficiency	with	regards	to	traditional	SQL	database.	

The	technical	report	is	organized	as	follow:	Section	2	presents	a	brief	overview	on	
the	 noSQL	 engine	 OrientDB;	 Section	 3	 presents	 the	 general	 structure	 of	 the	
developed	ETLs;	Sections	from	4	to	7	report	the	specific	ETLs	implementations	for	
the	bioinformatics	databases	actually	imported.		

2 OrientDB

	

2.1 Introduction

OrientDB	 [1]	 is	 an	 open	 source	 NoSQL	 database	management	 system	 (DMBS)	
developed	 in	 Java	by	Orient	Technologies	LTD.	 It	 collects	 features	of	document	
databases	 and	 graph	 databases,	 including	 object	 orientation.	 In	 graph	 mode,	
referenced	relationships	are	like	edges,	accessible	as	first-class	objects	with	a	start	
vertex,	 end	 vertex,	 and	 properties.	 This	 interesting	 feature	 let	 us	 represent	 a	
relational	model	in	document-graph	model	maintaining	the	relationships.	

	

2.2 Brief features overview

The	OrientDB	engine	supports	Graph,	Document,	Key-Value,	and	Object	models,	
so	 it	 is	possible	to	use	OrientDB	as	a	replacement	for	a	product	 in	any	of	 these	
categories.	

However,	the	main	feature	of	OrientDB	is	its	ability	to	act	as	a	true	Multi-Model	
DBMS	by	combining	all	 the	features	of	the	four	models	 into	one.	Therefore,	 the	
database	engine	is	built	to	support	all	four	models,	as	shown	in	Figure	1.	This	is	
also	the	main	difference	with	other	Multi-Model	DBMSs,	since	they	implement	an	
additional	layer	with	an	API	that	performs	additional	models.	

Figure 1 - OrientDB as a multi model noSQL database (courtesy of Orient Technologies LTD)	

	
OrientDB	is	extremely	versatile,	as	it	includes	features	from	relational	databases,	
object	oriented	engines,	document	databases	and,	of	course,	graph	models.	

It	is	also	capable	of	storing	and	serving	records	as	JSON	documents	and	performs	
very	well	thanks	to	its	indexing	algorithm,	named	MVRB-Tree.	It	provides	a	wide	
variety	of	different	and	powerful	features:	for	example,	it	has	an	object-	oriented	
model	 to	exposing	a	REST	 interface;	 it	 is	able	 to	 traverse	a	graph	of	 thousands	
records,	 at	 any	 level	 of	 depth,	 in	milliseconds;	 it	 provides	 to	 the	 developers	 a	
toolset	and	a	variety	of	functionalities	that	they	can	never	take	advantage	of	with	
other	database	management	system.	

Finally,	 OrientDB	 Server	 is	 a	 customizable	 platform	 to	 build	 powerful	 server	
component	 and	 applications.	 Since	 the	OrientDB	 server	 contains	 an	 integrated	
Web	Server,	it	is	possible	to	create	server	side	applications	without	the	need	to	
have	a	J2EE	and	Servlet	container.	

By	extending	the	server,	it	is	possible	to	benefit	of	the	best	performance	because	
you	don’t	have	many	 layers	but	 the	database	and	 the	application	reside	on	 the	
same	 JVM	 without	 the	 cost	 of	 the	 network	 and	 serialization	 of	 requests.	
Furthermore,	it	is	possible	to	package	your	application	together	with	the	OrientDB	
server	to	distribute	just	a	ZIP	file	containing	the	entire	Application,	Web	server	
and	Database.	

Figure 2 - OrientDB features (courtesy of Orient Technologies LTD)	

	

	

	

	 	

3 General ETLs Template

3.1 Introduction

All	 the	 developed	 ETLs	 are	 coded	 following	 the	 same	 general	 model,	 which	
basically	supposes	a	subdivision	in	three	parts:	

• Initialization	part	
• Main-loop	part	
• Finalization	part	

Some	details	on	the	operations	performed	in	these	parts	are	exposed	in	the	next	
sections.		

	

3.2 Initialization part

As	suggested	by	its	name,	all	the	preliminary	initialization	steps	are	performed	in	
that	code	section.	

It	always	starts	with	the	connection	to	the	database.	Given	that	in	this	phase	the	
database	is	going	to	be	populated	and	in	order	to	minimize	writing	times,	a	non-
transactional	 connection	 is	 created.	 This	 means	 that	 every	 non	 idempotent	
operation	against	the	graph	database	is	atomic.	It	is	the	suggested	way	to	massive	
import	graph	into	OrientDB.	

OrientGraphFactory graphFactory = new OrientGraphFactory(dbUrl);
OrientGraphNoTx graph = graphFactory.getNoTx();
graph.declareIntent(new OIntentMassiveInsert());

	
Depending	 on	 the	 bio	 entities	 to	 import,	 some	basic	 objects	 are	 created	 in	 the	
database:	

• one	or	more	vertices	types,	with	graph.createVertexType(…)		
• one	or	more	edges	types,	with	graph.createEdgeType(…)	
• one	or	more	indexes,	with	graph.createKeyIndex(…)	

Finally,	a	reader	of	the	source	file	is	created,	usually	with:		

BufferedReader reader = new BufferedReader(new FileReader(fileName));

	

3.3 Main loop part

The	main	loop	part	is	generally	constituted	by	a	while	loop.		

