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Solution of Ambrosio-Tortorelli Model for Image

Segmentation by Generalized Relaxation MethodI
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Abstract

Image segmentation addresses the problem to partition a given image into its
constituent objects and then to identify the boundaries of the objects. This
problem can be formulated in terms of a variational model aimed to find op-
timal approximations of a bounded function by piecewise-smooth functions,
minimizing a given functional. The corresponding Euler-Lagrange equations
are a set of two coupled elliptic partial differential equations with varying co-
efficients. Numerical solution of the above system often relies on alternating
minimization techniques involving descent methods coupled with explicit or
semi-implicit finite-difference discretization schemes, which are slowly con-
vergent and poorly scalable with respect to image resolution. In this work
we focus on generalized relaxation methods also coupled with multigrid lin-
ear solvers, when a finite-difference discretization is applied to the Euler-
Lagrange equations of Ambrosio-Tortorelli model. We show that non-linear
Gauss-Seidel, accelerated by inner linear iterations, is an effective method
for large-scale image analysis as those arising from high-throughput screen-
ing platforms for stem cells targeted differentiation, where one of the main
goal is segmentation of thousand of images to analyze cell colonies morphol-
ogy.
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1. Introduction

Image segmentation is one of the central tasks in image processing and
has the aim of partitioning an image into its constituent regions or objects,
leading to also identify the boundaries of these objects. Usually, two types
of techniques are used for image segmentation: the discontinuity-based ap-
proach, where main aim is to identify the set of pixels in which intensity
function has high gradients or jumps (the edges) or the similarity-based ap-
proach, where the aim is to identify regions with similar characteristics in
intensity function. The problem can be formulated in terms of a variational
model, i.e. in terms of an energy minimization criterion, which in some sense
merges features of both the above approaches. The original variational model
for segmentation is a free-discontinuity problem formulated by Mumford and
Shah [15] that proposed to look for a piecewise smooth approximation u of
the original image function f , with u discontinuous across a closed set K
included in the image domain Ω. In more details, let Ω ⊂ <2 be a bounded
open set and f ∈ L∞(Ω) the observed gray-level image, the problem consists
in the minimization of the following functional:

E(u,K) =

∫

Ω

(u− f)2dxdy + β

∫

Ω\K
|∇u|2dxdy + α|K| (1)

where u ∈ C1(Ω\K), K ⊂ Ω is a closed set whose |K| is the one-dimensional
Hausdorff measure, and α and β are positive coefficients.

This problem is not simple to deal with due to the presence of the last
term. However, an extensive theory has been developed since its introduction
and many efforts have been devoted to approximate the problem with a re-
laxed one which can be solved by classical approach of Calculus of Variations.
On the other hand, since the functional is not convex, large efforts have been
also devoted to relax model in order to get convexity. It is beyond the focus
of this work to discuss theoretical aspects or advantages and drawbacks of
the Mumford-Shah (MS) model, however, we can observe that it is the most
general way to formulate a segmentation problem and the well-based theory
developed during the last 20 years motivates its use to obtain robust and
accurate software modules for large-scale analysis. For classical books and
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recent reviews on theory, numerical approximations and applications of the
MS model we refer to [1, 5, 14, 20].

One of the most general approximations of the MS model was proposed by
Ambrosio and Tortorelli who showed that the model can be approximated, in
the sense of Γ-convergence, by a sequence of elliptic functionals [2, 3]. They
relaxed hypothesis on the set K and introduce a new function 0 ≤ z ≤ 1,
representing this set in a tubular neighbourhood of radius ε of the minimizer
K. This hypothesis and the possibility to approximate the measure of K
by an elliptic functional depending on z leads to the following sequence of
functionals depending on ε:

Eε(u, z) =

∫

Ω

(u−f)2dxdy+β

∫

Ω

z2|∇u|2dxdy+α

∫

Ω

(
ε|∇z|2 +

(z − 1)2

4ε

)
dxdy

(2)
Note that Eε(u, z) remains not convex and a drawback of this approximation
is its dependence on the choice of a good ε parameter in numerical solution
[19], indeed z ≈ 0 if (x, y) ∈ K while z ≈ 1 if (x, y) /∈ K, then function z
makes a sharp transition in the tubular region of thickness of radius ε→ 0.

