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1 Sommario

L’ elettrocardiogramma (ECG) è una registrazione dell’attività elettrica dei
muscoli del cuore, generalmente utilizzato per l’analisi delle malattie car-
diache. Gli impulsi elettrici del cuore possono essere misurati attraverso
degli elettrodi, indossabili, durante le attività fisiche o giornaliere. Tut-
tavia, la qualità di questi segnali acquisiti viene sempre degradata dalla
presenza del rumore, durante la fase di acquisizione. In questo lavoro, pro-
poniamo uno schema numerico per il denoising dell’ ECG, con un costo com-
putazionale di tipo lineare. La bassa complessità computazionale è dovuto
al fatto che il metodo proposto appartiene alla classe dei filtri con risposta
impulsiva infinita (IIR). Il principale contributo dello schema proposto è che
esso non richiede una diretta applicazione della Fast Fourier Trasform (FFT)
per l’eliminazionde delle frequenze del rumore. Inoltre, lo schema proposto,
offre la possibilità di una semplice implementazione utile soprattutto per
il filtraggio su dispositivi di elaborazione mobile. Esperimenti che testano
l’accuratezza e la complessità computazionale sono presentati per testare
l’algoritmo.
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Abstract

High quality Electrocardiogram (ECG) data is very important because
this signal is generally used for the analysis of heart diseases. Wearable
sensors are widely adopted for physical activity monitoring and for the
provision of healthcare services, but noise always degrades the quality
of these signals. In this paper, we propose a novel numerical scheme for
ECG Signal denoising with low computational requirements. It is com-
putationally cheap because it belongs to the class of Infinite Impulse
Response (IIR) noise reduction algorithms. The main contribution of
the proposed scheme is that it does not require a direct application of
the Fast Fourier Transform. Moreover, it offers the possibility of imple-
mentation on mobile computing devices in an easy way. Experiments
on real datasets have been carried out in order to test the algorithm.

2 Introduction

The accurate analysis of noisy Electrocardiogram (ECG) data is a very in-
teresting challenge. This is especially true in relation to the pervasive use
of wearable healthcare monitoring systems [1], where physiological data ac-
quired from real life can be used for remote healthcare scenarios, for the early
analysis of diseases, as in e.g. [2], or for the highlighting of correlations be-
tween health and a correct lifestyle, as in e.g. [3]. The ECG biomedical
signal is composed of weak non-stationary data which are affected by vari-
ous types of noises: power line interference, baseline drift, electromyography
interference and sensor contact noise. Generally, a good denoising scheme
has the capability of removing noises, from the acquired signal, by filtering
the data and by ensuring a result as close as possible to the unknown origi-
nal signal. In literature, there are numerous research papers devoted to this
problem, including: adaptive filtering [4, 5], Wiener filtering [6], Empirical
Mode Decomposition [7], and wavelet denoising [8] (for other methods see
[9]). In ECG filtering, a crucial problem is the preservation of the sharp,
that is achieved by several algorithms, for example by non local means filter-
ing [10]. Unfortunately, these schemes are quite computationally expensive.
In this paper, starting from a methodology based on Recursive Filtering,
applied successfully by the authors in another research field [11, 12, 13], we
propose a novel numerical scheme for ECG Signal denoising with low com-
putational costs, in terms of memory and time. Our approach is based on
the analysis of the signal in the Fourier domain, but it does not require a
direct application of the (Fast) Fourier Transform. With respect to other
methods, we compute the solution with only a few floating point operations.
This feature makes the scheme suitable for direct implementation in appli-
cations on mobile devices, dedicated to the real time filtering of biomedical
signals. In order to test the algorithm, we report the performance met-
rics achieved by applying the proposed methodology to some records of the
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database PhysioNet [14], that offers a large collection of recorded physiolog-
ical ECG signals. The paper is organized as follows: in section 2 we give
some preliminary mathematical considerations; section 3 is devoted to the
numerical scheme; in section 4 we report the numerical experiments and,
finally, in section 5 we draw our conclusions.