For	textual	tab-delimited	source	files,	it	runs	until	all	the	lines	are	read.	In	order	
to	extract	the	columns	values,	every	single	line	is	then	splitted	into	pieces,	stored	
in	a	string	array,	which	will	contain	the	properties	of	a	new	vertex	or	a	new	edge:	

while ((line = reader.readLine()) != null) {
 String datavalue[] = line.split("\t");

 …

}

	
The	 ETL	 section	 of	 the	 next	 chapters	will	 present	 a	 detailed	 exposition	 of	 the	
operations	performed	in	this	part.	

	

3.4 Finalization part

The	 last	 part	 of	 an	 ETL	 simply	 contains	 the	 necessary	 code	 to	 free	 the	 used	
resources:		

reader.close();

graph.declareIntent(null);
graph.shutdown();

graphFactory.close();

	

	

	

	 	

4 NCBI Entrez Gene

4.1 Introduction

The	NCBI	Entrez	Gene	[1]	is	a	searchable	database	of	genes,	focusing	on	genomes	
that	have	been	completely	sequenced	and	that	have	an	active	research	community	
to	 contribute	 gene-specific	 data.	 Information	 includes	 nomenclature,	
chromosomal	 localization,	 gene	 products	 and	 their	 attributes	 (e.g.,	 protein	
interactions),	associated	markers,	phenotypes,	interactions,	and	links	to	citations,	
sequences,	variation	details,	maps,	expression	reports,	homologs,	protein	domain	
content,	and	external	databases.	

	

4.2 Data source

The	 NCBI	 Entrez	 Gene	 database	 is	 available	 for	 download	 from	 the	 address
ftp://ftp.ncbi.nih.gov/gene/ and	 it	 is	 splitted	 in	 several	 compressed	 files	 updated	
daily	 within	 the	 DATA	 directory.	 In	 this	 work,	 just	 the	 file	 gene_info.gz	 is	
considered;	 it	 is	 a	 textual	 tab-delimited	 file,	 containing	 a	 gene	per	 line,	 and	 its	
structure	(columns	meaning)	is	reported	below:		

tax_id	 the	unique	identifier	provided	by	NCBI	Taxonomy	for	the	species	or	
strain/isolate	

GeneID	 the	unique	identifier	for	a	gene	

Symbol	 the	default	symbol	for	the	gene	

LocusTag	 the	LocusTag	value	

Synonyms	 bar-delimited	set	of	unofficial	symbols	for	the	gene	

dbXrefs	 bar-delimited	set	of	identifiers	in	other	databases	for	this	gene.	The	
unit	of	the	set	is	database:value.	Note	that	HGNC	and	MGI	include	
'HGNC'	and	'MGI',	respectively,	in	the	value	part	of	their	identifier.		
Consequently,	 dbXrefs	 for	 these	 databases	 will	 appear	 like:	
HGNC:HGNC:1100	
This	would	be	interpreted	as	database='HGNC',	value='HGNC:1100'	
Example	for	MGI:	MGI:MGI:104537	
This	would	be	interpreted	as	database='MGI',	value='MGI:104537'	

chromosome	 the	 chromosome	 on	which	 this	 gene	 is	 placed.	 For	mitochondrial	
genomes,	the	value	‘MT’	is	used.	

map	location	 the	map	location	for	this	gene	

description	 a	descriptive	name	for	this	gene	

type	of	gene	 the	 type	 assigned	 to	 the	 gene	 according	 to	 the	 list	 of	 options	
provided	 in	 http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/	
lxr/source/src/objects/entrezgene/entrezgene.asn		

Symbol	from	nomenclature	authority	 when	 not	 '-',	 indicates	 that	 this	 symbol	 is	 from	 a	 nomenclature	
authority	

Full	name	from	nomenclature	authority	 when	not	 '-',	 indicates	 that	 this	 full	 name	 is	 from	a	nomenclature	
authority	

Nomenclature	status	 when	not	'-',	indicates	the	status	of	the	name	from	the	nomenclature	
authority	(O	for	official,	I	for	interim)	

Other	designations	 pipe-delimited	 set	 of	 some	 alternate	 descriptions	 that	 have	 been	
assigned	to	a	GeneID.	'-'	indicates	none	is	being	reported.	

Modification	date	 the	last	date	a	gene	record	was	updated,	in	YYYYMMDD	format	

	

4.3 ETL

In	 this	 work,	 just	 the	 genes	 related	 to	 the	 human	 species	 are	 considered.	 By	
comparing	 the	value	of	 the	 first	 column	 to	 the	value	 ‘9606’,	 all	 the	non-human	
genes	can	be	immediately	skipped.	Each	other	columns	values	are	then	assigned	
to	strings,	which	will	contain	the	values	of	the	related	properties	of	the	new	vertex:		

while ((line = reader.readLine()) != null) {
 String datavalue[] = line.split("\t");

 String taxId = datavalue[0];
 if (!taxId.equals("9606"))
 continue;

 String geneId = datavalue[1];
 //String symbol = datavalue[2];
 String locusTag = datavalue[3];
 //String synonyms = datavalue[4];
 //String dbXrefs = datavalue[5];
 String chromosome = datavalue[6];
 String mapLocation = datavalue[7];
 String description = datavalue[8];
 String geneType = datavalue[9];
 String nomenclatureAuthSymbol = datavalue[10];
 String nomenclatureAuthFName = datavalue[11];
 String nomenclatureStatus = datavalue[12];
 String otherDesignations = datavalue[13];
 //String modificationDate = datavalue[14];

 graph.addVertex("class:gene",
 "geneId", geneId,
 //"taxId", taxId,
 //"symbol", symbol,
 "locusTag", locusTag,
 //"synonyms", synonyms,
 //"dbXrefs", dbXrefs,
 "chromosome", chromosome,
 "mapLocation", mapLocation,
 "description", description,
 "type", geneType,
 "nomenclatureAuthoritySymbol", nomenclatureAuthSymbol,
 "nomenclatureAuthorityFullName", nomenclatureAuthFName,
 "nomenclatureStatus", nomenclatureStatus,
 "otherDesignations", otherDesignations
 //"modificationDate", modificationDate
);
}

