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Abstract

This paper proposes two distributed algorithms for the heuristic solution of the
Steiner Tree Problem in Networks (SPN). The problem has a practical appli-
cation in the construction of a minimum cost distribution tree for multicast
transmission. Multicast transmission represents a necessary lower network ser-
vice for the wide diffusion of new multimedia network applications. Currently,
given the lack of efficient distributed methods, the existing protocols build the
multicast distribution tree using some selected central node. The proposed dis-
tributed algorithms allow the construction of effective distribution trees using a
coordination protocol among the network nodes. The algorithms have been im-
plemented and tested both in simulation and on experimental active networks,
and their performance values are presented.

1 Introduction

Several future multimedia networking applications such as distance education,
remote collaboration, video-on-demand services and teleconferencing will be-
come widespread, relying on the ability of the network to provide multicast ser-
vices effectively and efficiently. Multicasting refers to the simultaneous trans-
mission of data to multiple destinations, and can be seen as the generalized
concept of one-to-one unicasting and one-to-all broadcasting.

Trees isolated over the network topology are adopted by multicast routing
for data transmission, in order to achieve a resource usage minimization by the
simultaneous sharing of links when transmitting from one source to many des-
tinations. In this context, an underlying specific multicast routing algorithm
should determine, with respect to certain optimization objectives, a multicast
tree connecting source (or sources) and group members. Data belonging to the
source flow will reach their destinations, traversing tree edges once only and be-
ing replicated at branching points. One of the main goals of multicast routing
is to minimize the overall tree cost. Tree cost refers to the amount of network
resources needed to transport packets over the tree, and, consequently, minimiz-
ing tree cost is equivalent to the efficient use of network resources. Determining
the optimal (i.e., minimum cost) multicast tree connecting all the members of
a group is a difficult problem: it can be modeled as the Steiner problem in net-
works (SPN) which has been proved to be NP-complete in its decisional version
[9]. The NP-complete nature of the problem means that the computation of
explicit solutions in large networks is prohibitively expensive. For example, two
popular explicit algorithms, the Spanning Tree Enumeration Algorithm (STEA)
and the Dynamic Programming Algorithm (DPA), present time complexities of
O(p22(n−p) +n3) and O(n3p +n22p +n3), respectively, where n is the number of
nodes in the network and p is the number of multicast members [25]. Excellent,
inexpensive centralized heuristics for approximate Steiner trees have been pro-
posed in the literature [11], [25], [20], [19]. Most produce solutions whose cost
has been analytically demonstrated to be less than twice the cost of the optimal
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solution. However, experimental observations indicate that in most cases they
are capable of singling out near optimal solutions with reasonable speed.

Most of the proposed heuristics are centralized in nature. In the central-
ized approach, a central node that is aware of the state of the whole network
computes the tree. The computation is generally easy and fast. However, the
overhead of maintaining, in a single node, coherent information about the state
of the entire network can be prohibitive. As a consequence, centralized algo-
rithms are not practical for large networks where complete knowledge of their
state is difficult to collect. In a distributed approach, on the other hand, each
node of the network actively contributes to the algorithm computation. Dis-
tributed routing algorithms become indispensable when the network nodes can-
not have a complete knowledge of the topology and state of the network. In
this case, a distributed route computation would presumably take place only
on those nodes owning the resources, and the resulting decisions would become
effective immediately at those nodes. A distributed algorithm is a collection of
asynchronous, independent algorithms that run in each node of the network. A
multicast routing distributed algorithm establishes multicast connections in a
decentralized manner, by exchanging messages among the nodes involved, which
in turn carry out specified portions of the algorithm. A distributed approach
can be slower and more complex than the centralized one, but it does not need
to maintain the entire network state in each node.

In this paper we introduce two distributed algorithms as an alternative to
those proposed by Bauer and Varma in [3]. The proposed algorithms are more
effective than both Bauer and Varma’s and previous algorithms in terms of the
quality of the computed solution, and they also yield good average case behavior
in terms of running time and number of messages exchanged.

The remainder of this paper is structured as follows. After a review of
some previously presented distributed algorithms for the Steiner tree problem
in Section 1.1, Section 2 discusses the importance of the efficient utilization of
network resources, as well as the frequently considered optimization criteria.
A network model is also briefly introduced. Section 3 deals with the Steiner
tree problem and with its application to communication networks. This section
also provides a short description of the centralized algorithms on which the pro-
posed distributed algorithms are based. Two new distributed algorithms are
presented and analyzed in Section 4, and the results of performance measure-
ments are given in Section 5. The Appendix contains the formal specification
of the proposed algorithms according to I/O automaton formalism.

1.1 Background

Distributed algorithms for the Steiner tree problem in networks (SPN) have re-
ceived very little attention over the last few years. Most of the versions proposed
in the literature [10], [5] are based on reducing the SPN to the minimum span-
ning tree (MST) problem, and on using a distributed MST algorithm such the
one described by Gallager et al. [6]. The Steiner tree is then created by prun-
ing unnecessary leaves and branches from the resulting minimum spanning tree.
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However, distributed Steiner heuristics based on a pruned MST algorithm suffer
from a significant drawback: the theoretical upper bound on their competitive-
ness (the ratio of the costs of the trees achieved, respectively, by the heuristic
algorithm and by an optimal algorithm) has been shown to be equivalent to
s + 1 [22] (where s is the number of non-multicast nodes), which means that
competitiveness decreases with the size of the multicast group. On the other
hand, the equivalent upper bound for several well known centralized heuristics
(such as DNH, SPH, K-SPH, ADH) is 2(1− (1/p)) [25] (where p is the number
of multicast nodes). Distributed Steiner algorithms based on MST computation
present a further shortcoming, since they require all the nodes in the network
must participate in their execution.

Bauer and Varma [3] presented two distributed algorithms for the Steiner
problem in networks based on the centralized heuristics SPH and K-SPH. The
latter has a similar structure to the algorithm in [6], but, since the multicast
group is typically a subset of all network nodes, the spanning tree achieved will
only cover a portion of the network. This distributed algorithm involves the be-
havior described below. Initially, each multicast node starts out as a fragment,
and each fragment attempts to merge with its closest neighboring fragment.
The closest fragment is located in two steps: a discovery step and a connection
step. In the discovery step, the fragment leader sends a flood message to the
other nodes in the fragment. In order to locate nearby fragments, each node
of the fragment sends query messages to neighboring non-fragment nodes. The
fragments discovered are notified to the leader, which in turn determines its
preferred closest fragment. In the connection phase, the fragment leader sends
a request message to its closest preferred fragment G. If G is in the discovery
phase, it sends a busy response back and F will send out the request message
again. If F is not the preferred fragment of G, then G sends a reject message.
Otherwise, if both F and G are the preferred fragments of each another, they
merge to form a larger fragment. The process continues until a single fragment
remains in the network. The distributed SPH is a special case of distributed
K-SPH, even though it is a serial algorithm in nature. In its execution, only one
fragment grows, connecting members to itself until all the multicast members
are part of the same fragment. In this way, it concentrates much of the work
at the source, whilst distributed K-SPH allows multiple fragments of the tree
to combine in parallel. This allows distributed K-SPH to provide lower conver-
gence times without substantially increasing the number of messages. However,
as reported in [3], the convergence time for distributed K-SPH is significantly
higher than those of the pruned MST algorithm. Singh and Vellanky [18] pro-
posed a modified version of distributed K-SPH that adopts some ideas from the
algorithm in [6] to make the fragment combination mechanism more efficient
than that in the protocol in [3]. In particular, the method suggested tries to
avoid sending reject messages as much as possible in order to avoid new dis-
covery phases. As opposed to the “waving technique” adopted in [3] and [18],
Novak et al. [14] presented a distributed table-passing algorithm for SPN which
is based on the centralized heuristic SPH.