3 Mathematical Preliminaries

In this section we present a scheme for the filtering of digital signals with a
computational cost of O(n) floating point operations. This scheme is based
on an approximation of a continuos convolution with a suitable homogeneous
and isotropic correlation function h (e.g. [15]) . Let s0 denote a real function
such that

s0 = s+ ε

with s the original signal and ε a noise function. In computer vision, re-
searchers as in (e.g. [16]) use the convolution of s0 with a function h,
Lebesgue integrable, to obtain a denoised function sh by s0, i.e.

sh(t) = [h ∗ s0](t) =

∫ +∞

−∞
h(t− x)s0(x)dx, ∀t ∈ R. (1)

The focus of this section is to determine suitable properties for the function
h in order to determine a denoising scheme. The scheme has to eliminate
noises ε s.t. the frequency spectrum is wandering in a limited range. To
achieve this aim we use the following mathematical tools:

• the Fourier Transform F of a signal f

F (ω) = F(f)(ω) =
1√
2π

∫ +∞

−∞
f(x)e−iωxdx, ∀ω ∈ R; (2)

• the Fourier anti-Transform F−1 of F

f(t) = F−1(F )(t) =
1√
2π

∫ +∞

−∞
F (x)eitxdx, ∀t ∈ R; (3)

• the convolution theorem

F(h ∗ f) = F(h) · F(F ) = H · F ; (4)

The main idea of this work is to find a suitable convolution kernel h, to
denoise s0, starting from its Fourier Transform H = F(h) in the Fourier
domain. Now, let us suppose that

Sh = F(sh), S0 = F(s0), S = F(s) and E = F(ε).

If we assume that the Fourier Transform H = F(h) of h is such that:{
H · S = S,

H · E = 0,
(5)
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then, it can be easily proved that it holds that:

sh = h ∗ s0 ≡ s. (6)

Observing that, if the original and noise signals, s and ε, have the property

suppS ∩ supp E = ∅, (7)

then, it is possible to obtain an infinite class of functions that satisfy condi-
tion (5). Then, in these hypotheses, the original signal s can be completely
restored by the convolution in (6). Nevertheless, as shown in the next exam-
ple, a satisfying solution sh (an approximation of s) can be achieved without
assuming (7), and by filtering the signal s0 by means of a certain convolution
kernel.

Figure 1: Top: an ECG signal s. Bottom: F−Transform S = F(s) of s

Figure 2: Top: the noisy ECG signal s0 = s+ ε. Bottom: F−Transform S0 = F(s0) of
s0 , sum of S = F(s) (black line) and of E = F(ε) (red line)

Now, let s be an original ECG signal (top of Figure 1) and s0 = s+ ε (top of
Figure 2) the noisy signal, obtained by the noise function ε. Here we take ε as
the Base Line Wander noise (e.g.[7]) Assuming that the interval [µ−σ, µ+σ]
contains the support of the Fourier Transform E , i.e. supp E ⊆ [µ−σ, µ+σ],
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then we consider a convolution kernel h = F−1(H), where H is set as

H(ω) =

{
0 if ω ∈ [µ− σ, µ+ σ]

1 otherwise
(8)

With these assumptions, a way of obtaining a denoised signal sh is given by
the following steps:

(i) F-Transform s0, to obtain S0 = F(s0) = S+ E (S and S0 are shown, respec-
tively, in the bottom of Figures 1 and 2);

(ii) define the function H as in (8);

(iii) multiply H for S0, to achieve Sh = H · S0 (top of Figure 3);

(iv) F−1-Transform Sh = H · S0, to extract from s0 the signal sh = F−1(Sh)
(bottom of Figure 3).