	 	

5 miRBase

	

5.1 Introduction

The	miRBase	database	[2]	is	a	searchable	database	of	published	miRNA	sequences	
and	 annotation.	 Each	 entry	 in	 the	 miRBase	 Sequence	 database	 represents	 a	
predicted	hairpin	portion	of	a	miRNA	transcript	(termed	mir	in	the	database),	with	
information	on	the	location	and	sequence	of	the	mature	miRNA	sequence	(termed	
miR).	 Both	 hairpin	 and	 mature	 sequences	 are	 available	 for	 searching	 and	
browsing,	 and	 entries	 can	 also	be	 retrieved	by	name,	 keyword,	 references	 and	
annotation.	

	

5.2 Data source

The	 file	 at	 the	 URL	 ftp://mirbase.org/pub/mirbase/CURRENT/miRNA.dat.gz	
contains	 all	 the	 current	published	miRNA	data	 in	EMBL	 format	 [3].	The	newer	
available	database	is	the	version	21	and	it	was	released	on	June	2014.	

	

5.2.1 The EMBL format

The	entries	 in	a	database	 in	EMBL	 format	are	 structured	so	as	 to	be	usable	by	
human	readers	as	well	as	by	computer	programs.	The	explanations,	descriptions,	
classifications	and	other	comments	are	in	ordinary	English,	and	the	symbols	and	
formatting	 employed	 for	 the	 base	 sequences	 themselves	 have	 been	 chosen	 for	
readability.	 Wherever	 possible,	 symbols	 familiar	 to	 molecular	 biologists	 have	
been	used.	At	the	same	time,	the	structure	is	systematic	enough	to	allow	computer	
programs	 easily	 to	 read,	 identify,	 and	 manipulate	 the	 various	 types	 of	 data	
included.	

Each entry in the database is composed of lines. Different types of lines, each with its
own format, are used to record the various types of data which make up the entry. In
general, fixed format items have been kept to a minimum, and a more syntax-oriented
structure adopted for the lines.

Each line begins with a two-character line code, which indicates the type of information
contained in the line. The currently used line types, along with their respective line
codes, are listed below:

 ID - identification (begins each entry; 1 per entry)
 AC - accession number (>=1 per entry)

 PR - project identifier (0 or 1 per entry)
 DT - date (2 per entry)
 DE - description (>=1 per entry)
 KW - keyword (>=1 per entry)
 OS - organism species (>=1 per entry)
 OC - organism classification (>=1 per entry)
 OG - organelle (0 or 1 per entry)
 RN - reference number (>=1 per entry)
 RC - reference comment (>=0 per entry)
 RP - reference positions (>=1 per entry)
 RX - reference cross-reference (>=0 per entry)
 RG - reference group (>=0 per entry)
 RA - reference author(s) (>=0 per entry)
 RT - reference title (>=1 per entry)
 RL - reference location (>=1 per entry)
 DR - database cross-reference (>=0 per entry)
 CC - comments or notes (>=0 per entry)
 AH - assembly header (0 or 1 per entry)
 AS - assembly information (0 or >=1 per entry)
 FH - feature table header (2 per entry)
 FT - feature table data (>=2 per entry)
 XX - spacer line (many per entry)
 SQ - sequence header (1 per entry)
 CO - contig/construct line (0 or >=1 per entry)
 bb - (blanks) sequence data (>=1 per entry)
 // - termination line (ends each entry; 1 per entry)

5.2.2 The ID Line

The	ID	(IDentification)	line	is	always	the	first	line	of	an	entry.	The	format	of	the	ID	
line	is:	

ID <1>; SV <2>; <3>; <4>; <5>; <6>; <7> BP.

	
The	tokens	represent:	

			1.	Primary	accession	number	
			2.	Sequence	version	number	
			3.	Topology:	'circular'	or	'linear'	
			4.	Molecule	type	
			5.	Data	class		
			6.	Taxonomic	division		
			7.	Sequence	length		

5.2.3 The AC Line

The	AC	(ACcession	number)	line	lists	the	accession	numbers	associated	with	the	
entry.	Each	accession	number,	or	range	of	accession	numbers,	is	terminated	by	a	
semicolon.	 Where	 necessary,	 more	 than	 one	 AC	 line	 is	 used.	 Consecutive	
secondary	accession	numbers	in	ENA	flatfiles	are	shown	in	the	form	of	inclusive	
accession	 number	 ranges.	 Accession	 numbers	 are	 the	 primary	 means	 of	

identifying	sequences	providing		a	stable	way	of	identifying	entries	from	release	
to	 release.	 An	 accession	 number,	 however,	 always	 remains	 in	 the	 accession	
number	list	of	the	latest	version	of	the	entry	in	which	it	first	appeared.		Accession	
numbers	allow	unambiguous	citation	of	database	entries.	Researchers	who	wish	
to	cite	entries	in	their	publications	should	always	cite	the	first	accession	number	
in	the	list	(the	"primary"	accession	number)	to	ensure	that	readers	can	find	the	
relevant	data	in	a	subsequent	release.	Readers	wishing	to	find	the	data	thus	cited	
must	look	at	all	the	accession	numbers	in	each	entry's	list.	