It is important to notice that all existing distributed algorithms suffer draw-
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backs such as heavy communication costs, long connection setup times, and
poorer quality of the solutions produced as compared with centralized heuris-
tics. This paper introduces two distributed Steiner algorithms based on the
strategy adopted by the Average Distance Heuristic (ADH) which are shown to
yield good performance in terms of the quality of the computed solution, the
running time, and the number of messages exchanged.

2 Multicast routing and network model

Multicast routing algorithms can be classified according to three main cate-
gories:

• shortest path-based algorithms,

• Steiner-based algorithms,

• and constrained Steiner-based algorithms.

Shortest path-based algorithms are suitable for those applications, such as video
conferences, which require short propagation delays between the source and each
of the receivers [8]. Steiner-based algorithms are well suited to those services,
such as Video on Demand, which need to consume as few network resources
as possible. Constrained Steiner-based algorithms combine both types of re-
quirements in a single multicast communication. Steiner-based algorithms solve
more difficult problems (NP-complete) than shortest path-based algorithms.
Furthermore, constrained Steiner-based algorithms are usually derived by in-
troducing additional constraints into basic Steiner algorithms. Research into
efficient Steiner-based algorithms is of great interest at the moment. Steiner-
based algorithms are becoming very important in mobile wireless networks,
where bandwidth is limited, not to say scarce. Multicast routing in wide area
WDM networks is also Steiner based, as the costs of wavelength conversion at
nodes and of using wavelengths on links have to be considered.

Some basic terminology and assumptions are introduced here. Given an
undirected graph G = (V,E), with V the node set and E the edge set, let Z be
the subset of multicast nodes, and S = V −Z the set of non-terminal nodes. Let
n := |V |, m := |E|, p := |Z|, whilst s := |S|. Pi,j is the shortest path between
nodes i and j, di,j is the distance from node i to node j, which means the cost
of the shortest path between them, and c(T ) is the cost of the tree T (the sum
of T ’s edge weights). The distance between a node and a tree is the cost of the
shortest among all paths between that node and any node in the tree. Likewise,
the distance between two trees is the distance of the shortest among all paths
between any node in one tree and any node in the other tree. We assume that
each node i has a routing table that provides the shortest distance di,j to any
other node j. In addition, for each destination j, it also stores the next hop in
the path from i to j. Using this information, a node is able to send messages
via the shortest path (as indicated by the routing tables) to any destination.
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We assume that this information is provided by an underlying network layer
protocol such as a distance vector protocol (e.g., RIP [8]).

3 The Steiner Tree Problem

The formal definition of the (minimum) Steiner tree problem in networks can
be stated as follows:
Definition.

Let G = (V,E) be an undirected connected graph of the communication
network, where V is the node set and E the connection set, with positive weights
being associated with the connections. In this graph we consider a set Z ⊆ V
of destination nodes, called the multicast group. The Steiner tree problem is
defined as finding a minimum cost sub-graph of G, such that there exists a path
in the sub-graph between every pair of destination nodes.

Since the edge weights are positive, a solution involves isolating a subset
S′ disjoint of Z, which provides an optimal tree linking all nodes in Z. The
non-destination nodes in S′ are called Steiner nodes.

As the computation of an optimal solution of the Steiner tree problem is NP-
complete [9] and thus not suitable for real-time applications, multicast routing
algorithms are based on heuristic methods, some of which have been found to
perform well [23]. The effectiveness of these heuristics can be measured in terms
of the ratio between the cost of the solutions they are able to identify, and the
cost of the optimal solution. This measure is known as cost competitiveness.
Only a subset of Steiner tree heuristics have the properties that make them
suitable for distributed implementation in real networks, where nodes have lim-
ited routing information. That is, to be suitable for distributed implementation,
heuristic methods have to satisfy four criteria. They must:

1. use the existing routing information available at each node in the network,
as provided by underlying unicast protocols;

2. use minimal computational and network resources;

3. require minimum coordination between nodes in the networks;

4. require a limited amount of computation by the non-member nodes.

An exhaustive overview of SPN centralized heuristics can be found in [25].
Among the centralized path-distance heuristics, the following four heuristics,
in our view, seem to represent the best candidates for distributed implementa-
tion: the Shortest Path Heuristic (SPH)[20], the Kruskal-based Shortest Path
Heuristic (K-SPH)[2], the repetitive Shortest Path Heuristic (SPH-Z) [25], and
the Average Distance Heuristic (ADH) [17]. A short summary of heuristics
K-SPH and ADH is given below. Another attractive heuristic, the Average Dis-
tance Heuristic with Full connection (ADHF), is fully described because it is
not well known.
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K-SPH: The Kruskal-based Shortest Path Heuristic starts with the forest
F of multicast group member nodes. It repeatedly joins the two closest mul-
ticast group member sub-trees in F until a single tree spanning all multicast
group members remains. The algorithm is described as follows:
1. Begin with the collection F (forest) of single vertex trees consisting of the p
Z-vertices.
2. Connect the two closest sub-trees, T1 and T2, in F by their shortest path
forming a new tree T ′. Let F := (F − {T1, T2}) ∪ {T ′}.
3. If F contains at least two trees, then go to step 2; otherwise the single tree
in F is the solution TK−SPH .
The competitiveness bound of the K-SPH heuristic is also 2. Its run-time bound,
O(z·n2), is dominated by shortest path calculations between multicast members.