All these figures have been generated by a Matlab code (Code 1) that
uses the Fast Fourier Transform (FFT) and Inverse Fast Fourier Transform
(IFFT) (e.g. Van Loan), in order to implement steps (i)–(iv). This code
takes into account the symmetry of supp E in the Fourier domain, when ε is
a periodic function. In particular in Code 1, the parameters µ, σ of (8) are
set as µ = 0, 4 Hz and σ = 0, 3 Hz.

Figure 3: Top: the restored signal sh. Bottom: F−Transform Sh = F(sh)

func t i on s h = FFT Filter ( s 0 ,mu, sigma ) ;
% Inputs : % s 0 vec to r no i sed input data
f l =(mu−sigma )/ f s %normal ized lower f requency and ;
fu=(mu+sigma )/ f s %normal ized upper f requency to cut ;
S 0 = f f t ( s 0 , n , 2 ) ;
H=ones (1 , n ) ;
k =f l o o r ( f l ∗n ) : f l o o r ( fu ∗n)
H(1 , k ) = 0 ; H(1 , n−k+2) = 0 ;
S h (1 , : )=H( 1 , : ) . ∗ S 0 ( 1 , : ) ;
s h= r e a l ( i f f t ( S h , n , 2 ) ) ;

Code 1: Matlab Code of a FFT Filter for Base Line Wander in ECG signals
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We highlight that the bottom of Figure 2 indicates that suppS∩supp E 6= ∅,
but after applying the Code 1, in which H is set as 0 also on suppS∩supp E ,
the signal sh can anyway be considered an accurate approximation of s.
However, the mathematical form of H in (8), and its discontinuities, prevent
us from determining our numerical scheme. Therefore, for our purpose, as
we will show in the next section, instead of H, we will use a function H̃ that
emulates the properties of H. This function is defined as

H̃(ω) =
(ω − µ)2

2σ2 + (ω − µ)2
, ∀ω ∈ R. (9)

and is a rational approximation of the function

G(ω) = 1− e(−(ω−µ)
2/2σ2), ∀ω ∈ R. (10)

Notice that H̃ is obtained from G, by taking the first two terms in the Taylor
expansion of the following exponential function

e((ω−µ)
2/2σ2) =

+∞∑
i=0

1

i!

(
(ω − µ)2

2σ2

)i
(11)

The functions H̃(ω) and G(ω) share the following properties:

1. 0 ≤ G(ω), H̃(ω) < 1, ∀ω ∈ R ;

2. H̃(µ) = G(µ) = 0;

3. lim
ω→±∞

H̃(ω) = lim
ω→±∞

G(ω) = 1;

4. H̃(ω) and G(ω) are symmetrical with respect to the axis ω = µ ;

5. H̃(µ± σ) = 1/3;

6. H̃(ω) = H̃l(ω) · H̃r(ω), ∀ω ∈ R, where we set

H̃l(ω) =
−iω + iµ

−iω + (
√

2σ + iµ)
, H̃r(ω) =

iω − iµ
iω + (

√
2σ − iµ)

. (12)

It is still possible to compute the denoised signal sh̃ by means of Code 1,

replacing H̃ in (9) instead of H in (8).
The choice of function H̃ in (9) can determine the noisy ε, even if its fre-
quency spectrum is wandering in the interval [µ− σ, µ+ σ]. Moreover, with
this function, it is possible to provide a numerical scheme to obtain the
denoised function sh̃ from s0 as shown in next section.

4 A novel O(n) Numerical Scheme

In this section, we introduce the derivation of our scheme for the denoising
of digital signals. This algorithm is based on the Infinite Impulse Response
(IIR) Gaussian Recursive Filter of [17] and [18]. It reduces the effects of
additive noise functions ε on the original signal s, when supp E ⊂ [µ−σ, µ+
σ]. In terms of floating point operations, this algorithm is faster than FFT.

