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Abstract

A large class of neural network models have their units organized
in a lattice with fixed topology or generate their topology during the
learning process (usually unsupervised). These network models can
be used as neighborhood preserving map and some of them generate
a perfect topology preserving map of the input manifold using com-
petitive Hebbian rule. But such a structure is difficult to manage if
it lays in a high-dimensional space and some hierarchical algorithms
were proposed in order to obtain an high-level abstraction of these
structures.

In this paper a general structure capable to extract high order in-
formation from the graph generated by a large class of self organizing
networks is presented. This algorithm will allow to build hierarchi-
cal structures starting from the results obtained by using the suitable
neural network for the distribution of the input data. Moreover the
proposed algorithm is also capable to build a perfect topology preserv-
ing map if is trained using a graph that is also a topology preserving
map.

1 Introduction

A large class of self-organizing network are constituted by a layer of neurons
connected between each other in a graph. These networks, from now on
GEN networks (from Graph gEnerating Neural networks), are trained in
order to adapt their graph to map the input manifold, during the learning
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stage. The interactions between the neural units are carried by the graph
connections that can be created, grow old, and die during the learning stage
of the network. These algorithms are inspired by the Self Organizing Network
[3] trying to overcome its fixed topology. Application fields of these networks
are clustering, adaptive coding of the input values and visualization of high-
dimensional data. If the graph structure of the network is fixed the mapping
capabilities of these networks are dependent from its topological structure,
and the map created by the network will be distorted if this topological
structure does not match the one of the input manifold.

A topological preserving map is a representation of the input distribution
that preserves the neighboring relationships between the inputs.

In an informal way a structure G ⊂ Rn can be defined a topology preserv-
ing mapping for a manifold M ⊂ Rn if: input vectors of M which are close in
Rn are mapped onto neighboring (or identical nodes in G), and neighboring
nodes in G have similar input vectors mapped onto them.

In this paper we will show that topological preserving maps are difficult to
manage and visualized when the input data are in an high dimensional space.
Depending on the application this can force the user to apply a hierarchical
network in which it is possible to choose the level of details to visualize or to
use higher levels of the hierarchy to obtain an high level of abstraction.

To avoid this problem a new growing neural algorithm, called HOGEN
(High-Order Graph gENerating Network) is proposed. This network can be
applied to any GEN network in order to obtain a hierarchical structure. The
user can apply the HOGEN network to extract high order information from
a trained GEN network and to build a hierarchical structure from a large
class of GEN networks.

2 GEN Networks and Topology Preserving

maps

In this section we will analyze the definition of the topology preserving map
and we will see why their characteristics can make difficult to manage the
graph created by GEN network.

The concept of topology preserving mapping was introduced by Martinetz
and Schulten in [6], we will reprise that discussions and definitions in order
to analyze under which conditions a GEN network can create a topology
preserving map and which are the consequences of that conditions for visu-
alization and coding purposes. Generally speaking a GEN network can be
considered as a graph G with vertices i = 1, 2, ..., N and an adjacency matrix
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A with aij ∈ {0, 1}; a pointer wi ⊂ M , from a set S = {w1,w2, ...,wN} is
connected to each vertex of the graph G. A mapping can be defined by a
function φ from an input manifold M ∈ RD to the graph G, but to obtain a
topological preserving map some properties need to be defined.

Let φs be a mapping from M to G defined by:

φs : M −→ G v ∈ M −→ i∗(v) ∈ G

with i∗(v) is the vertex for which v ∈ V
(M)
i∗(v) is valid, where V

(M)
i∗(v) is a masked

Voronoi polyhedron (the part of the Voronoi polyhedron Vi∗(v) that is also
part of M).

Let φ−1
s be the inverse mapping from G to M defined by:

φ−1
s : G −→ M i ∈ G −→ wi ∈ M

The mapping φs is neighborhood preserving if the pointers wi,wj that are
adjacent on M are assigned to vertices i,j that are adjacent in G and, vice
versa, the mapping φ−1

s is neighborhood preserving if the vertices i,j that are
adjacent in G are assigned to locations wi,wj neighboring on M. Two point-

ers wi,wj on M are adjacent if their masked Voronoi polyhedron V
(M)
i , V

(M)
j

share an element v ∈ M .
The graph G is a topology preserving map if and only if the mapping φs

as well as the inverse mapping φ−1
s is neighborhood preserving.

If we can successfully build a topology preserving map we can guarantee
that in the map is preserved the neighborhood relationships between the
input points.