ADH: The minimum Average Distance Heuristic is a generalization of K-
SPH. Like K-SPH, ADH starts with the forest of multicast group member nodes.
It repeatedly finds the most central node, v∗, to the current set of sub-trees,
v∗ being defined as the node with the shortest average distance to a subset of
neighboring sub-trees. The closest and second closest sub-trees to v∗, along with
all edges and nodes on the shortest paths from v∗ to these sub-trees, including
v∗, are then combined to form a new sub-tree. The process continues until all
nodes in Z are contained in a single sub-tree. The centrality measure of a node
is computed as a weighted average of the distances of that node to all sub-trees
sorted in a non-decreasing order.
1. Begin with the collection F (forest) of single vertex sub-trees consisting of
the p Z -vertices.
2. For every vertex v ∈ V , re-label the sub-trees in the current forest, F =
{T1, ..., Tk}, such that they are in non-decreasing order of their distance from v
(i.e., d(v, T1) ≤ d(v, T2) ≤ ... ≤ d(v, Tk)) and for each r, 2 ≤ r ≤ k, compute
the mean distance

µ(v, r) :=

r∑
j=1

d(v, Tj)

r − 1
. (1)

Define
f(v) := min{µ(v, r) | 2 ≤ r ≤ k} (2)

and choose v∗ minimizing f(v).
3. Join the corresponding sub-trees T1 and T2 closest to v∗ by a shortest path
through v∗, forming a new sub-tree T ′. Let F := (F − {T1, T2}) ∪ {T ′}.
4. If F contains at least two sub-trees, then go to Step 2; otherwise the single
tree in F is the solution TADH .

Fortunately, as one can easily observe, in Step 2 f(v) needs not to be evalu-
ated in full for each node, taking in account only a limited range of values of r.
Furthermore, some simple additional rules can be considered for resolving ties
(i.e., cases when there are two or more nodes minimizing f).

6



The worst case time complexity of ADH is O(n3) and its competitiveness is
bounded from above by 2 − 2/p and can tend to 2, as shown by Waxman and
Imase [24]. However, based on a simulation performed by Rayward-Smith, the
cost of the approximation trees produced by ADH exceeds the cost of the SPN
optimal solution by less than 5%, on average [16].

ADHF: The idea of investigating versions of ADH which allow connection
of multiple (and not only two) sub-trees of F at each iteration was suggested
by Winter in [25]. Bern and Plasmann [4] proposed such a version of ADH in
1989 and demonstrated that it is a 4/3-approximation algorithm for the Steiner
problem on full connected graphs with edge lengths 1 and 2. The proposed
heuristic, known as the minimum Average Distance Heuristic with Full connec-
tion, differs from ADH only in step 3, which is replaced by:
3’. Choose r∗, s.t. 2 ≤ r∗ ≤ k, minimizing µ(v∗, r). Join (successively) each of
the r∗ closest sub-trees T1, T2, ..., Tr∗ to v∗ by a shortest path to v∗ forming a
new sub-tree T ′. Let F := (F − {T1, T2, ..., Tr∗}) ∪ {T ′}.

The time complexity of ADHF is still O(n3). As for several other heuristics,
ADHF’s competitiveness is bounded by 2 − 2/p and, for any ε > 0, there is
an instance of the Steiner problem such that competitiveness is greater than
2 − ε. Notice that step 3’ is less cautious than step 3. Nevertheless, Bern and
Plasmann erroneously assumed that ADHF and ADH should necessarily pro-
vide solutions of the same cost. This is not true in general and Plesnik [15]
showed with a counterexample that ADH can win over ADHF. However, few
previous computational results indicate that the greedy approach adopted by
ADHF does not significantly affect the quality of the solutions, although ADHF
often requires fewer iterations than ADH.

Bauer e Varma [3] proposed a distributed implementation of SPH and K-
SPH. Heuristic SPH-Z fails our criterion, because it requires as many as p copies
of component information to be stored at each node and a great number of
network messages to be passed before convergence. The ADH heuristic, on the
other hand, looks very attractive because of its good competitiveness values (in
the literature, it is reportedly the best performing heuristic among the single
step ones). In this paper we propose two distributed algorithms respectively
based on the ADH heuristic and on its version with full connection (ADHF).
We also present a simple additional technique limiting the execution of these
algorithms only to a subset of the nodes in the network.

4 Proposed heuristics

The proposed algorithms are designed as a set of cooperative, asynchronous, in-
dependent processes running one for each node in the network. We assume that:

1. the network is connected;
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2. each node in the network is a router;

3. each node knows its shortest path (i.e., distance and first hop) to all other
nodes in the network, via the routing table computed by an underlying
unicast protocol;

4. no topology changes occur during the execution of the algorithm;

5. every node has a unique identifier (UID).

4.1 Distributed ADH

As in its centralized version, distributed ADH (D-ADH) starts with a forest of
multicast members (Z-nodes) and connects them into successively larger sub-
trees until a single multicast tree has been set. We refer to the sub-trees as
fragments. During algorithm execution, each node in the network is either part
of a fragment or has not yet been included in the multicast tree. It should be
noticed that every Z-node is always a fragment node and every non-member
node is initially a non-fragment node. When two or more fragments merge,
the nodes in these fragments and those lying on the interconnecting paths be-
come the new merged fragment nodes. In order to uniquely identify fragments,
each has a fragment leader and is identified by the same index (UID) as the
leader. Initially each multicast member is the leader of its own one-node frag-
ment. When two fragments merge, the node which starts the merging process
assumes the leadership (see below). Distributed ADH processes running on the
network nodes exploit the shortest path information, which is available on local
nodes (i.e., the routing information computed by an underlying unicast proto-
col), as well as information about the multicast forest exchanged via messages.
The algorithm is structured in rounds. At every round, one node in the net-
work acts as a root node (initially, the root node is the one which starts the
multicast tree setup). The root node broadcasts some information about the
multicast forest (for example, the set of node-fragment indexes pairs) over a
spanning tree (set in a distributed manner, during the first round). Having
received this information, each node can calculate its proximity measure to the
external fragments according to equations 1 and 2. Next, the minimum value
of f is reported towards the root node, starting from the leaves of the spanning
tree and using a converge-cast process. Eventual ties are opportunely resolved.
The root node receives the information about the best value of f and sends a
message asking the detected most central node to connect its closest fragments.
If the most central node belongs to a fragment, it connects just one fragment
(the closest external fragment). If the most central node does not belong to
any fragment, it connects (via itself) the two closest fragments. In both cases,
fragments are joined by minimum cost paths and the state of the nodes on these
paths is modified appropriately (the intermediate nodes become Steiner nodes).
Furthermore, the most central node updates the information about the forest,
setting itself as the leader of the new merged fragment. When the connection
step is completed, the most central node checks to see whether the forest is