8



As we will show later, it has a computational cost of O(n), while FFT has
a cost of n log(n).
As a preliminary remark, we observe that if S0 = F(s0) and if h̃ = F−1(H̃),
with H̃ defined as in (9), then for the function sh̃ = h̃ ∗ s0 it holds that

sh̃ = h̃l ∗ (h̃r ∗ s0) (13)

where functions h̃l and h̃r are defined as

h̃l = F−1(H̃l) and h̃r = F−1(H̃r),

and functions H̃l and H̃r are as in (12). In order to determine a numerical
scheme, we need to sample the signals s, s0. From now on, we will consider
the discrete signals

~s0 = (s0[1], . . . , s0[n]), ~s = (s[1], . . . , s[n]) and ~ε0 = (ε[1], . . . , ε[n])

obtained from s0, s, ε, by using an uniform discretization with stepsize τ ,
i.e.

s0[j] = s0(jτ), s[j] = s(jτ), ε[j] = ε(jτ), j = 1, ..., n. (14)

It is well known that for the frequency range of discrete signals it holds

−π
τ
≤ ω ≤ π

τ
⇐⇒ −φd

2
≤ φ ≤ φd

2
(15)

where φd = 1/τ and ω = 2πφ.
Our numerical scheme is based on the discretization of the continuous
scheme,

Sh̃ = H̃l · H̃r · S0. (16)

where H̃l and H̃r in (12) represent respectively cause and anti-cause stable
differential equations for continuous signals that can be transformed into
causal and anti-causal difference equations for discrete signals by means of
standard techniques. The classic methods are bilinear transform, finite dif-
ferences, the zero-pole matching method and others (e.g. [19]), For our
scheme we have used the zero-pole matching method. This approach has
the advantage of transforming stable differential equations into stable dif-
ference equations and of not using approximations like the others. Given a
polynomial

p(ω) = iω + (α± iβ), ω ∈ C; (17)

the zero-pole matching method exploits the following position:

z = eiωτ , (18)

Using equation (18), the zeros of p(ω) are transformed into points belonging
to the unit circle C = {z ∈ C : ‖z‖2 = 1} of the complex plane that are
used to build the polynomial in z variable:
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p(z) = 1− 2e−2ατ cos(βτ)z−1 + e−2ατz−2. (19)

Let ~s0 be a discrete signal with sampling step τ , and applying the zero-pole
matching method to continuous scheme Sh̃ = H̃l · H̃r · S0, we obtain the
following forward and backward numerical denoising scheme.
Denoising Numerical Scheme

ph̃[j] = b0s0[j] + b1s0[j − 1] + b2s0[j − 2]+

a1ph̃[j − 1] + a2ph̃[j − 2] j = 3, ..., n : +1

sh̃[j] = b0ph̃[j] + b1ph̃[j + 1] + b2ph̃[j + 2]+

a1sh̃[j + 1] + a2sh̃[j + 2] j = n− 2, ..., 1 : −1

(20)
where the recursive scheme coefficients in (20) are:

b0 = 1, b1 = −2 cos(µτ), b2 = 1 and a1 = 2e−
√
2στ cos(µτ) a2 = −e−2.

√
2στ .
(21)

The computational cost of the forward and backward difference scheme in
(20) is :

T (n) = 18 n tcalc. (22)

where n is the size of the discrete signals ~s0, ~ph̃ and ~sh̃ and tcalc is the time
for a floating point operation.
To close the equations in (20) at the borders, we have to fix the initial
conditions. We have supposed the signals ~s0, ~ph̃ and ~sh̃ to exist and assume
a constant value also for j < 1 and j > n. The border conditions for ~s0
are the following: s0[j] = s0[1] for all j < 1, then for ~ph̃, it holds that
ph̃[j] = (b0 +b1 +b2)s0[1]/(1−a1−a2) ∀j < 1, i.e. the steady-state response
to an infinite stream of s0[1] value using the first equation in (20). Similarly,
∀j > n, the ph̃[j] assumes a constant value ph̃[n], then sh̃[j] = (b0 + b1 +
b2)ph̃[n]/(1 − a1 − a2) for all j > n, i.e. the steady-state response to an
infinite stream of p[n] value using the second equation in (20). Hence to
complete the statements in (20) we have fixed the following heuristic initial
conditions for the forward and backward procedures:

forward conditions

ph̃[0] =
(b0 + b1 + b2)

