Consiglio Nazionale delle Ricerche
Istituto di Calcolo e Reti ad Alte
Prestazioni

Logical Intelligent Management
of Active Networks

Giuseppe Di Fatta, Salvatore Gaglio,Giuseppe Lo Presti,
Giuseppe Lo Re, Ignhazio Selvaggio

RT-ICAR-PA-03-03 settembre 2003

Consiglio Nazionale delle Ricerche, Istituto di Calcolo e Reti ad Alte Prestazioni (ICAR) —
Sede di Cosenza, Via P. Bucci 41C, 87036 Rende, Italy, URL: www.icar.cnr.it

— Sezione di Napoli, Via P. Castellino 111, 80131 Napoli, URL: www.na.icar.cnr.it

— Sezione di Palermo, Viale delle Scienze, 90128 Palermo, URL: www.pa.icar.cnr.it

B)


mailto:sacca@icar.cnr.it

Consiglio Nazionale delle Ricerche
Istituto di Calcolo e Reti ad Alte
Prestazioni

Logical Intelligent Management
of Active Networks

Giuseppe Di Fatta', Salvatore Gaglio?,Giuseppe Lo
Presti?, Giuseppe Lo Re’ Ignazio Selvaggio®

Rapporto Tecnico N.3: Data:
RT-ICAR-PA-03-03 settembre 2003

! Istituto di Calcolo e Reti ad Alte Prestazioni, ICAR-CNR, Sezione di Palermo Viale
delle Scienze edificio 11 90128 Palermo

? Universita degli Studi di Palermo Dipartimento di Ingegneria Informatica Viale delle
Scienze 90128 Palermo

I rapporti tecnici dell’ICAR-CNR sono pubblicati dall’Istituto di Calcolo e Reti ad Alte
Prestazioni del Consiglio Nazionale delle Ricerche. Tali rapporti, approntati sotto ’esclusiva
responsabilita scientifica degli autori, descrivono attivita di ricerca del personale e dei
collaboratori dell’ICAR, in alcuni casi in un formato preliminare prima della pubblicazione
definitiva in altra sede.


mailto:sacca@icar.cnr.it

Logical Intelligent Management
of Active Networks

Giuseppe Di Fatta
Salvatore Gaglio
Giuseppe Lo Presti
Giuseppe Lo Re
Ignazio Selvaggio
Index
L. INtrodUCtION........eiiiiiiiieiiiee e 1
2. OVEIVIEW ...tiiiiiieeeiiiiee e e eecttee e e e e ettt e e e e e e eaaeeeeeeeeaaaaaeeeeeeeasaaeeeeeanns 1
3. Intelligent Network Management .............ccccoeeeeeeiiiieieeecciiieeeeeen, 2
3.1. Reactive GOlO@.......ccocuviiiieiiciiieeee e 3
3.2, ONLOLOZY oviieeiiiiiee e e 4
3.3. An Example of Network Modeling...........c.cccceevvviieinnienennnnen. 5
4. Active Network Management Framework............ccccceeeeeiieeennnnenn. 6
5. Network Fault Management System............cccccovveeeeeiiiiiieeeeeennee, 8
6. Experimental Results ..........ccoooviiiiiiiiiiiiiiiiieeee e, 11
7. CONCIUSIONS......evviieiiiiieeeiiie ettt e e e 12

R O EIICES .. e e e e e 12



1 Introduction

This work focuses on improving computer network management by the adoption
of artificial intelligence techniques. A logical inference system has being devised
to enable automated isolation, diagnosis, and even repair of network problems,
thus enhancing the reliability, performance, and security of networks. We pro-
pose a distributed multi-agent architecture for network management, where a
logical reasoner acts as an external managing entity capable of directing, co-
ordinating, and stimulating actions in an active management architecture. The
active networks technology represents the lower level layer which makes possible
the deployment of code which implement teleo-reactive agents, distributed across
the whole network.We adopt the Situation Calculus to define a network model
and the Reactive Golog language to implement the logical reasoner. An active
network management architecture is used by the reasoner to inject and execute
operational tasks in the network.The integrated system collects the advantages
coming from logical reasoning and network programmability, and provides a
powerful system capable of performing high-level management tasks in order to
deal with network fault situations.