In the same paper [6] it is shown that if the distribution S is ”dense” on
the manifold M, the competitive Hebb rule can form a perfectly topology
preserving map of M. The distribution S is “dense” if for each v ∈ M ,
called wi0 ∈ S the closest unit to v and wi1 the second closest, the following
condition is satisfied:

4{v,wi0 ,wi1} ∈ M (1)

i.e. the triangle obtained lies completely on M.
Intuitively this condition is more likely to be true if the number of units

wi0 ∈ S is ”enough big” in order to ”cover” completely all the areas of the
manifold M. More complex is the shape of the manifold M, more units are
necessary to satisfy the condition (1).

Rising the number of nodes in the graph G it will make the visualization
and our understanding of the structure of the manifold M more difficult
to achieve especially if it lays in a high-dimensional space. Moreover if we
consider each element of S as a codeword, and S as a codebook, raising the
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number of units in S we will obtain a larger codebook where each codeword
encodes only very few elements of the input set. This makes each codeword
less significant and will diminished the achieved compression. So if it is
necessary to approximate the topology of the input manifold with an high
degree of precision the map can be only a little simpler than the original
manifold and the advantage of using a neural map can be lost.

To avoid this problem usually a hierarchical neural structure is used.
These neural networks can be considered as a layered structure so that it is
possible to look at higher levels of the layer if a simpler structure is needed
and to go in deep if more details are necessary.

2.1 Characteristics of the GEN networks

Another growing algorithm is the Growing Cell Structure [1] developed for
self–organizing clustering. The GCS algoritm creates a growing k–dimentional
simplex distributed over the input manifold (k=1 for a line segment, k=2 for
a triangle, k=3 for a tetrahedron and so on). The resulting topology is
strictly k-dimensional.

Topology Representing Network (TRN network) [6] has a free structure
but a limited number of neural units. It can build a perfect topology repre-
senting map if the distribution S is ”dense” on the input manifold. TRN is
another of the network that can be used as a input set for the HOGEN. The
graph built by the TRN cannot be simplified without loosing the topology
representing map feature. Even the number of units should be maintained
high in order to satisfy the condition (1).

The constrain on the fixed number of units if removed in another two
algorithms: Dynamic TRN and GNG.

The Dynamic TRN was proposed by Sin, Lin and Vuong [7] for learning
both topology and clustering information. This model adaptively grows the
number of output nodes by applying a vigilance test. A competitive Hebbian
rule is applied to learn the global topology information concurrently with the
clustering process.

The Growing Neural Gas network (GNG)[4] is another incremental vari-
ant of the TRN that has a free topology and no limits on the number of
neural units, but its freedom made this structure difficult to manage. To
build a simpler graph it is possible to limit the number of neural units, obvi-
ously in this way it is difficult to assure the creation of a topology preserving
map.

The drawback of this class of algorithm is the same as said before: they
can build a topology representing map but the number of neural units that
they create makes the neural structure too complex.
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A way to obtain a simple graph is to choose a hierarchical GEN structure.
These structures are usually constituted by different layers of neurons: each
layer is made by an interconnected graph as the GEN network and to each
neural unit is associated not only a pointer to the input manifold but also a
set of unit of the graph on the lower layer.

A number of hierarchical model were derived from GEN model and pro-
posed in the technical literature, such as SAINT that stems from the SOM
and was studied in order to map large set of input patterns, or the HiGCS
(Hierarchical GCS) in which each layer is a GCS network.

Another architecture stemmed from GCS is TreeGCS in which the hier-
archy is more similar to a tree that is generated during the learning stage
using a breath-first search engine.

The HOGEN algorithm is an attempt to propose a general framework for
the development of a hierarchical GEN network, the aim of the algorithm is
to serve as a general high-level layer of a large category of GEN network, so
that the user can choose the GEN algorithm more suitable for the application.
The user can adjust the parameter of the network to better approximate the
input distribution and start the learning phase. When the learning is finished
and the graph of the network is fully developed it is possible to use its graph
as input for the HOGEN and obtain an high-order graph that represent an
abstraction of the original graph. The two–stage network, the lower layer
GEN network and the upper-level HOGEN network works as a hierarchical
structure. Fig.1 shows a representation of this structure.