8



connected (i.e., if all the nodes in the forest belong to the same fragment). If
this is the case, the algorithm terminates and the fragment thus achieved is the
resulting multicast tree, otherwise the most central node becomes the new root
node and starts a new round of the algorithm. It should be noticed that each
round reduces by one unit the number of fragments in the forest. Hence, after
p− 1 iterations, there is only one tree spanning all Z -vertices.
The algorithm can be described as follows:
1. Initialization
A node receives the list of multicast members UIDs from an external user. It
becomes the root node for the first round and builds a data structure repre-
senting the multicast forest (e.g., a list of pairs, node - index of the fragment to
which the node belongs), initially formed only by the Z-nodes.
2. Construction of a spanning tree
The root node starts the construction (via a distributed algorithm) of a network
spanning tree. Each node in this tree stores a reference to every node directly
attached in the tree.
3. Broadcasting along the spanning tree
Using the spanning tree, the root node sends in broadcast information about
the multicast forest.
4. Computing function f
Using the information received from the root node and the locally available uni-
cast routing table, each node calculates the f function according to equations 1
and 2. This step is achieved as follows:

a. a node which already belongs to a fragment, determines the closest ex-
ternal fragment (the information needed includes the fragment identifier,
distance, and the node representing the tail of the minimum cost path in
the selected fragment);

b. a node external to any fragment calculates its own f value. It takes
into account candidate fragments in a non-descending order to determine
the value of f , as well as the necessary information about the selected
fragments (the identifier and node that represents the tail of the minimum
cost path in each fragment).

5. Convergecasting of the minimum value of f
Using a converge-cast process along the set spanning tree, the information about
the computed minimum value of f is reported towards the root node. Ties are
opportunely resolved.
6. Election of the most central node
When the root node receives the information from its children on the spanning
tree, it determines the best value of f , and sends a notification message to the
node v∗ that computed this value.
7. Merging of target fragments
After the notification, the node v∗ becomes the most central node for the current
round and starts the merging process. This is carried out in the following way:
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a. if v∗ belongs to a fragment, it connects to itself the closest external frag-
ment, via the minimum cost path;

b. if v∗ does not belong to any fragment, it connects the two closest frag-
ments, via the minimum cost paths.

During the merging process, the state of the nodes along the connecting paths
and the information about the multicast forest are opportunely updated.
8. Election of the new root node
If all Z-nodes are in the same fragment (i.e., the forest is already connected),
the algorithm terminates; if not, the node v∗ becomes the new root node and
starts a new round (go to step 3).

4.2 Distributed ADHF

Distributed ADH is to some extent a serial algorithm since there are only two
fragments connecting together. However, this makes it attractive, because it is
relatively simple and does not require much coordination between the nodes in
the network. Moreover, compared to centralized ADH, the distributed version
has a shorter running time since the function f is computed in parallel by all
the network nodes. Furthermore, in order to improve the convergence time and
the number of transmitted messages, we propose a variant of the distributed
ADH, which is based on the centralized heuristic ADHF. The idea underlying
this further version of the algorithm, distributed ADHF (D-ADHF), is that at
each round, if the most central node does not belong to any fragment, instead
of connecting only the two closest fragments, it connects all the r∗ closest frag-
ments, where r∗ is the number of addends in the sum of equation 1 that gives
the best value of µ(v, r). This version differs from the previous one only in step
7 which is here replaced by:
7’. Merging of target fragments (with full connection)
After notification, the node v∗ becomes the most central node for the current
round and starts the merging process. This is carried out as follows:

a. if v∗ belongs to a fragment, it connects to itself the closest external frag-
ment, via the minimum cost path;

b. if v∗ does not belong to any fragment, it connects the r∗ closest fragments,
via the minimum cost paths; r∗ is the index which minimizes µ(v∗, r),
according to equation 1.

During the merging process, the state of the nodes along the connecting paths
and the information about the multicast forest are opportunely updated.

4.3 Reduced node set technique

The distributed heuristics ADH and ADHF are capable of isolating efficient
suboptimal multicast trees using only a minimal amount of computational and
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network resources. Namely, the design guideline was aimed to limit the compu-
tational effort for the non-multicast nodes. However, inefficiencies may result
when multicast nodes represent just a small portion of the network nodes, since
the algorithms do not entail only those nodes directly involved in the multicast
session, but they require an active participation of all network nodes. In order
to cope with this drawback, we introduce a further version, enhancing both the
proposed algorithms, and reducing the algorithm execution to a subset of net-
work nodes. The underlying idea is that spanning trees generally do not need
to reach all network nodes but only those network areas where multicast nodes
are located. Furthermore, it is a common case that in a multicast session all
the nodes involved are located only in one area (or few areas). For example, let
us consider a videoconference session. The conference is most likely to directly
involve a minority of nodes in the network, probably located in a limited ge-
ographical area. In such cases, the adoption of the proposed technique makes
more practical the use of the heuristics D-ADH and D-ADHF. The technique
involves that in the initial phase of the first round, the root node (i.e., the mul-
ticast node that starts the tree construction) computes a dispersion measure of
the multicast group nodes around itself. Then, the root node builds a tree, which
will span the network area where multicast nodes are located. The tree, which
is built, is made persistent through the whole execution. A reasonable choose is
to compute the maximum distance between the root node and any other mul-
ticast node, and to construct a shortest path tree with source in the root node
and depth equal to (or, slight greater than) the maximum distance computed.
The broadcasting and converge-casting processes, and also the computation of
f , are thus limited to the nodes in the tree. In such a way, only the multicast
nodes and the nodes within their neighborhood are required to participate to
the algorithm execution, without significantly affecting the competitiveness of
the produced solutions.

This additional technique introduces the following modification in respect to
the base versions D-ADH and D-ADHF. Step 2 is replaced by:
2’. Construction of a tree which spans only the multicast nodes
Using the locally available unicast routing information, the root node computes
the maximum distance between itself and any other multicast nodes. The root
node starts the construction (via a distributed algorithm) of a shortest path
tree with source in the root node and depth equal to c times the maximum
distance computed (where c is a parameter whose value is equal to, or slightly
higher than, 1). Each node in this tree stores a reference to every node directly
attached in the tree.

4.4 Complexity Analysis

Having described the distributed ADH and ADHF in the previous subsections,
we can derive some simple asymptotic bounds on the number of messages and
on convergence time. Distributed ADH merges only two fragments at each
round. As a consequence, if the number of multicast nodes is p, p−1 rounds are
needed before a solution is found. We now assume that a single spanning tree
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is constructed during the first round and used throughout algorithm execution.
The construction of this spanning tree, using a simple distributed algorithms, is
characterized by an O(m) as the number of messages and O(diam) (where diam
is the network diameter) as convergence time. At each round the combined pro-
cess of broadcasting and convergecasting involves O(n) messages and O(h) time
to converge (where h is the height of the spanning tree), whereas the merging
process involves O(diam) both as the number of messages and as convergence
time. In this way, the overall number of messages exchanged for distributed
ADH is O(m + p · n) and the convergence time is O(p · diam). Since, in the
worst case, distributed ADHF performs as distributed ADH, the two algorithms
share the same asymptotic bounds on the number of messages and on conver-
gence time. As demonstrated in the following section, the experimental results
confirm this analytical behavior for both heuristics proposed here. Although in
the worst case, the reduced node set technique does not modify the asymptotic
bounds previously derived, the empirical evidence indicates that the number
of nodes involved in the process of multicast tree construction is significantly
reduced, so thus the number of messages exchanged and the convergence time
required.