(1− a1 − a2)
s0[1]

ph̃[−1] =
(b0 + b1 + b2)

(1− a1 − a2)
s0[1]

backward conditions

sh̃[n+ 1] =
(b0 + b1 + b2)

(1− a1 − a2)
ph̃[n]

sh̃[n+ 2] =
(b0 + b1 + b2)

(1− a1 − a2)
ph̃[n].

(23)

We conclude the section by giving a possible scheme of the algorithm that
uses the forward and backward equations in (20). The algorithm can be used
for the denoising of a discrete signal ~s0 = ~s+~ε, s.t., it is known the frequency
spectrum range of ~ε. The scheme of the proposed denoising algorithm, that
from now we indicate as the Recursive Filter (RF), is the following:
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Algorithm 1 Scheme of the Recursive Filter (RF)
Input: ~s0 µ, σ Output: ~sh̃

1: Compute b0, b1, b2, a1 and a2 by means of the formulas (21).
2: ph̃[−1] = ((b0 + b1 + b2)/(1− a1 − a2))s0[1].
3: ph̃[0] = ((b0 + b1 + b2)/(1− a1 − a2))s0[1].
4: for j=1,2...,n
5: ph̃[j] = b0s0[j] + b1s0[j − 1] + b2s0[j − 2] + a1ph̃[j − 1] + a2ph̃[j − 2]
6: endfor
7: sh̃[n+ 2] = ((b0 + b1 + b2)/(1− a1 − a2))ph̃[n].
8: sh̃[n+ 1] = ((b0 + b1 + b2)/(1− a1 − a2))ph̃[n].
9: for j=n,n-1...,1

10: sh̃[j] = b0ph̃[j] + b1ph̃[j + 1] + b2ph̃[j + 2] + a1sh̃[j + 1] + a2sh̃[j + 2]
11: endfor
12: Return ~sh̃

5 Numerical Experiments on the ECGs

In this section, we compared the results, on accuracy and computational
cost measures, of RF to them of a method that exploits the FFT as in Code
1. a first order zero-phase lowpass filter (LPF) (e.g. [19]) and a single stage
of median or moving average filtering (BPF) (e.g. [20, 21]). In our experi-
ments, we have used data from the Physionet Long-Term ST Database. The
Long-Term ST Database contains 86 lengthy ECG recordings of 80 human
subjects, chosen to exhibit a variety of events of ST segment changes, includ-
ing ischemic ST episodes, axis-related non-ischemic ST episodes, episodes of
slow ST level drift, and episodes containing mixtures of these phenomena.
The database was created to support development and evaluation of algo-
rithms capable accurately differentiating of ischemic and non-ischemic ST
events, as well as basic research into mechanisms and dynamics of myocar-
dial ischemia. Then a pre-processing phase is due to eliminate the additional
artifact on ECGs, before using these algorithms, for efficient distinction be-
tween physiological and pathological events .
The ECG signals used, from the Long-Term ST database, last 3600 seconds
(s) and are: s20011, s20051, s20061, s20071 and s20081 and s20121. These
recordings were sampled at 250 Hz using 11-bit A/D converters. We have
processed both the actual Physionet recordings (converted to milli volts)
and the signals with synthetic Base Line Wander noise added. Base Line
Wander is caused by respiration or patient movement which create problems
in the detection of peaks. Due to wander the T peak would be higher than
the R peak and might be detected as an R peak instead. The amplitude
variation is 15% of the peak to peak ECG amplitude. It is normally con-
sidered below 1 Hz. The FFT method, LPF and BPF algorithms above
represent in literature the fastest and most accurate approaches for the the
denoising of an ECG with a Base Line Wander noise.
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Let ~s0 = ~s+~ε with ~s, ~s0 and ~ε described in Section 3 and shown respectively
in the top and center of Figure 4. In the bottom of the same picture, we
have reported ~sh̃, the RF application to ~s0. The first impression is that the
RF reconstructs quite successfully the signal ~s also in a part of the ECG
where there is a pathological event (from 1,5 s to 2,5 s).