2 Overview

The enormous growth of computer networks and the emerging technologies for
network programmability make the research on network management an inter-
esting challenge.Network management is a complex activity, which very often
requires the human intervention to create action management plans, to coordi-
nate network assets, and to face fault situations. Network management appli-
cations are traditionally centralized around a managing entity, like in the Sim-
ple Network Management Protocol (SNMP) [15] approach, and very often the
managing entity is a simple interface to a human operator. Several distributed
architectures for network management have been proposed to relieve the load
from the central management station and to distribute control tasks by means
of the Active Networks technology [1], [2], [5], [17], [16]. Active networks intro-
duce network dynamic programming and allow an easy deployment of “ad hoc”
solutions in the active nodes on behalf of contingent management tasks. Given
simple management tasks, such for instance multiple failure traps, data merging,
automatic backup-link activation, the management architectures based on Ac-
tive Networks make easy to deploy a distributed strategy. Nevertheless, for more
complex tasks, it is still required the human intervention because only experts,
who know the network complexity, can understand an high level management
goal and plan a sequence of intermediate steps to reach the main objective. In a
traditional network management environment, if a user asks to know the causes
of a network failure, a network expert, according to some strategy, can query the
network devices to trace the problem back to its original causes. Planning of ac-
tions, prediction and classification of events, diagnosis or explanation of failures,
etc., are typical human activities that advanced Artificial Intelligence techniques



are today able to provide.In our approach we adopt the Situation Calculus to
represent a logical model of the network and the Golog programming language
to implement a reasoner capable of accomplishing generic high-level manage-
ment tasks.The logical reasoner allows not only the representation of particular
network states, but also the representation of their evolution. The evolution,
namely, can be represented as a transition process from a situation to another
one and it is triggered by the execution of particular actions.In this work we
propose a two levels framework for network management, where the upper level
is represented by a logical, centralized inference system acting as an external
managing entity capable of directing, coordinating, and stimulating actions in
an active management architecture. To this end, it exploits the capabilities of
a distributed active management framework, which represents the lower level
and makes possible the deployment of code across the whole network. This way,
our management architecture exploits the potential of “doing” of the Active Net-
works technology conjugated with the potential of “planning”, which is typical of
the artificial intelligent systems [8], [3].The originality of this work relies on two
different aspects. Firstly, the architecture adopts a logic programming language
to implement a high-level logical reasoner capable of producing failure diagnoses,
or generating investigation plans to better define the decision scenario. Secondly,
it is able to plan and carry out the information acquisition by exploiting the ac-
tive network framework [2] that provides simple and effective tools to capture
the right information in the appropriate places of the network.The remainder of
this work is structured in the following way. Section 3 introduces how the situa-
tion calculus can be adopted in our scenario to model the dynamism of network
events. In section 4 we describe a Network Management Framework based on
Active Networks whose functionalities perfectly answer the requirement of dy-
namic programmability imposed by our inferential engine. Section 5 illustrates
the architecture of the distributed network fault management system and section
6 reports some experimental results. Finally, section 7 traces some conclusions.