Some efforts have been devoted to minimize functional in (2) by finite-
element approximations, see for example [6, 7]. On the other hand, the form
of the functional in (2) allows us to apply the classical approach of Calculus
of Variations, i.e. writing Euler-Lagrange equations to obtain stationary so-
lutions. Numerical solutions of the Euler-Lagrange equations associated to
(2) are usually based on finite-difference discretizations of the equations and
alternating minimization schemes are obtained by applying gradient descent
iterations [5, 17, 20]. In [19] the authors proposed to use the non-linear Gauss-
Seidel method for solving discrete equations arising from a finite-difference
approximation of (2). In this paper we show that non-linear Gauss-Seidel re-
laxation, coupled with a fixed-point approach producing inner linear systems
at each application of a basic step of the non-linear method to a discrete
form of the equations, is very effective for large-scale image segmentation.
Inner iterations largely reduce the number of non-linear iterations already
for very low accuracy requests on inner solutions but also improves robust-
ness when those accuracy requests are increased, leading to reliable, flexible
and efficient solver. We discuss convergence results and computational cost
of the method in the analysis of 2D gray-scale images of embryonic stem cells
colonies, since our final aim is to develop an efficient segmentation module for
automatic screening of colonies morphology useful to discriminate different
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phenotypic transitions.
The paper is organized as follows. In Section 2 we introduce a finite-

difference discretization of the Euler-Lagrange equations for model (2). In
Section 3 we briefly describe non-linear Gauss-Seidel method when applied
to a discrete form of (2), then we describe our fixed-point approach coupled
with the non-linear relaxation and outline the linear multigrid solver which
can be used to accelerate inner convergence. In Section 4 we present results
obtained on real images of cultures of mouse embryonic stem cells. An ex-
tensive discussion on the performance of our method, in terms of robustness,
accuracy, computational costs and comparison with standard gradient de-
scent methods, varying model parameters, is reported. Concluding remarks
and future work are included in Section 5.

2. Finite-Difference Discretization of Euler-Lagrange Equations

Euler-Lagrange equations for Ambrosio-Tortorelli model are the following
system of two coupled elliptic PDEs, associated with Neumann boundary
conditions:

{
2(u− f)− 2β∇ · (z2∇u) = 0
2βz|∇u|2 − 2αε∇2z + α

2ε
(z − 1) = 0

(x, y) ∈ Ω \ ∂Ω, (3)

{
∇u · ~n = 0
∇z · ~n = 0

(x, y) ∈ ∂Ω, (4)

where ~n is the exterior normal to ∂Ω.
We note that the first equation in (3) is a form of anisotropic diffusion

where function z2 represents anisotropy and observe that each one of the
equations is linear in one of the unknowns if the other is fixed. Main ap-
proaches for solving these equations are usually based on iterative methods,
where a minimization method, such as gradient descent obtained from (3) by
artificial time evolution, is applied with respect to one of the two variables at
each one of the equations, in an alternate way [5, 17, 20]. Gradient descent
method, despite its simplicity, is slowly convergent and poorly scalable with
respect to the problem dimension, indeed some recent efforts are devoted to
apply Newton-type methods for efficient solution of (3)-(4) and more gen-
erally of similar models for image processing [4]. Netwon-type methods are
very attractive for their quadratic convergence, however building the Hessian
matrix and solving the related linear solvers to get the Newton step at each
iteration lead to high computational costs.
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In this paper, following an approach already proposed in [19], we focus
on a generalized linear relaxation method applied to the non-linear algebraic
system of equations arising from spatial discretization of (3)-(4). We propose
to combine a fixed-point approach at each non-linear relaxation step, leading
to the solution of inner linear systems for each one of the involved unknowns.
We show that inner linear iterations improve convergence of non-linear relax-
ation already for low accuracy requests on linear systems solution and allows
us to obtain a very efficient and reliable method.

We started from a second-order finite-difference discretization of the equa-
tions. Let the domain be a rectangle Ω = (0, xf )× (0, yf ), the computational
grid can be obtained fixing the step size h > 0, typically related to image
resolution, and therefore considering the set of points Ωh = (xi, yj) = (ih, jh)
for i = 0, . . . , n and j = 0, . . . ,m. Let ui,j ≈ u(xi, yj), zi,j ≈ z(xi, yj) and
fi,j = f(xi, yj).

Finite-difference approximations of partial derivatives of function u(x, y)
can be written at each internal point of the computational grid using second-
order accurate centered finite-difference formulas, as follows:

(
∂u
∂x

)
i,j

=
ui+1,j−ui−1,j

2h
,
(
∂u
∂y

)
i,j

=
ui,j+1−ui,j−1

2h
,

then Laplace operator is approximated by the classical five-points scheme:

(∇2u)i,j =
ui,j−1 + ui−1,j − 4ui,j + ui+1,j + ui,j+1

h2
.

Similar formulas can be used for function z(x, y), therefore equations in
(3) can be written at each internal point of the computational grid as follows:





−2β
h2
z2
i,j−1ui,j−1 − 2β

h2
z2
i−1,jui−1,j +

(
2 + 2β

h2
ẑi,j

)
ui,j

−2β
h2
z2
i+1,jui+1,j − 2β

h2
z2
i,j+1ui,j+1 = 2fi,j

−2αε
h2
zi,j−1 − 2αε

h2
zi−1,j

(
2β|∇u|2i,j + α

2ε
+ 8αε

h2

)
zi,j

−2αε
h2
zi+1,j − 2αε

h2
zi,j+1 = α

2ε

where ẑi,j = z2
i,j−1 + z2

i−1,j + z2
i+1,j + z2

i,j+1.
When Neumann boundary conditions are approximated by second-order

finite-difference formulas and a standard row-wise ordering of the unknowns
(also known as lexicographical order) is considered [12], the discrete problem
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to be solved has the form of the following system of non-linear algebraic
equations:

Fh(u, z) = fh(x, y), (5)

where u and z are the vectors obtained from the discretization of u and z,
respectively, Fh is the finite-difference operator associated to equations (3)
and (4) and fh is the related right-hand side (r.h.s.). We observe that the
system can be written in the following compact form:

[
A(z) 0

0 B(u)

](
u
z

)
=

(
f1

f2

)
. (6)

Matrices A(z) and B(u) have the same symmetric sparsity pattern but
are unsymmetric in values due to the application of Neumann boundary
conditions. Furthermore, they are both diagonally dominant M-matrices per
each finite vector (u, z), therefore a well-established convergence theory for
iterative solution of related linear systems is available [18].

3. Numerical Algorithms

The non-linear system (5) can be solved by a generalized linear method
such as that arising from basic point-wise iterative methods, which have a
simple interpretation if we consider the system in the form (6). For example,
the basic step of non-linear Gauss-Seidel, starting from a vector (uk, zk),
requires the application of a basic step of the linear Gauss-Seidel relaxation
to the system:

A(zk)u = f1, (7)

in order to obtain a new approximation uk+1, and then a basic step of the
linear Gauss-Seidel relaxation to the system:

B(uk+1)z = f2 (8)

to get the new value zk+1. Properties of the matrices A(z) and B(u) ensures
applicability and asymptotic convergence of the non-linear Gauss-Seidel (GS)
method to the solution of the original system (see [16]).

Observe that, each iteration of GS requires the updating of the matri-
ces A and B with the new values of the unknown vector that, especially
for increasing image resolution, is the most computational demanding task
of the algorithm (see Section 4). With the final aim to accelerate the con-
vergence of GS, also reducing frequency of operators updating, we followed
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an approach similar to that proposed in [21] for image denoising, combining
the GS method with fixed-point (or Picard) iterations to obtain better ac-
curacy in the solution of systems (7)-(8) at each non-linear iteration. The
corresponding algorithm, we named GS-FP, is described in Algorithm 1.

Algorithm 1: Gauss-Seidel method coupled with Fixed-Point itera-
tions (GS-FP)

k = 0, z0 = 1 (unitary vector) and u0 = fh (original image);
build r.h.s. f1 and f2;
repeat

build matrix A(zk);
compute uk+1 by iterative solution of system (7), starting from uk;
build matrix B(uk+1) ;
compute zk+1 by iterative solution of system (8), starting from zk;
k = k + 1;

until convergence;

Classical point-wise iterative solvers are very effective for the solution of
systems with diagonally dominant or M-matrices, therefore, in Algorithm
1, we can still use simple Jacobi or Gauss-Seidel methods as inner linear
solvers. In our experiments we employed Gauss-Seidel method and observed
a more rapid convergence of GS-FP with respect to GS already when very low
accuracy was required for solution of systems (7) and (8). On the other hand,
we verified that increasing accuracy requests for inner solvers also improves
robustness of non-linear relaxation allowing convergence to high accuracy
global solution for a a larger set of model parameters.

As already said, point-wise relaxation methods are good linear solvers for
our systems, however it is well-known that they suffer of convergence rate
degradation, especially in case of problem anisotropy, for increasing prob-
lem dimensions [9]. In order to overcome this limitation we also employed
multigrid linear solvers for efficient and scalable solution of the linear systems
involved in Algorithm 1.

In the following we briefly recall main elements of a classical geometric
multigrid method, for more details on theory and algorithms we refer to
[9, 11].
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3.1. Key Components of Linear Multigrid Solvers

Multigrid solvers are the most efficient methods for linear systems arising
from boundary-value problems for elliptic partial differential equations with
constant or slowly-varying coefficients. They have the capability to solve the
systems with a linear computational complexity, by combination of two key
components: smoothing and coarse-grid correction. Smoothing is the process
based on the application of a relaxation method, such as the basic Jacobi or
Gauss-Seidel methods, to obtain a fine-grid solution (corresponding to the
original grid), while coarse-grid correction is the process of transferring in-
formation (the system residual) to a coarser grid through restriction, solving
a coarse-grid system (the error system), and then transferring the solution
back to the fine grid through interpolation with the final aim to improve
the previous fine-grid solution. In this work, in order to exploit the reg-
ular (rectangular) grid implicitly defined by the image pixels, we focus on
classical geometric multigrid, where a pre-defined hierarchy of L ever more
coarser grids Ω1 = Ωh ⊃ Ω2 = Ω2h ⊃ . . .ΩL = ΩLh is considered and trans-
ferring operators are built using geometric information of two consecutive
grids. Prolongation operators P k

k+1, which transfers a grid vector v from
level k + 1 to level k, are defined in terms of linear interpolation as in the
following:

vk2i,2j = vk+1
i,j ,

vk2i+1,2j = 1
2
(vk+1
i,j + vk+1

i+1,j),

vk2i,2j+1 = 1
2
(vk+1
i,j + vk+1

i,j+1),

vk2i+1,2j+1 = 1
4
(vk+1
i,j + vk+1

i+1,j + vk+1
i,j+1 + vk+1

i+1,j+1)

for 0 ≤ i ≤ n/2 − 1 and 0 ≤ j ≤ m/2 − 1; while restriction operator Rk+1
k

can be built using injection, i.e. the components of vk+1 are simply obtained
from the corresponding fine grid point:

vk+1
i,j = vk2i,2j, 0 ≤ i ≤ n/2− 1, 0 ≤ j ≤ m/2− 1.