5.2.4 The PR Line

The	 PR	 (PRoject)	 line	 shows	 the	 International	 Nucleotide	 Sequence	 Database	
Collaboration	(INSDC)	Project	Identifier	that	has	been	assigned	to	the	entry.	Full	
details	 of	 INSDC	 Project	 are	 available	 at http://www.ebi.ac.uk/ena/about/
page.php?page=project_guidelines

5.2.5 The DT Line

The	DT	(DaTe)	line	shows	when	an	entry	first	appeared	in	the	database	and	when	
it	was	last	updated.		Each	entry	contains	two	DT	lines,	formatted	as	follows:	

DT DD-MON-YYYY (Rel. #, Created)
DT DD-MON-YYYY (Rel. #, Last updated, Version #)

The	date	supplied	on	each	DT	line	indicates	when	the	entry	was	created	or	last	
updated;	that	will	usually	also	be	the	date	when	the	new	or	modified	entry	became	
publicly	visible	via	the	EBI	network	servers.	The	release	number	indicates	the	first	
quarterly	release	made	after	the	entry	was	created	or	last	updated.	The	version	
number	appears	only	on	the	"Last	updated"	DT	line.	

5.2.6 The DE Line

The	 DE	 (Description)	 lines	 contain	 general	 descriptive	 information	 about	 the	
sequence	 stored.	 This	 may	 include	 the	 designations	 of	 genes	 for	 which	 the	
sequence	 codes,	 the	 region	 of	 the	 genome	 from	 which	 it	 is	 derived,	 or	 other	
information	which	helps	to	identify	the	sequence.	The	format	for	a	DE	line	is:	

DE description

The	description	is	given	in	ordinary	English	and	is	free-format.	Often,	more	than	
one	DE	 line	 is	 required;	when	this	 is	 the	case,	 the	 text	 is	divided	only	between	

words.	The	 first	DE	 line	generally	contains	a	brief	description,	which	can	stand	
alone	for	cataloguing	purposes.	

	

5.2.7 The KW Line

The	 KW	 (KeyWord)	 lines	 provide	 information	 which	 can	 be	 used	 to	 generate	
cross-reference	indexes	of	the	sequence	entries	based	on	functional,	structural,	or	
other	categories	deemed	important.	The	format	for	a	KW	line	is:	

 KW keyword[; keyword ...].

More	 than	 one	 keyword	 may	 be	 listed	 on	 each	 KW	 line;	 the	 keywords	 are	
separated	by	semicolons,	and	the	last	keyword	is	followed	by	a	full	stop.	Keywords	
may	consist	of	more	than	one	word,	and	they	may	contain	embedded	blanks	and	
stops.	A	keyword	is	never	split	between	lines.		

The	keywords	are	ordered	alphabetically;	 the	ordering	 implies	no	hierarchy	of	
importance	or	function.		If	an	entry	has	no	keywords	assigned	to	it,	it	will	contain	
a	single	KW	line	like	this:	

 KW .

	

5.2.8 The OS Line

The	 OS	 (Organism	 Species)	 line	 specifies	 the	 preferred	 scientific	 name	 of	 the	
organism	which	was	the	source	of	the	stored	sequence.	In	most	cases	this	is	done	
by	giving	the	Latin	genus	and	species	designations,	followed	(in	parentheses)	by	
the	preferred	common	name	in	English	where	known.	The	format	is:	

 OS Genus species (name)

	

5.2.9 The OC Line

The	OC	(Organism	Classification)	lines	contain	the	taxonomic	classification	of	the	
source	organism.	The	classification	is	listed	top-down	as	nodes	in	a	taxonomic	tree	
in	 which	 the	 most	 general	 grouping	 is	 given	 first.	 	 The	 classification	 may	 be	
distributed	over	several	OC	lines,	but	nodes	are	not	split	or	hyphenated	between	
lines.	The	individual	items	are	separated	by	semicolons	and	the	list	is	terminated	
by	a	full	stop.	The	format	for	the	OC	line	is:	

 OC Node[; Node...].

5.2.10 The OG Line

The	 OG	 (OrGanelle)	 linetype	 indicates	 the	 sub-cellular	 location	 of	 non-nuclear	
sequences.	 	 It	 is	 only	 present	 in	 entries	 containing	non-nuclear	 sequences	 and	
appears	after	the	last	OC	line	in	such	entries.	The	OG	line	contains	one	data	item	
(title	 cased)	 from	 the	 controlled	 list	 of	 the	 organelle	 qualifier	 definition	 or	 a	
plasmid	name.	

5.2.11 The Reference (RN, RC, RP, RX, RG, RA, RT, RL) Lines

These	 lines	 comprise	 the	 literature	 citations	within	 the	database.	The	 citations	
provide	 access	 to	 the	 papers	 from	 which	 the	 data	 has	 been	 abstracted.	 The	
reference	lines	for	a	given	citation	occur	in	a	block,	and	are	always	in	the	order	
RN,	RC,	RP,	RX,	RG,	RA,	RT,	RL.	Within	each	such	reference	block	the	RN	line	occurs	
once,	the	RC,	RP	and	RX	lines	occur	zero	or	more	times,	and	the	RA,	RT,	RL	lines	
each	 occur	 one	 or	more	 times.	 If	 several	 references	 are	 given,	 there	will	 be	 a	
reference	block	for	each.	

