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Abstract. This paper presents a combination of a parallel Genetic Al-
gorithm (GA) and a local search methodology for the Steiner Problem in
Networks (SPN). Several previous papers have proposed the adoption of
GAs and others metaheuristics to solve the SPN demonstrating the valid-
ity of their approaches. This work differs from them for two main reasons:
the dimension and the features of the networks adopted in the experi-
ments and the aim from which it has been originated. The reason that
aimed this work was namely to build a comparison term for validating
deterministic and computationally inexpensive algorithms which can be
used in practical engineering applications, such as the multicast trans-
mission in the Internet. The large dimensions of our sample networks
require the adoption of an efficient grid based parallel implementation of
the Steiner GAs. Furthermore, a local search technique, which comple-
ments the global search capability of the GA, is implemented by means
of a heuristic method. Finally, a further mutation operator is added to
the GA replacing the original genome with the solution achieved by the
heuristic, providing thus a mechanism like the genetically modified or-
ganism in nature. Although the results achieved cannot be applied di-
rectly to the problem we investigate, they can be used to validate other
methodologies that can find better applications in the telecommunication
field.

Keywords: Steiner Problem, Parallel Genetic Algorithm, Grid Computing.

1 Introduction

The Steiner Problem in Networks (SPN) [27], is a classic combinatorial optimiza-
tion problem which, in its general case decision version, has been demonstrated
[11] NP-complete. Its applications cover many different scientific and technologi-
cal fields such, for instance, the VLSI and pipeline design, the Internet multicast
routing, the telephone network design, etc. Given the importance that the prob-
lem entails in many scientific fields, many efforts have been produced in the



last years to design polynomial-time algorithms to determine sub-optimal solu-
tions. Several heuristics have been developed capable of providing approximate
solutions [24], [12], [21]. Mathematical proofs constrain the solutions determined
by these heuristics to the optimal solution, binding them by some multiplica-
tive factors. This property allows their adoption for many practical applications.
However, it remains a scientific challenge to determine the optimal solutions
for those small instances treatable by exhaustive algorithms, and the best sub-
optimal solutions in the other cases. As previously mentioned, among the prac-
tical applications of the SPN there is the construction of a minimal distribution
tree to connect a set of Internet routers involved in a multicast transmission.
The extremely dynamic nature of this application imposes the development of
efficient and effective heuristics capable of determining, in a very short time,
sub-optimal solutions that however may represent good approximations. Many
of such methods have been proposed in the last years, with the further constraint
to deterministically produce the solutions. In order to validate the effectiveness of
the proposed algorithm it is useful to compare the approximations obtained with
the exact solutions. However the NP-complete nature of the problem, at least to
the current knowledge, does not allow to perform complete algorithms for graphs
whose dimensions are comparable with the current size of the Internet. Among
the most efficient approximating algorithms, recently some metaheuristics such
as Genetic Algorithms [6], tabu-search [8], and Simulated Annealing [5] have
been proposed. Although these approaches can be considered the best approx-
imating methodologies, they suffer the disadvantage of their non-deterministic
behavior that does not allow their adoption in fields requiring a distribute co-
ordination among several independent entities. However, the good performances
produced by these evolutionary methods suggests the idea to exploit their re-
sults as comparison term. The approach that better than each other has been
evaluated suitable for exploiting the coarse grain parallelism available in our
laboratory was a parallel implementation of genetic algorithm. This technique
results extremely scalable and the software implementation, we carried out, al-
lows us to extend its execution to very large grid computing systems, which
currently are becoming available on the Internet. The relevant computing power
available allowed us to solve very large instances of the problem, and in most of
the cases to determine the best solutions ever obtained. The experiments have
been carried out on several different sets of graphs, characterized by different
topological features, with the aim to effectively evaluate and compare the perfor-
mances over a wide range of samples. Furthermore, to demonstrate the general
validity of the methodology we tested our implementation over a classical public
library set of experiments, SteinLib [26], which represents a commonly accepted
comparison term for the Steiner problem. The remainder of the paper is orga-
nized as follows. The Steiner Problem in Network is formulated in section II.
Section III contains the description of the parallel hybrid genetic algorithm, and
section IV describes the experimental results. Finally, section V concludes this
work and discusses future directions.