Once built all the transferring operators for a given hierarchy of grids, a
hierarchy of coarse grid matrices is obtained by Ak+1 = Rk+1

k AkP k
k+1, for

k = 1, . . . L − 1 (where A1 = A is the original system matrix also called
fine matrix) and a multigrid cycle for the solution of a linear system of the
type Av = f can be defined in terms of the recursive scheme described in
Algorithm (2), also known as L-level V(ν1, ν2)-cycle with ν1 pre-smoothing
and ν2 post-smoothing steps.
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Algorithm 2: vk = MG(vk0 , f
k)

if l 6= L then
apply ν1 steps of a smoother to Akvk1 = fk, starting from vk0 ;
compute the residual rk = fk − Akvk1 ;

restrict the residual fk+1 = Rk+1
k rk;

vk+1 = MG(0, fk+1);
correct the solution vk2 = vk1 + P k

k+1v
k+1;

apply ν2 steps of a smoother to Akvk = fk, starting from vk2 ;

else
vk = (Ak)−1fk (or apply ν1 steps of a smoother to Akvk = fk,
starting from vk0);

We recall here that classical multigrid methods as that described in this
section are most efficient in case of linear systems arising from elliptic partial
differential equations with constant or smoothly varying coefficients, while for
highly-varying or discontinuous coefficients problems more specific operators
and coarse grids have to be employed [8]. In the following we show that,
for our problem, geometric multigrid with “standard” operators and grids is
able to obtain efficient solution for a large set of model parameters.

4. Numerical Results

In the following we discuss results related to the application of the algo-
rithms described in the above section to gray-scale real images of plates of
cultured mouse embryonic stem cells.

First of all we present simulation results on an image with resolution
nsize2 = 2562, for varying model coefficients, in order to show their impact
on the quality of results. Since in case of convergence, as expected, there is no
significative impact of the chosen numerical method on the solutions, in the
following we show only results obtained by our prototypal implementation
of the GS method. In Figures 1-2 we show segmented images and the corre-
sponding edge sets, respectively, for different coefficients (α, β) ∈ {1, 5, 10}.
According with the discussion in [20], all the experiments have been run with
ε = 10−4, which violates the condition h/ε < 1 coming from the need of a
good resolution of the tubular region including the edge set (see [13]), but
allows us to obtain a discontinuity function z with sharper transition. We
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Figure 1: Piecewise-smooth images u obtained by Ambrosio-Tortorelli model for ε = 10−4

and different values of (α,β).

observe that, as expected, decreasing values of both the parameters gives
more edges (observe pictures in Fig. 2 along the main diagonal from bottom
to top), on the other hand, fixed α and increasing β (observe pictures in Figs.
1-2 along rows) gives smoother effects in internal regions, with a more clear
representation of the edges, while an inverse effect can be observed when
fixed β we increase α (observe pictures in Figs. 1-2 along columns).

In Fig. 3 we show the original image and the estimate of functional
(2) versus number of iterations, obtained by applying a two-dimensional
Cavalieri-Simpson rule when discrete functions u and z are obtained by solv-
ing problem (5) with the GS method. Stopping criterion for iterations was
based on maximum norm of the system residual and the above results were
obtained when requested accuracy was ATOL = 10−10.

In the following section we report an extensive analysis of the performance
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Figure 2: Edge sets z obtained by Ambrosio-Tortorelli model for ε = 10−4 and different
values of (α,β).

results of our simulations obtained by prototypal Matlab implementations of
all the methods discussed in Section 3, on the gray-level image of Figure 3
varying both image resolutions and model coefficients α and β, while ε =
10−4 was fixed. For all the methods, we stopped (external) iterations when
the maximum norm of the system residual was less than a fixed tolerance
ATOL. In the case of Algorithm 1, where linear systems (7)-(8) have to be
solved at each external iteration, we first used (one-level) linear Gauss-Seidel
relaxation and stopped linear iterations when the relative residual of the
involved variable was less than a fixed tolerance RTOL. Maximum number
of iterations was also fixed in the stopping criteria. In the following we show
results related to ATOL = 10−10 and maxiter = 2000 for external iterations,
while various values of RTOL and maxiter = 100 have been considered for
inner iterations.
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Figure 3: Original Image (left). Estimate of the Ambrosio-Tortorelli functional for ε =
10−4 and (α, β) = (1, 1).