Figure 4: The top of the figure shows ~s that contains the first 10 seconds of s20011. The
center of the figure represents the noisy signal ~s0. The bottom of the figure represents the
denoised signal ~sh̃

As in [22], we quantify the denoising performance in terms of the Signal-to-
Noise ratio (SNR) (in decibels):

SNR = 10 log10

(∑n
i=1

(
s0[i]− s[i]

)2∑n
i=1

(
sf [i]− s[i]

)2
)

(24)

In (24), ~sf is one of the denoised signals obtained by means of the filter
above and n is the length of ~s, ~s0 and ~sf . We highlight that here we have
assumed that the Physionet signals ~s are the true signals; in reality these
signals also contain noise, which the metric above neglects.
In Table (5), we have reported the SNR measures, varying the ECGs chosen
and varying the filters considered. First of all, we can observe from Table

Table 1: Signal-to-Noise ratio (SNR) (in decibels)

:

SNR s20011 s20051 s20061 s20071 s20081 s20121

FFT 15, 73 14, 15 17, 72 14, 44 13, 85 17, 65
LPF 13, 96 12, 75 15, 71 13, 64 13, 21 14, 27
BLF 10, 37 11, 18 10, 90 9, 54 10, 79 11, 35
RF 14, 39 13, 33 15, 88 13, 69 13, 17 14, 41

1, that the most accurate filter is, in any case, the FFT method, with in
second position the RF.
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In the left of Figure 5, we show the average results in terms of execution
time and memory usage of the examined filters, for the denoising of ECG
s20011 with size n=900000. The experiments have been carried out using an
Asus CPU Intel(R) Core(TM) i7-4510U CPU 2.00 GHZ -2.60 GHZ, RAM
6 GB. Figure 5 shows that RF and LPF have the lowest time while the RF
and the FFT method exploit the lowest amount of memory.
Taking into consideration the SNR measure in Table 5 and the computa-
tional cost tests in the left of Figure 5 then RF has the possibility of imple-
mentation on mobile computing devices for the denoising of ECG signals.
Finally, we report in the right of Figure 5 A screenshot of an Android appli-

Figure 5: Left: The figure shows the computational cost (execution time and memory
usage) of FFT, LPF, BPF and RF to denoise an ECG (s20011) with a size of 900000
samples. Right: a screenshot of an Android application for the de-noising of an ECG
based on RF

cation for the de-noising of an ECG based on RF. It proves to be very fast
on many devices of the latest generation, also for long ECGs recordings. At
the moment it does not work in real time but we are researching the optimal
boundary conditions for a variable time window for that purpose.

6 Conclusions

In this paper we have described the development and implementation of a
scheme (RF) for ECG Signal Denoising.
Numerical experiments on some ECGs from the Physionet Long-Term ST
Database have demonstrated that our RF can significantly reduce the to-
tal computational cost of denoising compared to other efficient filters, while
maintaining the same level of accuracy.
In addition we provide the theoretical development of the new scheme, based
on the study by [17], who formulated the RF in the context of signal pro-
cessing to eliminate high frequency noise. We have adapted this for ECG
signal denoising, providing a description of the process to obtain the RF
coefficients for different kinds of noise known.
The RF is faster because it has only a computational cost of O(n). There-
fore, we can implement it on mobile computing devices to achieve improve-
ments in e-health care.
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