3 The HOGEN Algorithm

The basic idea of the proposed algorithm is to extract high-order informa-
tion (as the shape of the graph or a further clustering of the units) from the
complex lattice G generated by the GEN network. This can be accomplished
using not only the information contained in the set S of the pointers associ-
ated to the vertex of the input graph G, but also considering the information
of its adjacency matrix A.

The HOGEN algorithm proceed segmenting the input graph in an adap-
tive way using a cluster algorithm and after that, linking the obtained clusters
in order to build an high-order representation.

As the other growing GEN networks the HOGEN is constituted by a
graph GH that has associated a set of pointers H = {h1,h2, ...,hNl

} to its
set of vertex l = 1, 2, ..., Nl, and an adjacency matrix AH . The input set
for the HOGEN is the graph G with vertices i = 1, 2, ..., N , an adjacency
matrix A, and the associated pointers S = {w1,w2, ...,wN} of a generic
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GEN network.

3.1 Learning algorithm

The HOGEN is a growing network so that the learning phase starts with few
neural units, say 2, in a random position inside the manifold M. The learning
phase can be divided in cycles, with each cycle composed by an optimization
phase, in which the positions of the neural units are optimized to represent
the input manifold, and a growing phase, in which new units are added.

During the optimization phase the algorithm optimize the position of the
set of pointers H in order to achieve the best representation of the input set
S. In this phase all the pointers of the input set are used and the optimization
algorithm used is the LBG algorithm that is explained in section 3.2.

After this optimization phase the algorithm checks if it necessary to add
new units to the network (growing phase). The conditions checked are related
to the portion of the input graph contained inside the Voronoi set Vhl

of each
unit of the network HOGEN. If Vhp

is the Voronoi set corresponding to the

pointer hp of HOGEN network and V
(S)
hp

is the corresponding masked Voronoi

polyhedra, Gp will be the subset of G that contains the vertices in V
(S)
hp

and

all the arches that connect the vertices that have a pointer in V
(S)
hp

. Gp will
be called the associated graph of the vertex p. The gray areas in Fig. 1
highlight the associated graphs of the vertex p and q. In the growing phase
the graph associated to each HOGEN unit is check for connectivity. This
test can be easily made using standard algorithm (i.e. making a breadth–
first or a depth–first search of the graph from any vertex and building the
corresponding tree; then testing if the tree has the same number of vertex
of the graph). In the HOGEN algorithm we can look to a simple binary
condition (graph connected or not).

A new unit is added inside in a random position the Voronoi region Vhp
if

the portion Gp of the graph G inside Vhp
is not connected or the number of

input units contained in Vhp
is more than max units. The new unit will be

moved in the optimal position during the optimization cycle. Fig ?? show
an explanations of the adding unit method. If a new unit was added to the
network then another learning cycle is necessary, if no units are added during
the growing phase then the learning is finished and the connection between
the units are build.

The links between the units of the HOGEN network are built considering
the connections between the sections of the input graph G that are contained
inside adjacent Voronoi regions Vh. Saying that hp and hq are two units of
the HOGEN network and Vhp

and Vhq
the related Voronoi regions, Vhp

will
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contain a subset Gp of the graph G and Gq will be the subset of G contained
in Vhq

. The algorithm will connect p and q if exist at least an arch between
a vertex of Gp and a vertex of Gq. In fig. 1 the arches that create the link
between the units p and q are in bold.

The HOGEN algorithm generates a topology preserving map if the input
graph G is a topology preserving map. This is easy to understand if we think
that two vertex of the graph G that are linked together can only belong to
the same graph Gp, or to graph subsets Gp and Gq that are linked together.

Note that the growing phase is performed based on topological consider-
ations and do not involve any error minimization but it is clear that adding
a new unit to the HOGEN network modifies the error function and effects
the topology of the graph obtained.

The pseudo-code of the learning algorithm is reported in tab.1.

3.2 The LBG Algorithm

The LBG algorithm allows the user to build a set of code vectors by moving
them to the center of their Voronoi sets. The algorithm converges through a
finite number of adaptation steps in a local minimum of the distortion error
function. The LBG algortihm will be shown referring the notation to the
HOGEN network units, in this case we have a set of Nl units:

l = 1, 2, ..., Nl

and each of them has a pointer vector hli ∈ M where M is the input manifold
M ⊂ Rn.