3 Intelligent Network Management

Network Management [12], [14] involves several different functions grouped in
five main areas: configuration, fault, performances, security, and accounting.
Current management protocols approach these functional tasks in a rigid way,
generally based on centralized monitoring, analysis, and control carried out by
human operation staff. This work proposes the adoption of a two levels frame-
work, where a decision system behaves as managing entity, and active Network
Management system executes the operational tasks.The upper level automation
is made possible by the adoption of a logic-programming environment, which in-
trinsically owns special features that easily allow the achievement of tasks such as
the decision of actions, the prediction and classification of events, the diagnosis
or explanation of failures, etc. Intelligent network management requires a model
of the network, which is able to capture both the cause-effect relationships and
their dynamic nature (time varying relationships). This way, a logical inference



process can use the system model to relate events that happen in the time-space
to some other events which can be seen as their root causes.We adopt the situ-
ation calculus[9] to model the network and its dynamic evolution. The situation
calculus is a logic language specifically designed for representing dynamically
changing world. The management system we have designed can be classified as
an expert system that adopts a case-based strategy [4]. It is an expert system
since it owns a complete knowledge of the working environment. Namely, among
the logic predicates it is necessary to provide ontological descriptions for all
the entities which populate the external world, and for all their relationships.
Moreover, we provided the system with the further capability of retrieving new
knowledge on the basis of the current situation where the world lies: in particu-
lar, if the information available in the knowledge base is not sufficient to reach
some deductive goals, new data are required and successively acquired by means
of specific sensors positioned in opportune nodes of the network. The twofold
nature of the system allowed us to achieve a simple and accurate monitoring of
the managed network. In particular, we exploit the noticeable capabilities of-
fered by the Reactive Golog [13] language as the specific reasoning environment
adopted to implement the system. The adoption of Reactive Golog language is
due to its noticeable expressiveness and to its capability of providing simple and
linear frameworks to the programmers.

3.1 Reactive Golog

Reactive Golog is a logic programming language, which merges the flow control
and procedural constructs of an Algol like language with the logic constructs
of Prolog. A Reactive Golog interpreter is easy to implement under a Prolog
interpreter and makes available all the capabilities of the situation calculus.The
most important components of a Reactive Golog program are:

— Primitive Actions;

— Fluents;

— Primitive Actions Preconditions;
— Successor State Axioms;

— Procedures;

— Rules.

The formalization of the world is performed through well formed formulas of the
first order logic, while the dynamism is captured through the primitive concepts
of state, primitive action and fluent.We can think the state as a snapshot of the
world at a determined moment. All changes to the world can be seen as the result
of some primitive actions.Relations whose truth-values may vary in different sit-
uations are called relational fluents. They are represented by means of predicate
symbols which take a situation term as their last argument.Primitive actions
preconditions are rules that describe when actions can be carried out given a
state of the world. The preconditions are stated by fluents. The successor state
axioms provide a complete description about the fluents evolution in response to



primitive actions. They are needed for each predicate that may change its truth
value over the time.Procedures represent the complex actions and constitute one
of the most important features of the Reactive Golog. They allow to group long
sequences of primitive actions and to implement recursive formulas. Like in the
imperative languages, they uses formal parameters.Generally, dynamic systems
are not totally isolated by the rest of the world, but they continually receive so-
licitations and they interact with the external world. The Reactive Golog rules
allow these interactions describing how the world evolves when an external ac-
tion is performed. This aspect is the so called “reactive behavior”. We use a
logical approach for the networks management to exploit the logical languages
and artificial intelligence characteristics in terms of synthesis, classification fa-
cility, deductive reasoning, planning and correlation of various events, diagnosis
in the failures management. To this end it is necessary to produce an ontology
to create a network model and to capture all the cause-effect relationships and
the events dynamism.

3.2 Ontology

To represent the ontology we use the frame. The frames are an artificial intel-
ligence formalism to represent general knowledge that is modified for keeping
the current situation. The frames are collections of attributes and values that

X
s
Mo —H —

|- SensorList  —f—ul
Fault Cause
[#Name {Name
Type - = (LostPkt, RT. ON Type : = (Loop. RT
Fig. 1. Frame



describe some world entities.Frame fundamental characteristic is the heredity,
specialization of general concepts that contain information and characteristics
shared by a elements set. The frames framework is shown in the figure 1. All enti-
ties are specializations of the most general entity ” Thing” that has the alone slot
"name” used for identifying various frames. The first level contains the frames:
Fault to describe the failures that can occured on the network; Causes for the
various failure causes; Action to model the possible actions on either network
and logical reasoner; the frame Actor is used for describing the various agents
(Network, Capsules, Reasoner, Wing); NetEntity finally contains all the charac-
teristics shared by various network entities (Node, Sensor,Iface,Link).