5 Performance Analysis

In order to evaluate the proposed heuristics we performed extensive testing, both
in simulation and on real topologies, which have been deployed on a cluster of
active nodes. Active Networks are a novel approach to network architecture
in which the switches of the network perform customized computations on the
messages flowing through them. This supports faster service innovation by
making it easier to deploy new protocols and network services, even over wide
areas [21]. The decision to use two different testing environments is designed
to investigate the performance of the algorithms from different perspectives.
On the one hand, simulations allow the analysis of the cost competitiveness of
distributed ADH and ADHF on a large set of randomly generated test networks
characterized by a large number of nodes and different topology models. On
the other hand, tests on active networks deployed on a cluster of real nodes
allow us to study communication complexity and convergence time better, by
taking into account some important characteristics of real networks (such as
concurrent access to resources, sharing of network resources, etc.). However,
the experimental activity on active networks, since it involves tests on several
topologies and the management of complex distributed algorithms, is a very
complex task, especially when the complexity of the topology grows. In order
to cope with these problems, we used a software framework for Active Networks
and Active Applications Management [1] that makes it easier and faster to carry
out experiments, relieving the applications programmer from secondary details
which are specific to the Execution Environment.

In the following subsections we present the results of these performance
experiments. We first describe the network model, then define the performance
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Group Net. Nr. Net. size M.cast Nodes Generation Criterion Comp. Term Metric

A 100 1000 20% BRITE best cost ∈ R+

B 100 1000 20% BRITE best cost ∈ R+

C 100 150 10% BRITE optimal cost ∈ R+

D 100 1000 10% Internet subgraph best hop count

E 100 2000 10% Internet subgraph best hop count

Table 1: Summary of experimental sets of sample networks

metrics and, finally, present and discuss the results.

5.1 Network Model

We compared Steiner heuristics on both randomly constructed test networks,
and sub-networks extracted from a complete Internet topology using an ”oil-spot
technique”. For the first group of experiments we adopted the BRITE (Boston
university Representative Internet Topology gEnerator) network generator [13],
and for the latter we used a simple extraction method on the map of Internet
obtained by the project Mercator in 1999 [7].

We considered several test groups, each containing 100 sparse networks, that
is, networks where the number of edges is less than twice the number of nodes.
The networks have 10% or 20% of their nodes in the multicast group. We believe
that these choices describe plausible multicast applications in wide area networks
(WAN), where the topology graph is likely to be loosely interconnected, and
transmission is likely to involve only a minority of the nodes in the network.
Moreover, these topological configurations represent the most difficult cases of
the Steiner problem. In section 5.3, we also discuss how the proposed heuristics
scale with increasing multicast membership and network size.

5.2 Evaluation Metrics

The metrics we used for comparison are competitiveness, convergence time and
the number of messages transmitted. Competitiveness is the ratio between the
heuristic tree cost and that of the optimal solution. For large networks where
explicit algorithms capable of finding optimal solutions are prohibitively expen-
sive, we used the best solution obtained by any heuristic considered rather than
an optimal solution. Convergence time is the time elapsed from the beginning
of the execution to the time at which last message reaches its destination. The
number of messages is the total number of messages exchanged between nodes
before convergence.

5.3 Experimental Results

Simulations have been carried out on five different groups of networks each con-
taining 100 randomly generated or extracted topologies. On these networks,
we compared the cost competitiveness of the heuristics proposed (distributed
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Figure 4: Cumulative percentage of networks solved within a given time

ADH and ADHF) with some classical heuristics (DNH, SPH and K-SPH). Ta-
ble 1 summarizes the most important features of these network groups. The
first result can be considered as a correctness proof of the proposed algorithms,
since distributed ADH and ADHF provided solutions that have the same level
of competitiveness when compared to their centralized versions. This is also a
performance result, since, as reported in [3], the distributed version of SPH and
K-SPH heuristics may provide worse solutions compared to their centralized
versions. The reason for this drawback can be attributed to the lack of global
topology information. However, it is not present in our algorithms given the
sharing of critical information by means of broadcasting and converge-casting
along the spanning tree.

The second result is that, when comparing competitiveness, distributed
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Figure 5: Average convergence time when the multicast group size is varied from
10% to 40%

heuristics ADH and ADHF consistently outperformed the centralized heuris-
tics DNH, SPH and K-SPH. Moreover, from the comparison of the number of
rounds used by D-ADH and D-ADHF, it emerges that D-ADHF uses signifi-
cantly fewer rounds. This is mainly due to the greedy approach adopted by
D-ADHF in merging the fragments. D-ADH reduces the forest fragmentation
connecting only two fragments at each round, whereas D-ADHF allows multiple
fragments of the forest to be combined in a single round. This allows D-ADHF
to provide both lower convergence time, and fewer messages, since the values
of these evaluation metrics grow with the number of rounds, still maintaining
the competitiveness results. Figures 1 and 2 show the D-ADHF percentage
deviations from the D-ADH for solution values and for the numbers of rounds
respectively. It should be noted that in the first case, the deviation represents
an incremental percentage cost, whilst in the second case, the percentage refers
to the reduction in the number of rounds. As clearly shown by the experiments
reported above, the performance of the two algorithms is almost identical in
terms of competitiveness, but the ADHF saving in the number of rounds repre-
sents a noticeable improvement, especially if we consider the distributed nature
of the algorithms.

In the following experiments, we carried out a set of measurements on the
active network test-bed which allows us to cope with more realistic features, as
described at the beginning of this section.
In the following experiment, we compared the performance of both the heuris-
tics on a hundred instances of topologies, each with fifty nodes, 20% of which
were set in the multicast group. Figure 3 shows the cumulative percentage of
networks solved within a given number of messages for both of the algorithms
proposed. Likewise, chart 4 plots the cumulative percentage of networks solved
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Figure 6: Average convergence time when the network size is varied from 20
nodes to 50 nodes
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Figure 8: Average number of messages transmitted when the network size is
varied from 20 nodes to 50 nodes

within a given convergence time. Both the number of messages and the con-
vergence time for D-ADHF fall within a more limited range as compared to the
results produced by D-ADH. Although both heuristics share identical theoret-
ical upper bounds, this result is consistent with the observed reduction in the
number of rounds used.