4.1. Performance Results

In Tables 1 and 2 we show iterations and execution times, respectively,
related to the application of the GS method. We can observe that, increasing
β produces an increase in the number of iterations needed to obtain the re-
quested accuracy. On the other hand, increasing α has generally an opposite
effect on global convergence. In the case of (α, β) = (1, 10) the algorithm does
not converge (NC) to the requested accuracy for the largest image resolution;
in particular we observed a system residual stalling around values of the order
of 103. We also observe that there is no a regular impact of the image size
on the convergence behaviour which essentially depends on the choice of the
regularity model parameters. On the other hand, execution times increase
with image size, due to the increasing cost for updating the operators A(zk)
and B(uk) at each non-linear iteration. Indeed, we observed that updating
of the operators, although based on an efficient algorithm which reuses spar-
sity structure and exploits Matlab vectorial capacity, requires an increasing
percentage of the total execution time, going from about 88% in the case of
the smallest image resolution till to 90% in the case of the largest resolution.

In the following, results obtained with Algorithm 1 when (one-level) linear
Gauss-Seidel was used for inner iterations are shown. In Table 3 are reported
external iterations and, in the brackets ([u-z]), the average number of internal
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256 ×256 512 ×512 1024 ×1024

α α α

β 1 5 10 1 5 10 1 5 10

1 74 74 74 74 74 74 147 74 74
5 471 312 312 584 312 312 979 710 312
10 639 608 608 1612 608 608 NC 1930 608

Table 1: GS: Non-linear iterations.

256 ×256 512 ×512 1024 ×1024

α α α

β 1 5 10 1 5 10 1 5 10

1 11.0 11.0 11.0 48.5 48.0 48.1 405.1 204.4 204.5
5 69.6 46.3 46.4 384.9 202.3 202.6 2726.8 1961.2 907.7
10 94.6 90.3 93.7 1041.3 405.5 406.7 NC 5370.4 1717.9

Table 2: GS: Execution Times in seconds.

iterations both for linear systems (7) and for systems (8), respectively, when
RTOL = 10−2. In Table 4 corresponding execution times are shown.

We can see that, as expected, the convergence behaviour with respect
to the model parameters is the same as in the case of GS, i.e. number of
non-linear iterations increases when β increases for fixed α, while increasing
α has the opposite effect, however inner iterations generally produce a more
rapid convergence of the non-linear Gauss-Seidel method leading to a large
reduction in execution times. On the other hand, we observe that Algorithm
1, in the case of the largest image resolution, does not converge both for
(α, β) = (1, 10), as the GS method, and for (α, β) = (1, 5), with system
residual stalling around values of the order 100 and 10−1, respectively.

We also note that increasing β requires an increasing number of iter-
ations to get the requested accuracy in the solution of systems (7). This
is essentially due to a bit increase in the condition number of the matrix
A(zk) for increasing values of β. Condition number of the matrix B(uk) is
generally very small (of order 101 − 102) and decreases for increasing values
of α, however, for all our tests only 1 iteration is needed to obtain the re-
quested accuracy in the solution of systems (8). Note that, for fixed values
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of β, increasing α reduces the number of non-linear iterations, as for GS, but
the average number of inner linear iterations needed for solving systems (7)
shows a bit increase. Maybe this is due to different levels of spatial anisotropy
introduced by z values into the equation of u.

256 ×256 512 ×512 1024 ×1024

α α α

β 1 5 10 1 5 10 1 5 10

1
20 10 8 48 16 12 123 33 19

[7-1] [8-1] [10-1] [4-1] [6-1] [7-1] [4-1] [6-1] [7-1]

5
153 14 10 203 17 12 NC 192 29
[8-1] [23-1] [32-1] [9-1] [19-1] [26-1] [13-1] [15-1]

10
131 15 11 289 18 12 NC 329 24
[8-1] [41-1] [56-1] [12-1] [34-1] [51-1] [16-1] [26-1]

Table 3: GS-FP - RTOL = 10−2: Non-linear and [average number of linear] iterations.

256 ×256 512 ×512 1024 ×1024

α α α

β 1 5 10 1 5 10 1 5 10

1 3.9 2.1 1.8 35.9 12.8 10.1 376.6 110.0 65.4
5 30.9 4.6 4.1 182.5 20.8 17.4 NC 798.3 128.6
10 27.7 7.6 6.8 292.3 30.4 26.9 NC 1504.1 138.2

Table 4: GS-FP - RTOL = 10−2: Execution Times in seconds.

To analyze the impact of the accuracy in the solution of inner linear
systems on the convergence of the external non-linear iterations, in Tables
5-6 and 7-8, we report results related to RTOL = 10−3 and RTOL = 10−1,
respectively, while the other numerical parameters remained fixed.