3.3 An Example of Network Modeling

One of the key challenges of our work is the construction of a logic model ca-
pable of fitting as more as possible networking concepts. To this end, we have
formalized all the entities which constitute the network layer of the OSI reference
model, and all their basic capabilities. The ontological engineering process about
which network aspects should be represented and which form of representation
could present the most suitable features, induced us to establish a relationship
between the functional layers of the OSI networking model and some correspon-
dent layers of dynamic knowledge representation.In this vision, the lower level
view concerns the physical features of the network, while, for instance, rout-
ing devices and their connecting communication links represent knowledge at a
higher level.Furthermore, this first amount of knowledge representation has been
integrated with the capability of representing the functioning during the time.
Logical sentences, whose validity is bounded to the time, have been introduced
for representing the temporal status of a given node or a particular link. In order
to represent the network as a dynamic system capable of flowing from a situation
(current state) to another one (successor state), we imagined the network as an
active entity capable of carrying out actions which modify its own configuration.
According to the Situation Calculus, we selected the atomic actions that the net-
work is able to carry out, and we described the state transitions involved by the
actions execution. We defined some basic actions for managing the changes in
the status of the basic network elements such as nodes, interfaces, links, sensors,
active local agents (ALAs), routing tables, etc.Moreover a set of special purpose
actions were defined to allow the notification of network monitored events to the
logical reasoning system. These actions are performed by the network, thought
as an active entity.

As previously described, the Situation Calculus allows the distinction among dif-
ferent temporal situations in which a single predicate may or may not be verified.
This differentiation is achieved by means of the current situation as last argu-
ment of the fluents. For instance, the Net_Link and Routing_table predicates,
respectively used to represent networks links and routing tables of the network
routers, have to be written in the fluent form because their validity depends from
the current situation. Here, in order to give an idea of the logical design process
we produce a simple example. In the example we show as our logical system
manages the routing tables update process for keeping traces of the changes in
the networks. To this end, two primitive actions, define_rip_table(N,T) and up-
date_rip_table(N, Upd) are shown.



Primitive Actions.
primitive_action(define_rip_table(N,T)).
primitive_action(update_rip_table(N,Upd)).

The first action is used to instantiate the fluent predicate “routing_table(N,T,s)”
in the situation s resulting from its own execution. This way, the logical reasoner
will achieve the knowledge that, in the situation s, T is the routing table of the
node N.The second action will update the same fluent. Namely, if the fluent
“routing_table(N,T,s)” is verified, the update_rip_table(N,Upd) predicate will
update the old value of the node N routing tables with the Upd information.The
above actions require the following preconditions for their correct usage in the
situation s of the network:

Primitive Actions Preconditions
poss(define_rip_table(N,T),S):- not routing_table(N,_,S).
poss(update_rip_table(N,Upd),S) :- routing_table(N,_S).

The preconditions are determined by the truth-value assumed by the fluent pred-
icate in the situation s and their validity enables the action executions. In the
above example, the action define_rip_table(N,T) is possible in the situation s if
the fluent routing_table(N,_,S) assumes a False value in this situation. Likewise
for the action update_rip_table(N,Upd), which instead will be possible when the
routing_table(N,_,S) fluent assumes a True value.The State Successor Axioms
are used to define the effects of the actions over the world, and their definition is
necessary for each fluent.For instance the routing_table(N,T) fluent will assume
a True value if the define_rip_table(N,T) action has occurred or if a previous
routing_table(N,01d) has been modified by the update_rip_table(N,Upd) action.