In order to investigate the scaling capability of the two proposed distributed
heuristics with the size of network and multicast group, we performed additional
tests summarized by the following figures. Figures 5 and 6 show the average
convergence time for both ADH and ADHF, when either the multicast group
size is varied between 10% and 40% of the total number of nodes, or when net-
work size is varied between 20 and 50 nodes. Each point in the graph indicates
the average value for 40 test networks. Similarly, Figures 7 and 8 summarize
the average number of messages transmitted, when membership and network
size, respectively, are varied.

In order to evaluate the performance of the algorithms when the reduced node
set technique, which has been described in section 4.3, is adopted, we report
the results of the D-ADH execution on four further groups of sample networks.
We chose to analyze the behaviour in such cases where the basic algorithms
show more inefficiences, that is when the multicast nodes are located only in a
limited area of the network. All the four groups are constituted by one hundred
topologies generated by the Brite generator. Topologies in groups AR and CR

are populated by 1000 nodes with respectively 10% and 20% in the multicast
groups, whilst those in groups BR and DR are populated by 2000 nodes with
analogous percentages in the multicast groups. Figure 9 shows the D-ADH in-
cremental percentage cost due to the adoption of the reduced node set technique,
whilst the chart in Figure 10 plots the D-ADH percentage reduction in the num-
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ber of nodes involved in the multicast tree construction. It is straightforward
to observe that the cost competitiveness remains almost unchanged, but in the
considered scenarios the proposed technique allows an interesting saving in the
number of network nodes that participate in the execution of distributed algo-
rithms.

6 Concluding Remarks

The development of distributed algorithms for the Steiner Problem in Networks
has received very little attention over the past few years. Very few proposals of
distributed algorithms are to be found in the literature in clear contrast with
the quantity of centralized versions. In this paper, we study distributed versions
of ADH and ADHF centralized heuristics which are capable of determining
the best approximating solutions for the SPN. We designed and implemented
the distributed versions in such a way that they maintain all the properties
of their centralized versions. The experimental results confirmed our design
conjecture. Furthermore, we designed a simple technique which allows to reduce
the number of network nodes involved in the algorithm execution. For the ADH
algorithm, the overall number of messages exchanged has been demonstrated to
be O(m + p · n), with convergence time being O(p · diam). Since, in the worst
case, distributed ADHF performs as distributed ADH, the two algorithms share
the same asymptotic bounds on the number of messages and on convergence
time. However, the experimental results highlighted an advantage of distributed
ADHF, since it allows a noticeable saving in the number of rounds, although it
still maintains comparable performance in terms of competitiveness.
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A Appendix

A.1 The I/O Automaton Model

In the following, we present a formal specification of the D-ADH algorithm,
using the Input/Output (I/O) automaton model and we describe the transition
relation in a precondition-effect style. The Input/Output automaton model,
developed by Lynch and Tuttle [12], is a labelled transition system model for
components in asynchronous concurrent systems. The actions of an I/O automa-
ton are classified as input, output and internal actions, where input actions are
required to be enabled all the time. An I/O automaton has “tasks”. In a fair
execution of an I/O automaton, all tasks are required to get turns infinitely
often. The behavior of an I/O automaton can be described in terms of traces,
or, alternatively, in terms of fair traces. Both types of behavior notions are
compositional. Sections A.2.1-A.2.5 of the Appendix report the I/O automa-
ton components. In section A.2.6, we give descriptions of some of the utility
functions we assume in the formal description.

A.2 The distributed ADH algorithm

An I/O automaton A, often simply referred to as automaton, consists of five
components:

• sig(A), a signature

• states(A), a (not necessarily finite) set of states

• start(A), a nonempty subset of states(A) known as the start states or
initial states

• trans(A), a state-transition relation, where trans(A) ⊆ states(A)×act(sig(A))×
states(A). This must have the property that for every state s and every
input action π, there is a transition (s, π, s′) ∈ trans(A)

• tasks(A), a task partition, which is an equivalence relation on local(sigA))
having at most countably many equivalence classes

In our case, the description of the D-ADH algorithm involves the definition of a
single automaton, as each node in the network should be able to perform all the
actions that are necessary to achieve the multicast transmission tree. For this
reason, we designed a single automaton whose instances are replicated on each
node in the network. Moreover, a simple I/O automaton models the reliable
FIFO message channels.
The first component of an I/O automaton consists of the set of actions that can
be performed by the automaton. This set is known as its “signature” and it is
partitioned in the subsets of input, output and internal actions.
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A.2.1 Signature

For each process automaton Pi, the following actions are defined (where M is
the set of :

Input :
init(m)i,m ∈ M
receive(m)j,i,m ∈ M, j ∈ nbrs

Output :
send(m)i,j ,m ∈ M, j ∈ nbrs

Internal :
computei

reporti
root−reporti
reset−statei

A.2.2 States:

For each process automaton Pi, the states in states(Pi) consist of the following
components:

• status, a variable with values in W = {z, s, o, u}, initially u. It represents
the node state (with z multicast group node, s Steiner node, o node ex-
ternal to the multicast tree, and u node with a still undefined state);

• frgs-list , a list of nodes, associated with the corresponding leaders, with
values belonging to type (host, host), initially empty (nil). It represents
the current forest of fragments1;

• f-adh, with values belonging to type (host, float, host list), initially (null,∞, nil).
It represents a node, with a computed value of f , and the list of all the
border nodes along the different paths towards the fragments considered
in the summation that has yielded the value of f ;

• best-tgts-list , a list with values of type host, initially empty (nil). It repre-
sents the list of all the border nodes along the different paths towards the
fragments considered in the summation that has yielded the best value of

1To make the description clearer, we here suppose that the data structure containing the
information about the multicast forest is a list of ordered pairs, where the first component is
a node UID and the second one is the UID of the associated fragment leader. We also assume
that the node UIDs are values of type host, with a special value, null, not associated to any
node.
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f ;

• values, a list with values of type (host, float, host list), initially empty
(nil). It represents the information reported through the convergecast
process (this information is used by each node to determine the best value
of f in its own subtree);

• parent , with values in nbrs∪{null}, initially null. It represents the parent
node in the spanning tree, during the current round;

• root , a boolean, initially false. It shows that the node is the source (root)
of the spanning tree, during the current round;

• computed , a boolean, initially false. It shows that the node has completed
the computation of its own value of f ;

• reported , a boolean, initially false. It shows that the node has reported to
its parent the best known value of f , through the convergecast process;

• completed , a boolean, initially false. It shows that the algorithm has ter-
minated;

• first-round , a boolean, initially true. It shows that the algorithm is in its
first round of execution;

• converged , a subset of nbrs, initially ∅. It represents the set of neighbor
nodes which an acknowledgement has been received from;

• rip-table, a table with values of type (host, host, int). It represents the
network routing table, as computed by an underlying unicast routing pro-
tocol (e.g., RIP);

• nbrs-in-spanning-tree, a list with values of type host, initially empty (nil).
It represents the set of neighboring nodes in the spanning tree;

• nbrs-in-mc-tree, a list with values of type host, initially empty (nil). It
represents the set of neighboring nodes in the multicast tree achieved;
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• nbr-to-tgt , with values of type host, initially null. It represents the next
node along the path towards a target node;

• for every j ∈ nbrs:
send(j), a FIFO queue of messages in M , initially empty. It represents
the outgoing message queue associated with the neighbor node j.