We observe that increasing the accuracy requests for inner linear itera-
tions produces a bit reduction in the number of external non-linear itera-
tions. This reduction, is about of 15% in the best case, related to the choice
of parameters (α, β) = (5, 10), for the largest image resolution. However,
increasing accuracy for inner iterations seems do not produce convergence in
the cases of (α, β) = (1, 5) and (α, β) = (5, 10) on the largest image. On
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256 ×256 512 ×512 1024 ×1024

α α α

β 1 5 10 1 5 10 1 5 10

1
18 9 7 45 14 11 107 30 17

[11-1] [12-1] [13-1] [8-1] [10-1] [10-1] [7-1] [10-1] [10-1]

5
136 12 9 174 15 11 NC 169 26

[17-1] [35-1] [38-1] [17-1] [32-1] [34-1] [26-1] [27-1]

10
115 14 10 257 16 11 NC 279 21

[20-1] [56-1] [66-1] [32-1] [52-1] [59-1] [40-1] [45-1]

Table 5: GS-FP - RTOL = 10−3: Non-linear and [average number of linear] iterations.

256 ×256 512 ×512 1024 ×1024

α α α

β 1 5 10 1 5 10 1 5 10

1 4.2 2.1 1.7 38.8 12.7 10.1 367.9 114.6 65.7
5 38.7 5.1 4.1 197.8 24.3 18.6 NC 969.8 152.4
10 34.9 8.4 7.0 415.4 36.2 27.3 NC 2096.2 170.8

Table 6: GS-FP - RTOL = 10−3: Execution Times in seconds.

the other hand, the average number of linear iterations for the systems in-
volving the variable u increases, therefore, the execution time for simulations
generally increase, except in a few cases.

For not convergent cases, we analyzed the impact of further decreasing
of RTOL and verified that convergence is obtained for both the cases when
RTOL ≤ 10−12. In particular for RTOL = 10−12, 18 non-linear iterations
are needed for the case (α, β) = (1, 5), while an average number of 206
and 2 iterations are needed for systems (7) and (8), respectively, leading to
an execution time of about 499 seconds and a reduction of more than 50%
with respect to the non-linear Gauss-Seidel. For the case (α, β) = (5, 10),
where non-linear Gauss-Seidel did not converge, convergence of GS-FP is
obtained within 21 non-linear iterations, an average number of 403 and 2
inner iterations for (7) and (8), respectively, and an execution time of about
1109 seconds.

From Table 7, we can observe that a very low request of accuracy in
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256 ×256 512 ×512 1024 ×1024

α α α

β 1 5 10 1 5 10 1 5 10

1
24 13 13 59 17 13 139 38 21

[4-1] [6-1] [6-1] [2-1] [5-1] [6-1] [2-1] [6-1] [4-1]

5
219 15 13 266 18 13 NC 250 32
[3-1] [21-1] [24-1] [4-1] [18-1] [24-1] [6-1] [10-1]

10
188 17 13 486 21 14 NC 587 26
[4-1] [36-1] [47-1] [4-1] [29-1] [44-1] [5-1] [24-1]

Table 7: GS-FP - RTOL = 10−1: Non-linear and [average number of linear] iterations.

256 ×256 512 ×512 1024 ×1024

α α α

β 1 5 10 1 5 10 1 5 10

1 4.2 2.9 2.5 40.0 15.5 10.5 388.8 136.2 65.0
5 35.6 5.6 4.4 196.8 25.9 18.0 NC 984.6 123.5
10 32.8 9.1 6.9 360.8 40.2 28.1 NC 2050.0 143.0

Table 8: GS-FP - RTOL = 10−1: Execution Times in seconds.

the solution of inner linear systems is able to reduce in a significative way
the number of non-linear iterations, generally producing a large reduction
in execution times for Algorithm 1 with respect to GS, without affecting
convergence behaviour. Indeed, not converging cases for RTOL = 10−1 are
the same as in the other two choices of RTOL. On the other hand, a good
choice for RTOL, producing the best tradeoff between reduction of non-linear
iterations and increasing of linear iterations, has to be made in order to have
the best execution time with the problem at hand. We can observe that, for
our test case, RTOL = 10−2 is generally the best choice.

Finally, we remark that both algorithms (GS and GS-FP) converge to
the same minimum value of the functional (2), with accuracy depending on
the fixed value for ATOL. However, we point out that Algorithm 1 is able
to obtain a more rapid convergence to the minimum value already from the
first non-linear iterations, showing that improving accuracy in the solution
of inner linear systems is able to improve in a significative way the reduction
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of the non-linear error in a few non-linear iterations. In Figure 4 we show
the behaviour of the estimate of Ambrosio-Tortorelli functional in the first
15 iterations obtained for both the algorithms in the case (α, β) = (1, 1) and
ε = 10−4 for the smallest image. Note that ATOL was fixed as in the previous
analysis and RTOL = 10−2 for Algorithm 1. We remark here that the same
initial conditions were considered for both the algorithms, corresponding to
an initial approximation of the functional of about 1.0 × 106, therefore, for
both the algorithms we observe an increasing of the functional value at the
first iteration, that in the case of GS is of two orders of magnitude, before
starting the progressive descent to the minimum value of 5.9853×105. In the
case of Algorithm 1 the increasing observed at the first iteration is negligible,
indeed the descent already starts at the second iteration. This behaviour
suggests that inner iterations are able to largely improve initial values of the
unknowns leading to a faster convergence of the non-linear solver.