State Successor Axioms
routing-table(N,T,do(A,S)) :-
(routing_table(N,T,S), not A=update_rip_table(N,.)) ;
;((A = definerip_table(N,T)) ;
;(A = update_rip_table(N,Upd),routing_table(N, Old,S),tab_merge(Upd, Old,T))).

4  Active Networks Management Framework

In this section we describe the management architecture for Active Networks
which has been adopted to perform the operational tasks required by the man-
aging entity.Active Networks introduce programmability in the network; new
software components can be dynamically injected in the network nodes. In our
active management framework we exploit network programmability in order to
support distributed, cooperative, and adaptive management applications. The
general framework is shown in figure 2. The logical reasoner, which operates as
a Managing Entity (ME), sends queries and receives replies in the Extensible
Markup Language (XML) to and from an AN Access Point. The AN Access
Point is an active node hosting a Gateway service which performs two basic



Uanaging Entity
[ AF Aocess Poink
P LeEE e

Logic . -
Engmns § AN Bateway

ey respomse T )
wrapper parser aotive Retwork

Femeet

EE
Interface

active
. packets

\ .

Fig. 2. Active Network Management Framework

tasks: the translation of XML requests to the specific language adopted by the
Execution Environment (EE) and the injection in the network of the appropri-
ate active packets to accomplish ME requests. The Gateway services provide the
interface to a particular active network implementation (EE) and it is specific
for the supported network programming language. In general, several nodes in
an active network can be configured to provide Gateway services.As illustrated
in figure 2, a resident management service, the Active Local Agent (ALA), is
resident in each active node. ME and ALA are the end points of the manage-
ment communication. Namely, the ME can either query the Active Local Agents
(polling) or deploy subtasks to them (programmable trapping). Local agents
asynchronously perform subtasks in terms of actions to be executed at local
events occurrences. The Active Local Agents can be seen as real teleo-reactive
programs [11] which are installed and executed in the network nodes.Namely,
the internal mechanism of ALAs involves the installation of predetermined local
variables which implement the conditional statement of teleo-reactive agents.
These variables constitute the discriminating values over which filters are in-
stalled in order to generate events, that in turn cause the execution of some
actions. Finally, actions may install further conditions which will be evaluated
till the predefined goal is achieved, i.e. the monitoring of fault root causes.

The architecture can be shared by different AN implementations and provides
a common management framework for different EEs. We adopted XML to de-
fine a set of requests/replies for basic operational tasks, which are common to
any Active Network environment. The Gateway basic services currently avail-
able are described in [2]. However, the set of Gateway services can be gradually
enlarged. Once a new service is developed and tested, it can be provided for
public use. Each basic service requires an EE-specific code fragment stored at
the Gateway. This way, Gateway nodes provide transparent access to different
Active Networks. For instance, the ME can use Gateway services to discover
the network topology, explore the network nodes, find out which active appli-
cations are running and monitor their activities. We are particularly interested
in managing those services, which are able to carry out specific tasks on behalf



of the managing entity, such as the retrieval of a particular information from a
node, or the verification of compound tests on several routers. For instance, with
reference to the example of section 3.3, we implemented an active service, which
allows the tracing of the state of a link in a given temporal interval [t1, t3].The
system dynamically deploys its components in the active nodes to implement a
distributed strategy for a given goal. Two aspects are worth to be noticed: the
reasoner adopts the active management architecture to exploit the programma-
bility of network nodes and deploy ad-hoc tasks for a given goal; on the other
hand the active management infrastructure can be used to manage, to monitor
and to debug distributed network applications.A key point of this architecture
is that the logic reasoner is completely decoupled from the sensors and agents
implementation, allowing it easy to deploy the reasoner in other network en-
vironments. Namely, the flexibility offered by logic languages allows the logical
reasoner to interact with other environments, provided that a small interface has
to be implemented to gather data and send commands to that environment. In
the current implementation the interface role is carried out by a Gateway service
[rif. AIXIA/AMS] which is available on one or more network nodes, and it is able
to translate XML-based queries to AN environment specific capsules and vice
versa.