The RN Line

The	RN	(Reference	Number)	line	gives	a	unique	number	to	each	reference	citation	
within	an	entry.	This	number	is	used	to	designate	the	reference	in	comments	and	
in	the	feature	table.	The	format	of	the	RN	line	is:	

 RN [n]

The RC Line

The	RC	(Reference	Comment)	linetype	is	an	optional	linetype	which	appears	if	the	
reference	has	a	comment.	The	comment	is	in	English	and	as	many	RC	lines	as	are	
required	to	display	the	comment	will	appear.	They	are	formatted	thus:	

 RC comment

The RP Line

The	RP	(Reference	Position)	linetype	is	an	optional	linetype	which	appears	if	one	
or	more	contiguous	base	spans	of	the	presented	sequence	can	be	attributed	to	the	
reference	in	question.	As	many	RP	lines	as	are	required	to	display	the	base	span(s)	

will	appear.	The	base	span(s)	indicate	which	part(s)	of	the	sequence	are	covered	
by	 the	 reference.	 	 Note	 that	 the	 numbering	 scheme	 is	 for	 the	 sequence	 as	
presented	in	the	database	entry	(i.e.	from	5'	to	3'	starting	at	1),	not	the	scheme	
used	by	the	authors	in	the	reference	should	the	two	differ.	The	RP	line	is	formatted	
thus:	

 RP i-j[, k-l...]

The RX Line

The	RX	(reference	cross-reference)	linetype	is	an	optional	linetype	which	contains	
a	 cross-reference	 to	an	external	 citation	or	abstract	 resource.	For	example,	 if	 a	
journal	citation	exists	in	the	PUBMED	database,	there	will	be	an	RX	line	pointing	
to	the	relevant	PUBMED	identifier.	The	format	of	the	RX	line	is	as	follows:	

 RX resource_identifier; identifier.

The	first	item	on	the	RX	line,	the	resource	identifier,	is	the	abbreviated	name	of	
the	data	collection	to	which	reference	is	made.	The	current	set	of	cross-referenced	
resources	is:	

 Resource ID Fullname
 ----------- ------------------------------------
 PUBMED PUBMED bibliographic database (NLM)
 DOI Digital Object Identifier (International DOI Foundation)
 AGRICOLA US National Agriculture Library (NAL) of the US Department
 of Agriculture (USDA)

The	 second	 item	 on	 the	 RX	 line,	 the	 identifier,	 is	 a	 pointer	 to	 the	 entry	 in	 the	
external	 resource	 to	which	 reference	 is	being	made.	The	data	 item	used	as	 the	
primary	identifier	depends	on	the	resource	being	referenced.	

The RG Line

The	RG	(Reference	Group)	lines	list	the	working	groups/consortia	that	produced	
the	record.	RG	line	is	mainly	used	in	submission	reference	blocks,	but	could	also	
be	used	in	paper	reference	if	the	working	group	is	cited	as	an	author	in	the	paper.	

The RA Line

The	RA	(Reference	Author)	lines	list	the	authors	of	the	paper	(or	other	work)	cited.	
All	of	the	authors	are	included,	and	are	listed	in	the	order	given	in	the	paper.	The	
names	 are	 listed	 surname	 first	 followed	 by	 a	 blank	 followed	 by	 initial(s)	with	

stops.	Occasionally	the	initials	may	not	be	known,	in	which	case	the	surname	alone	
will	be	listed.	The	author	names	are	separated	by	commas	and	terminated	by	a	
semicolon;	 they	are	not	split	between	 lines.	As	many	RA	 lines	as	necessary	are	
included	for	each	reference.	

The RT Line

The	RT	(Reference	Title)	lines	give	the	title	of	the	paper	(or	other	work)	as	exactly	
as	is	possible	given	the	limitations	of	computer	character	sets.	Note	that	the	form	
used	is	that	which	would	be	used	in	a	citation	rather	than	that	displayed	at	the	top	
of	 the	 published	 paper.	 The	 title	 is	 enclosed	 in	 double	 quotes,	 and	 may	 be	
continued	 over	 several	 lines	 as	 necessary.	 The	 title	 lines	 are	 terminated	 by	 a	
semicolon.	

The RL Line

The	RL	(Reference	Location)	line	contains	the	conventional	citation	information	
for	the	reference.		In	general,	the	RL	lines	alone	are	sufficient	to	find	the	paper	in	
question.	They	include	the	journal,	volume	number,	page	range	and	year	for	each	
paper.	 Journal	 names	 are	 abbreviated	 according	 to	 existing	 ISO	 standards	
(International	Standard	Serial	Number).	The	format	for	the	location	lines	is:	

RL journal vol:pp-pp(year).

5.2.12 The DR Line

The	DR	(Database	Cross-reference)	line	cross-references	other	databases	which	
contain	information	related	to	the	entry	in	which	the	DR	line	appears.	The	format	
of	the	DR	line	is	as	follows:	

 DR database_identifier; primary_identifier; secondary_identifier.

The	first	item	on	the	DR	line,	the	database	identifier,	is	the	abbreviated	name	of	
the	data	collection	to	which	reference	is	made.	The	second	item	on	the	DR	line,	the	
primary	 identifier,	 is	 a	 pointer	 to	 the	 entry	 in	 the	 external	 database	 to	which	
reference	is	being	made.	The	third	item	on	the	DR	line	is	the	secondary	identifier,	
if	available,	from	the	referenced	database.	