Figure 4: Ambrosio-Tortorelli functional estimate. Matrix size 256× 256, (α, β) = (1, 1),
ε = 10−4.

4.1.1. Results with Multigrid Solvers

In this Section we discuss performance results obtained when Algorithm
1 was used in conjunction with geometric multigrid solver as described in
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Section 3.1. Note that, since for previous analysis we observed that the
most computational demanding solver is represented by the linear solver for
systems (7), while solver for systems (8) converges in a few iterations also
for increasing accuracy requests, we applied multigrid only for systems (7).

We first analyze results related to the use of a two-level V-cycle with
1 step of Gauss-Seidel as pre/post smoothing (V(1,1)-cycle), 1 step of the
Gauss-Seidel method was also employed on the coarsest grid. For sake of
brevity we discuss here only results obtained in the case of RTOL = 10−2.
In Table 9 we show number of external iterations and the average number
of inner iterations ([u− z]) for both the variables, and in Table 10 execution
times in seconds are reported. Note that we include the average number of
inner iterations for z only for completeness, indeed the number was the same
as in the previous section since the same (one-level Gauss-Seidel) algorithm
was used for the related systems.

256 ×256 512 ×512 1024 ×1024

α α α

β 1 5 10 1 5 10 1 5 10

1
19 9 8 49 15 11 113 33 19

[4-1] [4-1] [3-1] [2-1] [3-1] [3-1] [3-1] [3-1] (3-1]

5
148 14 10 200 17 12 NC 184 28
[3-1] [6-1] [8-1] [4-1] [5-1] [7-1] [5-1] [5-1]

10
121 15 11 281 18 12 NC 327 24
[3-1] [11-1] [14-1] [3-3] [9-1] [13-1] [5-1] [7-1]

Table 9: GS-FP with V (1, 1)-cycle - RTOL = 10−2: Non-linear and [average number of
linear] iterations.

We observe that using multigrid solver generally produces, as expected, a
reduction of inner iterations for variable u, that in the best case of (α, β) =
(10, 10) for the smallest and medium image resolution is of about 75% with
respect to the corresponding result in Table 3. In many cases, also a reduction
of external non-linear iterations was observed, with a general reduction of the
overall execution times.

Although the use of a simple V (1, 1)-cycle already reduces in a significa-
tive way the number of inner linear iterations in the solution of the systems
(7), in the following we also analyze the impact of increasing both the num-
ber of pre/post-smoothing steps and the number of levels. In particular, in
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256 ×256 512 ×512 1024 ×1024

α α α

β 1 5 10 1 5 10 1 5 10

1 4.0 1.9 1.7 39.9 12.5 9.3 392.5 120.2 69.3
5 30.8 3.9 3.1 184.8 17.6 14.1 NC 752.1 116.3
10 25.3 5.4 4.7 260.0 23.8 19.4 NC 1335.6 113.6

Table 10: GS-FP with V (1, 1)-cycle - RTOL = 10−2: Execution Times in seconds.

Tables 11-12 we show results obtained when a two-level V-cycle was applied
with 2 sweeps of Gauss-Seidel as pre/post smoother (V (2, 2)-cycle), while in
Tables 13-14 we present results obtained when a three-level V-cycle with 1
pre/post smoothing steps is employed. For both the cases one step of Gauss-
Seidel was employed as coarsest solver. The same numerical parameters of
the experiments carried out with the two-level V (1, 1)-cycle were used for
both the set of experiments.

256 ×256 512 ×512 1024 ×1024

α α α

β 1 5 10 1 5 10 1 5 10

1
18 9 7 45 15 11 117 33 19

[3-1] [3-1] [3-1] [2-1] [2-1] [2-1] [2-1] [2-1] [2-1]

5
150 14 10 195 17 12 NC 191 27
[2-1] [4-1] [6-1] [2-1] [4-1] [5-1] [3-1] [4-1]

10
128 15 11 284 18 12 NC 317 24
[2-1] [7-1] [9-1] [3-1] [6-1] [9-1] [4-1] [5-1]

Table 11: GS-FP with V(2,2)-cycle - RTOL = 10−2: Non-linear and [average number of
linear] iterations.

We can see that both increasing number of pre/post smoothing steps and
number of levels produces a further improve in the number of inner iterations,
sometimes producing also a reduction in the number of non-linear iterations
and in the final execution times.
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256 ×256 512 ×512 1024 ×1024

α α α

β 1 5 10 1 5 10 1 5 10

1 3.7 1.9 1.4 35.0 12.0 8.8 383.8 114.2 67.4
5 29.5 3.6 2.8 183.0 17.4 13.4 NC 713.6 111.4
10 24.5 4.9 4.3 256.2 22.7 18.6 NC 1305.9 111.7

Table 12: GS-FP with V(2,2)-cycle - RTOL = 10−2: Execution Times in seconds.