5 Network Faults Management System

The aim of our system, is related to the knowledge management of network
events. To this end it deals with large archives of events obtained from the
network systems, and extracts useful information from these data.Goals of such
a system are:

to diagnose root causes of network faults and performance degradations by
establishing relationships between network events;

to filter event (alarm) flood by correlating several events into a single con-
ceptual event;

— to retrieve further ‘ad hoc’ diagnostic information;

— to adopt repair actions.

Such a system should provide:

— correctness: the root causes inferred by the system should be entailed by
the detected events with a high likelihood, i.e. the root causes have really
occurred in the network;

— optimality: the system should infer as small a set of root causes that can
explain all the detected events.

The knowledge of network events constitutes the necessary information to
answer questions about the real causes of network failures.Faults management is
based on the definition of the normal operating conditions, and on the abnormal-
ities detection. In general, alarms are generated in the network when abnormali-
ties are detected. In alarm-based fault detection systems, a single fault will often



cause a large number of alarms. Moreover, several faults may coexist causing a
cascade of alarms. Our system is able to correlate alarms, to pinpoint their root
causes in order to efficiently handle them. The logical inference process starts
with a initial phase of information retrieval allowing the system to acquire the
basic data over which can be established the successive reasoning processes. In
analogy with an human behavior this step may correspond to the initial obser-
vation performed by an human operator to achieve an overall knowledge of the
reasoning domain. The macroscopic behavior of the logical system is shown in
the figure 3. In the following, the main steps involved in the monitoring of faults
will be described. The process of faults management can be distinguished in a

Additional

| Data Retrieval | -
|

-
!

Error Analysis :

Managing entity

Fig. 3. The logical inference process

succession of steps [6] related to the alarm condition signaling, the error analysis
with its consequential step of acquisition of additional data useful for a correct
diagnosis, and finally the correct fault recognition and correction.

Alarm Signaling In this phase the signal of a network failure can be risen
either by an user or by a sensor previously installed, which for instance may
signal to the Managing Entity that a packet has been discarded on a router of
the network.

Error Analysis Once the failure has been notified, the Managing Entity using
the previously stored information tries an inferential process in order to deter-
mine the root cause of the failure. In the positive case, the fault is recognized
and the successive step is performed. In the negative case, i.e. the knowledge
base does not contain the right elements to deduce the root cause, the Manag-
ing Entity produces actions devoted to the positioning of new sensors with the
aim to collect new diagnostic elements. The whole process is repeated until the
Managing Entity is able to determine the failure nature.



Error Correction After the Error Analysis has produced the diagnostic infer-
ence, some predefined actions are taken in order to fix the discovered failure.
In the current version, the system is capable of managing the following types of
events:

- Errors in the RIP routing tables of the network routers;
Early packet discard for expired TTL;

Full node failure;

- Full link failure;

- Loops in the RIP routing tables of the network routers;
Changes of the state of neighbor routers.

To demonstrate the effectiveness of the automated reasoning system we ana-
lyze in more detail its behavior in a sample case of functioning. The capabilities
of discovering the root causes of failure and of gathering additional data re-
quired by the reasoning process can be illustrated by the following example. Let
us suppose that a routing loop has been generated on the network. The inter-
vention of the Managing Entity can be triggered by a symptom, in this case
packets discarding for expired TTL. The primitive_action(lost_pkt_up(N)) will
notify this occurrence. Reasoning on the imagine routing tables maintained in
the knowledge base, the ME is able to discover the loop occurrence. Namely,
when a packet is discarded, the sensor installed on the involved router notifies
the abnormal condition to the logical reasoner sending to it source and destina-
tion of the packet. Using this information the reasoner can simulate a journey
trough the path from the source to the destination, using the routing tables of
the encountered nodes. Throughout the simulation it marks each node traversed
along the path, and if a previously marked node is met, the reasoner infers that
a loop exits in the network. Furthermore, if throughout the simulation some
routing table is missing, the reasoner may require these data to the opportune
nodes by means of appropriate exogenous Golog actions, thus exploiting the Sit-
uation Calculus paradigm. Furthermore, in order to detect the node which is
responsible of the failure, the actions taken by Managing Entity will consist of
the routing tables changes retrieval by means of the following preocedure:

proc(collect(List), ?([] = List)#?([X|Tail] = List) : get_local var(X) : collect(Tail)).