2 The Steiner Tree Problem in Networks

Formally, the Steiner Tree Problem in Networks can be formulated as follows.
Let G = (V,E) be an undirected graph, w : E → R+ a function that assigns

a positive weight to each edge, and Z ⊆ V be a set of multicast or terminal
nodes. Determine a connected subgraph GS = (VS , ES) of G such that:

– Z ⊆ VS ;
– the total weight w(GS) =

∑
e∈ES

w(e) is minimal.

The VS − Z set is called the Steiner nodes set and is denoted by S. Since
the weight function assumes positive values, the resulting subgraph is called the
Steiner minimum tree T , which spans each node in VS . Throughout this pa-
per, let n = |V |,m = |E|, p = |Z|. Many heuristics proposed in the past years
are capable of identifying sub-optimal solutions with polynomial time complex-
ities. Among these, the Distance Network Heuristic (DNH) [27], the Minimum
or Shortest Path Heuristic (MPH or SPH) [24], the K-Shortest Path Heuris-
tic (K-SPH) [13], the Average Distance Heuristic (ADH) [21], and the Stirring
heuristic [2]. Some of the heuristics used as comparison terms and exploited in
our algorithm are briefly described here. The DNH builds the distance network
Kz induced by Z, and constructs the minimum spanning tree (MST) on the net-
work Kz. It replaces the virtual links with the real paths (the nodes and links
of the initial network), thus obtaining a subgraph of the initial network, Gz. It
then computes the MST on Gz and finally prunes all the S-vertices of degree
one. The MPH builds a subtree of G in an incremental fashion: it starts off by
selecting an arbitrary node among the terminal nodes (typically the source node)
and then progressively adds the terminal node nearest to the tree, including the
nodes and edges of the connecting path. The K-SPH is an improvement of the
MPH algorithm. It builds a forest of subtrees joining together the closest nodes
or subtrees until a single solution tree has been obtained. ADH is a general-
ization of K-SPH. It repeatedly connects nodes or subtrees through the most
central node. ADH terminates when a single tree remains, spanning all the Z-
nodes. The ADH algorithm is the most effective among these heuristics, though
the better performances involve a higher computational cost, O(n3) versus the
upper bound of O(pn2) of all other heuristics. The Stirring heuristic is a local
search optimization method, constrained to assume a deterministic behavior,
which uses a solution found from the above heuristics to determine better solu-
tions. Furthermore, many algorithms capable of identifying the optimal solution
tree have been proposed in the literature. All of them are characterized by an ex-
ponential complexity. Among these, the Spanning Tree Enumeration Algorithm
[27], has O(p22(n−p)+n3) complexity, and the Dynamic Programming Algorithm
with O(n3 + n2(2p−1 − p− 1) + n(3p−1 − 2p + 3)/2) complexity. However, their
exponential nature does not allow their adoption in any practical field.



3 Parallel Genetic Algorithm

A Genetic Algorithm (GA) provides a universal optimization technique that im-
itates processes of genetic adaptation that occur in natural evolution. By using
this analogy, GA is able to evolve towards a solution for real-world optimization
problems. The GA is not considered a mathematically guided algorithm, as it
does not require the computation of derivatives of the optimization function.
The optimum is obtained by an evolution from generation to generation. This
evolutionary strategy can be considered a stochastic, discrete event and nonlin-
ear process in which the obtained optimum is the end product containing the
best elements of previous generations where the attributes of better adapted in-
dividuals are carried forward into the following generation. The main advantage
of the GA is its capability of achieving global optimization solution even for
nonlinear, high-dimensional, multimodal and discontinuous problems [9].
Genetic Algorithms are naturally suited to be implemented on a parallel archi-
tecture . A survey on parallel GAs can be found in [1]. Several approaches to
parallel implementations of GAs have been proposed ([17], [25]). Among these,
for the solution of the SPN, we consider the two basic ones: the simple global
model and the coarse grained model. In a previous work [4], the first approach
has been used; in this implementation a master process is responsible of the main
execution of the genetic algorithm and exploits the availability of different pro-
cessors by allocating a slave process on each of them. Each slave will be required
to execute the evaluation function for some individual of the current population
on the basis of its availability. In this paper the coarse-grained model will be
studied and compared with the previous one. The coarse-grained model divides
the population into smaller subpopulations, termed demes, constituting a given
number of islands. A standard GA is executed on each island and is responsible
for initializing, evaluating and evolving its own individuals. Furthermore, the
standard GA is enforced by a migration operator, which periodically involves
the transfer of individuals among the different subpopulations.
To perform the analysis of the solution space, a GA needs the representation
of the problem solutions as basic individuals of its population, which are called
genomes. During the execution of the algorithm new individuals will be generated
by means of the mutation and crossover operators. New generated individuals
should own the basic property to still represent feasible solutions. To encode the
feasible solutions of the SPN as binary genomes, we adopted the following repre-
sentation: for each particular instance of the problem we define the genome as a
binary array whose length corresponds to the dimension of the set V −Z, i.e. the
set of all the nodes which may be considered potential candidates for belonging
to a given solution. The value of the ith bit represents if the correspondent node
in the set V −Z should be considered as complementary node to generate a tree
which connects the multicast Z nodes. To follow the genome indication of includ-
ing the correspondent nodes in a solution tree we map each genetic individual in
a new instance of the problem where the original Z nodes are extended with the
nodes coded by the genes. This new instance of the problem is solved using the
K-SPH or ADH heuristics, and the solution is pruned with regard to the original