The LBG learning algorithm follows:

1. For each unit li of LBG network find its masked Voronoi set

V
(M)
li = {x ∈ M | ‖ x − hli ‖≤‖ x − hlj ‖ l = 1, 2, ..., Nl}

2. Move each unit to the mean of its masked Voronoi set

wli =
1

‖ V
(S)
li ‖

∑

x∈V
(S)
li

x

3. If during step 3 a unit changes place then go back to step 2, otherwise
go to step 5.

4. Return the current set of vector LBG
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There are many enhancements to the original LBG algorithm, for example
the work proposed in [10]. These enhancements can be used in the learning
algorithm of the HOGEN, we just used the standard algorithm to prove the
generality of the approach but the algorithm [10] can be helpful to avoid the
local minima, or presence of ”dead units”. However note that in the HOGEN
algorithm new units are added to the network during the growing cycle of
the learning phase, so the algorithm is less likely to be trapped in a local
minima.

3.3 Results

The GEN network used to test the HOGEN algorithm is the GNG network.
It was chosen because it can grow a perfect topology representing map of
the input manifold and its lattice can be very complex especially if the input
manifold has a complex shape. The GNG network was trained using some 2-
D and 3-D manifolds. To show the topological property of the input manifold
and of the output of the networks used (i.e. the shape of its graph in the
input space) we superimposed on the same graph the input to the network
in gray and the output in solid lines.

The figs. 2.a and 3.a show the 2-D distribution, fig.4.a shows the 3-D
distribution that is constituted by random point on the surface of a torus.
The GNG network build a map of the input manifold, this map is shown
in figs. 2.a , 3.a and fig.4.a in solid lines, the HOGEN is trained using the
GNG lattice and the results are shown in figs.2.b, 3.b, and 4.b, where the
graph of the GNG network is reported in gray lines because represent the
input to the HOGEN network, and the HOGEN graph is reported in solid
lines. It is possible to see that a good representation of the input lattice is
achieved. Moreover the GNG distribution is segmented to show the portion
that belong to the Voronoi region V

(S)
hp

of each HOGEN unit hp. Note that,
comparing fig.2.a and fig.2.b, and fig.3.a and fig.3.b, some links between the
units of the GNG networks are missing. The information carried by these
links was used to connect the HOGEN units, as explained in paragraph 3.

4 Conclusions

Graph extracting neural networks are used in speech and image processing
and in robotics where they are useful to map complex input distributions,
but they are not useful for visualizing them. This work is an attempt to
develop an algorithm that can simplify the graph of these networks by cre-
ating clusters of neural units and connecting them in a way that satisfies
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the original link structure. The HOGEN algorithm creates a superimposed
new graph that is a sort of ”topological generalization” of the input one and
can be used as a tool for visualization. The approach used is simple and
effective but needs more investigation; further works on this topic include a
real world application to the organization of high-dimensional input manifold
(e.g. information space organization [5]).
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Table 1:The Proposed HOGEN algorithm

1 Initialize an LBG network with two units l1 and l2

2 While end = = false

2.1 Update the position of the HOGEN units according to the LBG
algorithm, and use the pointers set attached to the input graph G
wi ∈ S as input ;

2.2 For each unit li of the HOGEN network

2.2.1 Consider the associated graph Gi i.e. the subset of G made
by the vertices that have a pointer in V

(S)
hi

and an adjacency
matrix Ali

Ali = {(i, j) ∈ A | i, j ∈ V
(S)
li }

2.2.2 If the graph Gi is not connected or ‖ V
(S)
li ‖> max-units then

add a new unit to the HOGGN network inside the Voronoi
masked region V

(S)
li .

2.3 If no neuron was added then end = true

3 Update the position of HOGEN units according to the LBG algorithm.

4 Create the link between the HOGGN neural units

4.1 Scan all the couples li, lj of units of HOGEN network and their
associated graph Gi and Gj and connect li and lj if, in the graph
G exist an arch that connects a vertex of Gi to a vertex Gj.
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Figure 1: a) HOGEN layer and GEN layer. The gray areas highlight the
associated graph of the units p and g. b) A new unit will be added inside the
Voronoi region of the unit B ecause the associated graph is not connetted.
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Figure 2: a) The ”cactus” input distribution and the GNG approximation.
b) The HOGEN high–order structure extraction and the associated graph to
each HOGEN unit max--unit=25
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Figure 3: a) The ”spiral” input distribution and the GNG approximation.
b) The HOGEN high-order structure extraction and the associated graph to
each HOGEN unit max--units=10
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Figure 4: a) The GNG approximation of a 3-D torus structure. b) The
HOGEN high–order structure extraction from the torus GNG structure.
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