In the above procedure List contains all the nodes which belong to the loop.
In this procedure, firstly, it is considered the case of empty list. Otherwise, List
is assumed as [X|Tail], the external predicate get_local var(X) is invoked in
order to obtain further information about the node X routing table history,
and finally the recursive call collect(Tail) is executed. The collected changes
are stored in the fluent repository(_,-) which has the following state successor
axiom.

repository(L, Do(A, S)): —repository(L,S),notA = update_repository(., -, -);
; A = update_repository(N, [Dest, Neigh, Cost], Time),
,repository(0ld, S), L is[[N, [Dest, Neigh, Cost], Time]|Old).

This way, the system, by reasoning on the wider scenario enriched by the addi-
tional data, will be capable of singling out the root cause of the failure using the
following two procedures:

10



proc(select(List, Rep),?([] = Rep)#?([[N, [Dest, Neigh, Cost], Time]|Tail] = Rep) :
: (?(member(Neigh, List)) : add_causes(N, Time) :
: select(List, Tail)#select(List, Tail))).
and
proc(check_cause(List), ?(repository(R)): select(List, R) :?(causes(C)) :
: select_old(C, [N, T1)).

The former is responsible of extracting from the repository all the changes that
may have provoked the loop. The latter is capable of selecting the root initial
cause which has produced the routing tables anomaly.

Finally, the proc(set_table(N,[Dest, Neigh, Cost])) will be the action adopted
by the Managing Entity for the correction of the routing entry.

6 Experimental Results

In order to test and evaluate our logical inference system we used an experi-
mental cluster of 40 active network nodes which allows the setup of “ad hoc”
topologies. In particular, we set up an experimental test-bed constituted by an
active network with 20 nodes (routers and end-hosts) managed by the “pland”
[7] execution environment and super-visioned by the reasoner by means of the
ANGate [2] software package. We performed a series of experimental tests de-
voted to determine the reliability degree of our system, in terms of discovered
faults and performed repair actions. Fault events are generated according to a
Poisson distribution for their temporal occurrences, whereas we use a uniform
distribution for their spatial positioning. The failures generated are those de-
scribed in the previous section and for each of them a series of 25 trials has been
executed.

Summary of failure detection

Table 6 shows the results of the experiments. For each managed kind of failure
we report the percentage of cases discovered and the average time elapsed before
the failure recognition. Most of the events are captured the full percentage of the
cases. In the cases of events directly discovered by the Active Local Agents on
the nodes, for instance the case of changes in the states of neighbor routers, the
discovering times are constant since they depend on the sampling time of the
monitoring activity. The low percentage for the case of full node failure is to be
attributed to the simultaneous failures of several nodes. Namely, the occurrence
of such events may provoke a disconnection in the network, thus denying the
capability of retrieving the necessary alarms. Last row shows the measures of
the action adopted to recover a link failure. The average time of 35 sec. is the
overall time since the full link failure, thus meaning that the recovery time is
reduced to 5 sec.. Finally, the overall percentage of false positives, also known
as false detections or false alarms, has been measured and it is limited to the 1%
of all the experimental cases.

11



7 Conclusions

The novelty of our project arises from the original idea of complementing a logical
reasoner with the versatility of active networks. The integrated system collects
the advantages coming from logical reasoning and network programmability, and
realizes a powerful system capable of performing high-level management tasks
and dealing with unusual network situations better than traditional manage-
ment systems.The logical reasoner is, namely, able to deduce knowledge and
find correlations from data and events which are distributed on different places
of the networks and which occurred in different instants. The inferential engine
provides reasoning on a high-level network model and behaves as an intelligent
management agent, which coordinates the management activities at the low-
level active network infrastructure. The framework allows the programming of
intelligent management entities, which adopt the active networks management
framework for the sensorial and actuator tasks, and the inferential logical system
for the high-level behavior reasoner.