	

5.2.13 The AH Line (in TPA and TSA records only)

Third	 Party	 Annotation	 (TPA)	 and	 Transcriptome	 Shotgun	 Assembly	 (TSA)	
records	may	include	information	on	the	composition	of	their	sequences	to	show	
which	 spans	 originated	 from	 which	 contributing	 primary	 sequences.	 The	 AH	
(Assembly	Header)	line	provides	column	headings	for	the	assembly	information.	
The	lines	contain	no	data	and	may	be	ignored	by	computer	programs.	The	AH	line	
format	is:	

AH LOCAL_SPAN PRIMARY_IDENTIFIER PRIMARY_SPAN COMP

	

5.2.14 The AS Line (in TPA and TSA records)

The	AS	(ASsembly	Information)	lines	provide	information	on	the	composition	of	a	
TPA	or	TSA	sequence.	These	 lines	 include	 information	on	 local	sequence	spans	
(those	 spans	 seen	 in	 the	 sequence	 of	 the	 entry	 showing	 the	 AS	 lines)	 plus	
identifiers	and	base	spans	of	contributing	primary	sequences	(for	ENA	primary	
entries	only):	

a) LOCAL_SPAN base span on local sequence shown in entry
b) PRIMARY_IDENTIFIER acc.version of contributing ENA sequence(s)
 or trace identifier for ENA read(s)
c) PRIMARY_SPAN base span on contributing ENA primary
 sequence or not_available for ENA read(s)
d) COMP 'c' is used to indicate that contributing sequence
 originates from complementary strand in primary
 entry

	

5.2.15 The CO Line (in CON records only)

Con(structed)	 sequences	 in	 the	 CON	 data	 classes	 represent	 complete	
chromosomes,	 genomes	 and	 other	 long	 sequences	 constructed	 from	 segment	
entries.	CON	data	class	entries	do	not	contain	sequence	data	per	se,	but	rather	the	
assembly	information	on	all	accession.versions	and	sequence	locations	relevant	to	
building	 the	constructed	sequence.	The	assembly	 information	 is	represented	 in	
the	CO	lines.	

5.2.16 The FH Line

The	FH	(Feature	Header)	lines	are	present	only	to	improve	readability	of	an	entry	
when	it	is	printed	or	displayed	on	a	terminal	screen.	The	lines	contain	no	data	and	

may	be	 ignored	by	computer	programs.	The	format	of	 these	 lines	 is	always	the	
same:	

FH Key Location/Qualifiers
FH

The	first	line	provides	column	headings	for	the	feature	table,	and	the	second	line	
serves	as	a	spacer.	If	an	entry	contains	no	feature	table	(i.e.	no	FT	lines),	the	FH	
lines	will	not	appear.	

5.2.17 The FT Line

The	 FT	 (Feature	 Table)	 lines	 provide	 a	 mechanism	 for	 the	 annotation	 of	 the	
sequence	data.	Regions	or	sites	in	the	sequence	which	are	of	interest	are	listed	in	
the	table.	In	general,	the	features	in	the	feature	table	represent	signals	or	other	
characteristics	reported	in	the	cited	references.		

	

5.2.18 The SQ Line

The	 SQ	 (SeQuence	 header)	 line	marks	 the	 beginning	 of	 the	 sequence	 data	 and	
gives	a	summary	of	its	content.	Bases	other	than	A,	C,	G	and	T	are	grouped	together	
as	"other".	The	word	"Sequence"	is	present	solely	as	a	marker	for	readability.	

	

5.2.19 The Sequence Data Line

The	sequence	data	line	has	a	line	code	consisting	of	two	blanks.	The	sequence	is	
written	60	bases	per	line,	in	groups	of	10	bases	separated	by	a	blank	character,	
beginning	 at	 position	 6	 of	 the	 line.	 The	 direction	 listed	 is	 always	 5'	 to	 3',	 and	
wherever	possible	the	non-coding	strand	(homologous	to	the	message)	has	been	
stored.	 Columns	 73-80	 of	 each	 sequence	 line	 contain	 base	 numbers	 for	 easier	
reading	and	quick	location	of	regions	of	interest.	The	numbers	are	right	justified	
and	indicate	the	number	of	the	last	base	on	each	line.	

	

5.2.20 The CC Line

CC	lines	are	free	text	comments	about	the	entry,	and	may	be	used	to	convey	any	
sort	of	information	thought	to	be	useful	that	is	unsuitable	for	inclusion	in	other	
line	types.	

5.2.21 The XX Line

The	XX	(spacer)	line	contains	no	data	or	comments.	Its	purpose	is	to	make	an	entry	
easier	 to	 read	 on	 a	 page	 or	 terminal	 screen	by	 setting	 off	 the	 various	 types	 of	
information	in	appropriate	groupings.	XX	is	used	instead	of	blank	lines	to	avoid	
confusion	with	 the	sequence	data	 lines.	The	XX	 lines	can	always	be	 ignored	by	
computer	programs.	

	

5.2.22 The // Line

The	//	(terminator)	line	also	contains	no	data	or	comments.	It	designates	the	end	
of	an	entry.	

	

5.3 ETL

The	 processing	 of	 biological	 data	 in	 EMBL	 format	 has	 been	 developed	 using	
BioJava	 [4],	 an	 open-source	 framework	 that	 enables	 rapid	 bioinformatics	
application	 development	 in	 the	 Java	 programming	 language.	 BioJava	 contains	
powerful	analysis	and	statistical	routines,	tools	for	parsing	common	file	formats	
and	packages	for	manipulating	sequences	and	3D	structures.	

The	ETL’s	structure	is	similar	to	the	one	used	to	read	textual	tab-delimited	files,	
but	now	the	main	loop	iterates	through	the	sequences	found	in	the	source	file.		

For	each	miRNA,	the	ETL	extracts	all	the	data	and,	by	the	reading	of	the	features,	
it	also	extracts	all	the	related	mature	miRNAs.	In	this	way,	it	gives	values	to	two	
class	of	vertices,	miRNA	and	miRNAmature,	and	creates	edges	of	type	precursorOf	
between	them.	