A.2.3 Start:

The set of start states start(Pi) consists of the single state defined by the ini-
tializations.

A.2.4 Transitions:

/* The automaton receives an input value (“mcast”, l) from the external envi-
ronment, where l is the list of multicast group nodes. The automaton assumes
the role of root node (root := true) for the spanning tree, during the first round,
creating from l the list frgs-list, containing the information about the multicast
forest (nodes and respective leaders). It sets its own status (node in the group
or not), and adds the message to be sent in broadcast to the queues associated
with each neighbor node. */

init(”mcast”, l)i

Effect:
root := true
frgs− list := expand− list(l)
if is− z(frgs− list) = true then

status := z
else

status := o
for all k ∈ nbrs

add (”bcast”, frgs− list) to send(k)

/* The automaton receives an input value (“bcast”, l) from a neighbor node j,
where l is the list containing the information about the current fragment forest.
If the automaton is in its first round of execution (i.e., first− round = true),
then, if it has not yet received a message of this type (i.e., frgs− list = null),
then it stores the information contained in the list l, adds j to the list of neighbor
nodes in the spanning tree (setting j as its parent node), sets its status, and
adds the message received to the queues associated with each neighbor node
in the network, except j; otherwise (i.e., if frgs − list 6= null), it adds an
acknowledgement message (“bcast − ack′′) to the queue associated with j, in
order to notify it that it is not its child in the spanning tree. If the automaton
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is not in its first round of execution (i.e., first − round = false), then it
stores the information contained in the list l, sets j as its parent node during
the current round, and adds the message received to the queues associated with
each neighbor node in the spanning tree, except j */

receive(”bcast”, l)j,i

Effect:
if first− round = true then

if frgs− list = null then
frgs− list := l
parent := j
add parent to nbrs− in− spanning − tree
if is− z(frgs− list) = true then

status := z
else

status := o
for all k ∈ nbrs− {j}

add (“bcast”, frgs− list) to send(k)
else

add ”bcast− ack” to send(j)
else

frgs− list := l
for all k ∈ nbrs− in− spanning − tree− {j}

add (“bcast”, frgs− list) to send(k)

/* The message m is at the front of the queue associated with the neighbor
node j. The automaton removes the message m from the queue. */

send(m)i,j ,m ∈ M
Precondition:

m is first in send(j)
Effect:

remove first element of send(j)

/* The automaton receives an input value ”bcast-ack” from a neighbor node.
The automaton updates the set, converged, containing the neighbor nodes from
which it has already received a convergecast message.*/

receive(”bcast− ack”)j,i

Effect:
converged := converged ∪ {j}
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/* The automaton has already received the information about the multicast
forest (frgs − list 6= null), but it has not yet computed its own value of f
(computed = false). It computes its own value of f , adds this information
to the list values (together with its own UID and the list of border nodes of
the shortest paths towards the fragments considered in the summation that has
given the best value of f), and it marks itself to demonstrate completion of the
current computation (computed := true). */

computei

Precondition:
frgs− list 6= null
computed = false

Effect:
fadh := f(frgs− list, rip− table, status)
add fadh to values
computed := true

/* The automaton, that is not the root of the spanning tree (root 6= true)
during the current round, has already been inserted in the tree (parent 6= null),
has already computed its own value of f (computed = true), and has already
received a convergecast message from all its neighbor nodes in the spanning
tree except its parent (converged = nbrs− in− spanning − tree− {parent}) -
or, in the first round, from all its neighbor nodes except its parent in the tree
(converged = nbrs−{parent}) - , but it has not yet performed the convergecast-
ing towards the root node (reported = false). The automaton determines the
information associated to the best value of f (best-cand), adds a message con-
taining this information to the queue associated to the parent node, marks itself
showing the performance of convergecasting (computed := true), and removes
any stored information about the current round of execution (frgs − list :=
null, computed := false, converged := null). */

reporti
Precondition:

root 6= true
parent 6= null
computed = true
converged = nbrs− {parent} (if first− round = true)
converged = nbrs− in− spanning − tree− {parent} (if first− round = false)
reported = false

Effect:
if first-round = true then

first-round = false
else

()
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let best− cand := not− greater(values)
in

add (”candidate”, best− cand) to send(parent)
reported := true
parent := null
frgs− list := null
computed := false
converged := null

/* The automaton receives an input value (“candidate′′, c) from a neighbor
node j. If the automaton is in the first round of its execution, then it adds j
to the list of neighbor nodes in the spanning tree. In any case, the automaton
adds c to the list values, and updates the set converged of the nodes from which
it has received a convergecast message,*/

receive(“candidate′′, c)j,i

Effect:
if first− round = true then

add j to nbrs− in− spanning − tree
else

()
add c to values
converged := converged ∪ {j}

/* The automaton, which is the root of the spanning tree (root = true)
during the current round, has already computed its own value of f (computed =
true) and received a convergecast message from all its neighbor nodes in the
spanning (converged = nbrs − in − spanning − tree − {parent}) - or, in the
first round, from all its neighbor nodes (converged = nbrs − {parent}) - , but
it has not yet determined the node with which the best value of f is associated
(reported = false). The automaton determines the information associated with
the best value of f in the whole network (winner), adds a message with the list
frgs-list containing the information about the multicast forest and the list tgt-
list of border nodes of the shortest path towards the fragments considered in
the summation that has given the best value of f . It marks itself showing
the determination of the most central node (reported := true), and removes
any stored information about the current round of execution (root := null,
frgs− list := null, computed := false, converged := null). */

root− reporti
Precondition:

root = true
computed = true
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converged = nbrs (if first− round = true)
converged = nbrs− in− spanning − tree (if first− round = false)
reported = false

Effect:
if first-round = true then

first-round = false
else

()
best− tgts− list :=#3(not− greater(values))
let winner := fst(not− greater(values))
in

add (”winner”, frgs− list, best− tgts− list) to send(winner)
reported := true
root := false
frgs− list := null
computed := false
converged := null