References

1. Al Shaer E., ”Active Management Framework for Distributed Multimedia Sys-
tems”, Journal of Networks and Systems Management, vol. 8 n. 1, 2000, pp.49-72.

2. A. Barone, P. Chirco, G. Di Fatta, G. Lo Re, A Management Architecture For
Active Networks, Proc. of IEEE Workshop on Active Middleware Services. Edin-
burgh, UK, July 2002.

3. Covo, A. A, Moruzzi, T. M., Peterson, E. D., ” Al-assisted Telecommunications Net-
work Management”, In IEEE Global Telecommunications Conference (GLOBE-
COM 89), pages 487-496, Dallas, TX, USA, Nov 1989.

4. Cebulka, K.D., Muller, M.J., and Riley, C.A. (1989). Applications of artificial intel-
ligence for meeting network management challenges of the 1990s. In IEEE Global
Telecommunications Conference (GLOBECOM 89), pages 501-506, Dallas, TX,
USA, Nov 1989.

5. Kawamura R., Stadler R., ”Active Distributed Management for IP Networks”,
IEEE Communications Magazine, vol. 38, N. 4. April 2000, pp. 114-121.

6. L. Kerschberg, R. Baum, A. Waisanen, I. Huang and J. Yoon, ”Managing Faults
in Telecommunications Networks: A Taxonomy to Knowledge-Based Approaches”,
IEEE, pp. 779-784, 1991

7. Hick, M., et al, "PLAN: A Packet Language for Active Networks”, Proc. of 3rd
ACM SIGPLAN International Conference on Functional Programming, pages 86-
93. ACM, September 1998.

8. Mazumdar, S., Lazar, A., ”Objective-Driven Monitoring for Broadband Networks”,
IEEE Transactions on Knowledge and Data Engineering, vol. 8, n. 3 june 1996,
pp. 391 - 402

9. J. McCarthy, ”Situations, actions and causal laws”, Technical Report Stanford
University 1963. Reprinted in Semantic Information Processing, (M. Minsky ed.),
MIT Press, Cambridge, Mass., 1968, pp. 410-417

10. Mills D. L., ”On the accuracy of Clocks Synchronized by the Network Time Pro-
tocol in the Internet System”, ACM Computer Communication Review, vol. 20,
no. 1, pp. 65-75, Jan. 1990.

12



11.
12.

13.

14.

15.

16.

17.

Nilson N. J., ”Intelligenza Artificiale”, Apogeo, 2002

Raman Lakshmi, OSI Systems and Network Management, IEEE Communications
Magazine, March 1998 Vol.36, N.3, pp.46-53.

Reiter Raymond, ”"Knowledge in action: Logical Foundations for specifying and
implementing Dynamical Systems” The MIT Press Cambridge Massachusetts 2001
Sidor, D. J., TMN standards: Satisfying Todays Need While Preparing for Tomor-
row, IEEE Communications Magazine, March 1998 Vol.36, N.3, pp. 54-64.
Stallings W., ”SNMP and SNMPv2: The Infrastructure for Network Management”,
IEEE Communicatiions Magazine, vol. 36, N. 3 March 1998, pp. 37-45.
Tennenhouse, D. L., Smith, J.M., Sincoskie, W.D., Wetherall D.J., Minde, G.J.:
”A Survey of Active Network Research”, IEEE Communications Magazine, Vol.
35, No. 1, January 1997, 8

Tennenhouse, D. L., Wetherall, D.J.: ” Towards an Active Network Architecture”,
Computer Communication Review, Vol. 26, No. 2, April 1996

13