256 ×256 512 ×512 1024 ×1024

α α α

β 1 5 10 1 5 10 1 5 10

1
19 9 8 50 15 11 113 33 19

[3-1] [3-1] [2-1] [2-1] [2-1] [2-1] [2-1] [2-1] [2-1]

5
146 13 10 193 16 11 NC 190 28
[3-1] [3-1] [4-1] [3-1] [3-1] [3-1] [3-1] [3-1]

10
120 15 11 271 17 12 NC 327 24
[2-1] [5-1] [6-1] [3-1] [4-1] [5-1] [3-1] [4-1]

Table 13: GS-FP with three-level V(1,1)-cycle - RTOL = 10−2: Non-linear and [average
number of linear] iterations.

4.2. Comparison with Gradient Descent

Finally, in order to demonstrate the effectiveness of our generalized Gauss-
Seidel method coupled with inner linear iterations, in Tables 15-16 we show
number of iterations and execution times, respectively, obtained when a stan-
dard semi-implicit gradient-descent method was used on our test cases. The
method was obtained by introducing a fictitious time evolution for both vari-
ables u and z and solving parabolic equations associated to the equations in
(3)-(4) to get steady-state solution by a finite-difference semi-implicit scheme.
For details refer to [5]. In our experiments with the test cases discussed in
the above sections a time step of ∆t = 0.01 was needed for convergence.
Stopping criterion was based on the maximum norm of the time variations
of variable u, i.e. if the backward approximation of the time derivative was
larger than a fixed tolerance ATOL = 10−10, the algorithm was stopped. We
also fixed a maximum number of iterations equal to 10000 in case of slow

20



256 ×256 512 ×512 1024 ×1024

α α α

β 1 5 10 1 5 10 1 5 10

1 4.3 2.0 1.8 42.2 12.8 9.6 409.0 120.2 69.3
5 31.1 3.0 2.4 189.1 15.3 10.8 NC 753.2 115.8
10 25.0 4.0 3.2 245.4 18.0 13.6 NC 1286.7 103.9

Table 14: GS-FP with three-level V(1,1)-cycle - RTOL = 10−2: Execution Times in
seconds.

convergence, reported in Tables 15-16 as NC cases.

256 ×256 512 ×512 1024 ×1024

α α α

β 1 5 10 1 5 10 1 5 10

1 3963 2283 2277 4773 2452 2262 6886 5062 3554
5 6676 2244 2244 7633 2438 2276 NC NC NC
10 6471 2266 2266 NC 2629 2244 NC NC NC

Table 15: Semi-implicit Gradient Descent: Number of iterations.

We observe that the gradient descent method shows, as expected, a con-
vergence rate largely dependent on image resolution. On the other hand, if we
compare Table 16 with Tables 4-10 we can note that non-linear Gauss-Seidel
coupled with inner linear iterations largely outperforms the gradient descent
method. Similar performance results were obtained also when the second-
order finite-difference discretization scheme described in Section 2, coupled
with an implicit time discretization, was applied to obtain an unconditionally
stable scheme. Indeed, also in this case, when a time step ∆t = 0.1 is used
and the same accuracy is required on inner systems, non-linear Gauss-Seidel
outperforms gradient descent. Detailed results were not included here for
sake of brevity.

5. Concluding Remarks

In this work we focus on efficient and reliable numerical solution of the
Ambrosio-Tortorelli model for image segmentation. Main motivation was
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256 ×256 512 ×512 1024 ×1024

α α α

β 1 5 10 1 5 10 1 5 10

1 59.4 33.7 32.4 460.3 237.7 220.0 3351.3 2455.4 1724.9
5 94.2 31.3 30.8 737.6 236.6 238.4 NC NC NC
10 90.0 32.1 32.2 NC 255.6 223.3 NC NC NC

Table 16: Semi-implicit Gradient Descent: Execution Times in seconds.

the need to develop an effective software tool for large-scale analysis of im-
ages coming from high-throughput screening platforms for stem cells targeted
differentiation. Due to its generality and well-based theory, we choose the
phase-field approximation of the original Mumford-Shah variational model,
developed by Ambrosio and Tortorelli, and we used a generalized relaxation
method, such as the Gauss-Seidel method, as non-linear solver for the related
Eulero-Lagrange equations. We proposed to couple Gauss-Seidel non-linear
relaxation with a fixed-point scheme which leads to solution of inner lin-
ear systems at each non-linear iteration for which efficient methods, such as
classical linear multigrid, can be employed. We discuss simulation results
obtained on a real image for varying model parameters and image resolution
and we show that our solver largely outperforms the usual gradient descent
schemes proposed in the literature. Future works will include both investi-
gation of gradient descent methods with suitable line search algorithms as
well as Newton-type methods coupled with effective strategies for calcula-
tion of descent directions and parallel implementation of the proposed solver
exploiting parallel linear algebra kernels and data management routines of
PSBLAS-MLD2P4 software framework [10].
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