/* The automaton receives an input value (“winner′′, l, t) from the node
that is the root of the spanning tree during the current round, where l is the list
containing the information about the multicast forest and t is the list of border
nodes of the shortest paths towards the fragments that have to be connected.
The automaton, if associated with a node not yet included in the multicast
forest, updates its own status (status := s) and the information about the
forest (including the node in the forest). The automaton determines the border
node, tgt, along the shortest path towards the first fragments that have to be
connected, and determines the first node, nbr-to-tgt, along the path towards tgt.
It adds nbr-to-tgt to the list of neighbor nodes in the multicast tree and adds
a message (“merge′′, (l, tgt, i)) to the queue associated with the neighbor node
nbr-to-tgt. */

receive(”winner”, l, t)j,i

Effect:
if status = o then

status := s
l := add−me(l, i)

else
()

best− tgts− list := t
tgt := hd(best− tgts− list)
best− tgts− list := tl(best− tgts− list)
nbr − to− tgt := next− hop(tgt, rip− table)
add nbr − to− tgt to nbrs− in−mc− tree
add (”merge”, (l, tgt, i)) to send(nbr − to− tgt)
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/* The automaton receives an input value (“merge”, (l, k, leader)), form
a neighbor node j, where l is the list containing the information about the
multicast forest, k is the UID of the border node along the path towards the
fragment that has to be connected and leader is the UID of the leader node of the
new fragment (i.e., the most central node in the current round). The automaton
adds j to the list of neighbor nodes in the multicast trees. The automaton, if
associated with a node different from the node k, updates its own status (if
necessary) and the information about the multicast forest (the associated node
is inserted in the forest). It determines the first node, nbr-to-tgt , along the
path towards k, adds nbr-to-tgt to the list of neighbor nodes in the multicast
tree, and adds a message (“merge”, (l, k, i)) to the queue associated to the
neighbor node nbr-to-tgt. Otherwise, (i.e., if the automaton is only associated
with node k), it updates the information about the multicast forest (performing
the merging process of target fragment), it determines the first node, nbr-to-
tgt , along the path towards the most central node and it adds a message
(“merg − ack”, l, leader) to the queue associated to the neighbor node nbr-to-
tgt. */

receive(”merge”, (l, k, leader))j,i

Effect:
add j to nbrs− in−mc− tree

if k 6= i then
if status = o then

status := s
else

()
l := add−me(l, leader)
nbr − to− tgt := next− hop(k, rip− table)
add nbr − to− tgt to nbrs− in−mc− tree
add (”merge”, (l, k, leader)) to send(nbr − to− tgt)

else
l := merge−my − frg(l, leader)
nbr − to− tgt := next− hop(leader, rip− table)
add (”merg − ack”, l, leader) to send(nbr − to− tgt)

/* The automaton receives an input value (“merg − ack”, l, leader) from
a neighbor node j, where l is the list containing the information about the
multicast forest and leader is the UID of the leader node of the new fragment
(i.e., the most central node in the current round). The automaton, in the case
where it is running on a node different from the node leader, determines the
first node, nbr-to-tgt, along the path towards the most central node and adds
a message (“merg − ack”, l, leader) to the queue associated with the neighbor
node nbr-to-tgt. Otherwise, (i.e., if the automaton is the one on the most central
node), if there are fragments that have still to be connected (best − tgts −
list 6= nil), it determines the border node, tgt, along the path towards the
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next fragment that has to be connected, determines the first node, nbr-to-tgt,
along the path towards tgt, adds nbr-to-tgt to the list of neighbor nodes in the
multicast tree, and adds a message (“merge”, (l, tgt, i)) to the queue associated
with the neighbor node nbr-to-tgt. Otherwise, (i.e., if there are not any more
fragments to be connected in the current round), if the whole forest is still not
connected (check−end(l) = false), the automaton starts a new round, assuming
the role of root node (root := true) and adding the message, (“bcast”, frgs −
list), with the information about the forest that has to be broadcast to the
queues associated with all neighbor nodes in the spanning tree. Otherwise,
(i.e., if the forest is already connected) the algorithm terminates. */

receive(”merg − ack”, l, leader)j,i

Effect:
if i 6= leader then

nbr − to− tgt := next− hop(leader, rip− table)
add (”merg − ack”, l, leader) to send(nbr − to− tgt)

else
if best− tgts− list 6= nil then

tgt := hd(best− tgts− list)
best− tgts− list := tl(best− tgts− list)
nbr − to− tgt := next− hop(tgt, rip table)
add nbr − to− tgt to nbrs− in−mc− tree
add (”merge”, (l, k, i)) to send(nbr − to− tgt)

else
if check − end(l) = false then

root := true
frgs− list := l
for all k ∈ nbrs− in− spanning − tree

add (”bcast”, frgs− list) to send(k)
else

completed := true

A.2.5 Tasks:

/* The task partition contains one task for any action sendi,j , for each j ∈ nbrs,
and one task for all the compute, report, root-report, and reset-state actions. */

{computei, reporti, root−reporti, reset−statei}
for every j ∈ nbrs:
{send(m)i,j ,m ∈ M}
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A.2.6 Utility functions

We assume that the following functions are defined:

As explained in section 4.1, the algorithm assumes a specific data structure
which represents the multicast forest. The function:

expand−list : hostlist → (host, host)list

given the list of multicast group nodes, creates the data structure representing
the multicast forest.

During the first round, the function:

is−z : (host, host)list → bool

checks to see whether the node belongs to the multicast group, assuming as
parameter the list representing the multicast forest.

The cost metric of the D-ADH algorithm is determined by means of the
function:

f : ((host, host)list,(host, host, itf)list, W ) →
→ (host, float, hostlist)

The f function, given the lists which represent the multicast forest, the routing
table and a variable W which codes the status of the node, computes the value
of f according to equations 1 and 2, and returns the node UID, the computed
value of f and the list of nodes that are tails of minimum cost paths on the
target fragments.

not− greater : (host, float,hostlist)list →
→ (host, float, hostlist)

given a list of values of type (host, (int, int), host list), where the first compo-
nent is the node UID, the second is its own value of f , and the third is the list
of the border nodes along the paths towards the fragments considered in the
summation that gives the best value of f2), it determines the information about
the best value of f ;

next−hop : (host, (host, host, int)list) → host
given the UID of a target node and the list containing the unicast routing in-
formation, it determines the UID of the first node (next-hop) along the shortest

2The list of the border nodes refers to all the fragments considered in the summation in
the variant with full connection (D-ADHF), while in the base version (D-ADH), it refers only
to the closest fragment or to the two closest fragments.
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path towards the target node;

add−me : ((host, host)list, host) → (host, host)list
given the list containing the information about the multicast forest and the UID
of a leader node, it updates the multicast forest list adding a new pair, with the
node as the first component and the given leader as the second one;

merge−my−frg : ((host,host)list, host) →
→ (host, host)list

given the list containing the multicast forest and the UID of a leader node, it
updates the multicast forest list, setting the new leader UID in all the pairs
which have the same leader of the node as their second component;

check−end : (host, host)list → bool

given the list containing the information about the multicast forest, it checks
if the forest is connected (i.e., if all the nodes in the forest have the same leader).
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