…

BufferedReader br = new BufferedReader(new FileReader(fileName));
Namespace ns = RichObjectFactory.getDefaultNamespace();
RichSequenceIterator seqs = RichSequence.IOTools.readEMBLRNA(br,
ns);

while (seqs.hasNext()) {
 RichSequence entry = seqs.nextRichSequence();

 String accession = entry.getAccession();
 String name = entry.getName();
 String description = entry.getDescription();
 Vector<String> dbReferences = new Vector<String>();
 Vector<String> comments = new Vector<String>();

 for (Comment comment : entry.getComments()) {
 String cmt = comment.getComment().replaceAll("\n", "

");
 comments.add(cmt);
 }
 String comment = "";
 if (comments.size() > 0)
 comment = comments.get(0);

 for (RankedCrossRef docRef : entry.getRankedCrossRefs()) {
 String reference = docRef.getCrossRef().getDbname() +
" " + docRef.getCrossRef().getAccession();
 dbReferences.add(reference);
 }

 String sequence = entry.getInternalSymbolList().seqString();

 Vertex mirna = graph.addVertex("class:miRNA",
 "accession", accession,
 "name", name,
 "description", description,
 "comment", comment,
 //"dbRefs", dbReferences,
 "sequence", sequence
);

 Iterator<Feature> itf = entry.getFeatureSet().iterator();

 while (itf.hasNext()) {
 Feature f = itf.next();

 String location = f.getLocation().toString();
 String subSequence =
sequence.substring(f.getLocation().getMin()-1,
f.getLocation().getMax());

 Vertex mature = graph.addVertex("class:miRNAmature",
 "location", location,
 "sequence", subSequence
);

 Map<Object, ?> map = f.getAnnotation().asMap();
 Set<Object> keys = map.keySet();
 for (Object key : keys) {
 String keyString = key.toString();
 String value = (String) map.get(key);
 mature.setProperty(keyString.substring(
 keyString.lastIndexOf(":")+1), value);
 }

 mirna.addEdge("precursorOf", mature);
 }

}

…

	

	

	

	

	 	

6 mirCancer

	

6.1 Introduction

miRCancer	 [3]	 provides	 comprehensive	 collection	 of	 microRNA	 (miRNA)	
expression	profiles	in	various	human	cancers	which	are	automatically	extracted	
from	 published	 literatures	 in	 PubMed.	 It	 utilizes	 text	 mining	 techniques	 for	
information	collection.	Manual	revision	is	applied	after	auto-extraction	to	provide	
100%	precision.	User	can	search	the	database	by	miRNA	and/or	cancer	names	in	
the	miRCancer	 Search	 page.	 The	 website	 also	 provides	 two	 sequence	 analysis	
tools:	 clustering	 and	 chi-square	 analysis	 which	 can	 perform	 analysis	 on	 all	 or	
selected	pool	of	miRNA	sequences.	

	

6.2 Data source

The	latest	miRCancer	database	is	usually	available	for	download	upon	request.	At	
time	of	writing,	the	latest	was	updated	on	Dec.	3rd,	2015.		In	this	work,	the	version	
http://mircancer.ecu.edu/downloads/miRCancerSeptember2015.txt	was	used.	It
is a textual tab-delimited file, and the columns meaning is reported below: 	

mirId	 the	unique	identifier	for	a	miRNA	

Cancer	 the	cancer	name	

Profile	 the	profile:	up	or	down	

PubMed	Article	 the	title	of	the	PubMed	article	

6.3 ETL

The	ETL	is	quite	simple,	because	the	source	file	has	a	well-defined	structure	and	
the	number	of	fields	to	read	is	very	low.	

For	each	new	disease	read	from	the	file,	a	vertex	of	class	cancer	is	created	and	then	
it	is	linked	to	the	related	miRNA	by	a	new	edge	of	type	cancer2mirna.		

…

while ((line = reader.readLine()) != null) {
 String datavalue[] = line.split("\t");

 String mirId = datavalue[0];
 String cancerName = datavalue[1];

 String cancerProfile = datavalue[2];
 //String pubmedTitle = datavalue[3];

 Vertex miRNA = null;
 Vertex cancer = null;

 Iterator<Vertex> it = graph.getVertices("miRNA.name",
mirId).iterator();
 if (it.hasNext()) {
 miRNA = it.next();

 it = graph.getVertices("cancer.name",
cancerName).iterator();
 if (it.hasNext()) {
 cancer = it.next();
 String profile = cancer.getProperty("profile");

 if (!cancerProfile.equals(profile)) {
 if (it.hasNext())
 cancer = it.next();
 else {
 cancer = graph.addVertex("class:cancer",
"name", cancerName, "profile", cancerProfile);
 }
 }
 }
 else {
 cancer = graph.addVertex("class:cancer", "name",
cancerName, "profile", cancerProfile);
 }

 cancer.addEdge("cancer2mirna", miRNA);

 }
}

…

	

	

	 	

7 microRNA

	

7.1 Introduction

microRNA	[4]	is	one	of	publicly	available	miRNA-target	interactions	database	and	
contains	both	validated	and	predicted	interactions.	It	reports	about	2,000	human	
genes	with	miRNA	target	sites	conserved	in	mammals	and	about	250	human	genes	
conserved	 as	 targets	 between	 mammals	 and	 fish.	 The	 prediction	 algorithm	
optimizes	sequence	complementarity	using	position-specific	rules	and	relies	on	
strict	requirements	of	interspecies	conservation.		

		

7.2 Data source

The	latest	database	was	released	on	August	2010	and,	for	the	human	species,	is	
splitted	in	the	following	files:	

http://cbio.mskcc.org/microrna_data/human_predictions_S_C_aug2010.txt.gz	

http://cbio.mskcc.org/microrna_data/human_predictions_S_0_aug2010.txt.gz	

http://cbio.mskcc.org/microrna_data/human_predictions_0_C_aug2010.txt.gz	

http://cbio.mskcc.org/microrna_data/human_predictions_0_0_aug2010.txt.gz	

Each	of	 them	contain	predictions	characterized	by	homogeneous	mirSVR	score	
and	 homogeneous	 miRNA	 type	 (conserved/non-conserved).	 Therefore,	 the	
meaning	of	S_C,	S_0,	0_C,	and	0_0	in	the	filename	is	as	follow:	

S_C	 good	mirSVR	score,	conserved	miRNA	

S_0	 good	mirSVR	score,	non-conserved	miRNA	

0_C	 non-good	mirSVR	score,	conserved	miRNA	

0_0	 non-good	mirSVR	score,	non-conserved	miRNA	

	
	

7.3 ETL

The	database	files	cited	above	are	compressed	tab-delimited	textual	 files.	Their	
parsing	is	quite	easy,	even	if	the	lines	contain	a	very	high	number	of	column.		

Each	 line	 represents	 a	 prediction,	 that	 is	 an	 interaction	 between	 a	 gene	 and	 a	
miRNA	 mature.	 The	 ETL	 creates	 a	 new	 vertex	 of	 class	 interaction	 for	 each	
prediction;	then	that	vertex	is	linked	to	the	related	gene	and	to	the	related	miRNA.		

…

while ((line = reader.readLine()) != null) {
 String datavalue[] = line.split("\t");

 String mirAccession = datavalue[0];
 //String mirName = datavalue[1];
 String geneId = datavalue[2];
 //String geneSymbol = datavalue[3];
 String transcriptId = datavalue[4];
 String extTranscriptId = datavalue[5];
 String mirAlignment = datavalue[6];
 String alignment = datavalue[7];
 String geneAlignment = datavalue[8];
 int mirStart = Integer.valueOf(datavalue[9]);
 int mirEnd = Integer.valueOf(datavalue[10]);
 int geneStart = Integer.valueOf(datavalue[11]);
 int geneEnd = Integer.valueOf(datavalue[12]);
 String genomeCoordinates = datavalue[13];
 double conservation = Double.valueOf(datavalue[14]);
 int alignScore = Integer.valueOf(datavalue[15]);
 int seedCat = Integer.valueOf(datavalue[16]);
 double energy = Double.valueOf(datavalue[17]);
 double mirSvrScore = Double.valueOf(datavalue[18]);

 Vertex miRNA = null;
 Vertex gene = null;

 Iterator<Vertex> it =
 graph.getVertices("miRNAmature.accession",
 mirAccession).iterator();
 if (it.hasNext()) {
 miRNA = it.next();

 it = graph.getVertices("gene.geneId",
 geneId).iterator();
 if (it.hasNext())
 gene = it.next();
 }

 if ((miRNA != null) && (gene != null)) {

 Vertex interaction =
 graph.addVertex("class:interaction",
 "transcriptId", transcriptId,
 "extTranscriptId", extTranscriptId,
 "mirAlignment", mirAlignment,
 "alignment", alignment,
 "geneAlignment", geneAlignment,
 "mirStart", mirStart,
 "mirEnd", mirEnd,
 "geneStart", geneStart,
 "geneEnd", geneEnd,
 "genomeCoordinates", genomeCoordinates,
 "conservation", conservation,
 "alignScore", alignScore,
 "seedCat", seedCat,
 "energy", energy,
 "mirSvrScore", mirSvrScore
);

 interaction.addEdge("interactingMiRNA", miRNA);
 interaction.addEdge("interactingGene", gene);

 }
}

…

	

	

	
	
	
	 	

8 References

[1] Orient Technologies LTD, "OrientDB Distributed Graph Database," [Online].
Available: http://orientdb.com. [Accessed 16 12 2015].

[2] G. D. Schuler, J. A. Epstein, H. Ohkawa and J. A. Kans, "Entrez: molecular biology
database and retrieval system," in Methods in enzymology, vol. 266, 1996, pp. 141-
162.

[3] A. Kozomara and S. Griffiths-Jones, "miRBase: integrating microRNA annotation
and deep-sequencing data," in Nucleic acids research, vol. 39, 2011, pp. 152-157.

[4] European Bioinformatics Institute, "EMBL Outstation," [Online]. Available:
ftp://ftp.ebi.ac.uk/pub/databases/embl/doc/usrman.txt. [Accessed 15 12 2015].

[5] R. C. G. Holland, T. A. Down, M. Pocock, A. Prlić, D. Huen, K. James, S. Foisy,
A. Dräger, A. Yates, M. Heuer and M. J. Schreiber, "BioJava: an open-source
framework for bioinformatics," Bioinformatics, vol. 24, no. 18, pp. 2096-2097, 15
Sep 2008.

[6] B. Xie, Q. Ding, H. Han and D. Wu, "miRCancer: a microRNA-cancer association
database constructed by text mining on literature," Bioinformatics, vol. 29, no. 5,
pp. 638-644, 2013.

[7] B. John, A. J. Enright, A. Aravin, T. Tuschi, C. Sander and D. S. Marks, "Human
microRNA targets," PLoS Biology, vol. 2, no. 11, 2004.