multicast set. The fitness value is straightforwardly calculated as the inverse of
the tree cost, thus to restrict the range of the fitness function to the interval
(0, 1]. K-SPH is a O(n2) algorithm which is capable of isolating good solutions,
although it uses only nodes which are along the shortest paths between the mul-
ticast nodes. ADH is a O(n3) algorithm which is capable of determining better
solutions because it considers all the nodes in the network. To obtain a trade-off
between execution time and competitiveness we decided to adopt alternatively
both heuristics in order to exploit their different features. The adoption of the
heuristic methods on individuals provided by the GA represents a local search
technique which complements the global search capability naturally owned by
the GA. This way a hybrid optimization algorithm is obtained. Furthermore,
considering that the evaluation process described above determines the minimal
set of genes which forms the current solution, we introduce a further mutation
mechanism which replaces the original genome with the solution achieved by
ADH. This process could be viewed as the implementation in the GA of the pro-
cedure that leads to a Genetically Modified Organism in nature. This technique
introduces the advantage of faster convergence towards the optimal solution.

3.1 Grid based implementation

The parallel implementation has been realized on a grid cluster, with forty work-
stations managed by the Globus 3.0 toolkit [16]. The communication activities
are carried out using MPIGH-G2 [18], the grid-enabled implementation of the
Message Passing Interface (MPI)[19]. All nodes present the same hardware and
software configuration. Each of them is equipped with an Intel Pentium IV pro-
cessor with a clock frequency of 1.7 GHz, 256 Mbytes of RAM, four 100Mbps
Ethernet cards and managed by the version 7.2 of the Red Hat Linux distribu-
tion. A redundant degree of connectivity is achieved by means of eight 100Mbps
Ethernet switches. The software system exploits the facilities provided by the
GAlib, a C++ Library of Genetic Algorithm Components [20]. The master-slave
paradigm has been adopted to implement the parallel version, embedding the
MPICH-G2 primitives and GAlib object-oriented classes.

4 Experimental results

In this section we discuss the experimental results obtained on three different
test sets of sample graphs, taken respectively from the public SteinLib library
[26], the BRITE [14] topology generator, and the Mercator project [10]. On this
experimental testbed, we execute the two models of the parallel Genetic Algo-
rithm, the classical heuristics SPH, DNH, K-SPH, and ADH, and the stirring
heuristic. The GA parameters for the two different parallel implementations are
shown in Table 1.

We maintain these values constant for all the executions in order to compare
all problems on a homogeneous basis. Furthermore, the local search technique



Global Coarse Grained

number of generations = 25 number of generations = 4
population size = 120 population size = 50

crossover probability PC = 0.7 crossover probability PC = 0.7
mutation probability PM = 0.001 mutation probability PM = 0.001

number of demes = 5

Table 1. GAs parameters

Fig. 1. Fitness function values distribution for the global (a) and coarse grained (b)
parallel implementations

and the additional mutation mechanism described in the above section are im-
plemented. Figure 1 shows the fitness function values distributions for the global
and coarse grained parallel implementations. The charts plot the score obtained
by the first 1250 individuals of the global model and by all the individuals of the
coarse grained model; it is possible to note a faster convergence of the coarse
grained model. Moreover, the execution time of the coarse grained model is
significantly lower than that one of the global model.

The better performances obtained by the coarse grained model, together with
its better speedup, motivate the adoption of it in all the following experiments.
The first test set is a subset of the SteinLib library, a public collection of Steiner
tree problems in graphs with different characteristics, taken from VLSI appli-
cations, genetic contexts, computer networks applications, etc. More specifically
we adopt the subset constituted by Beasley′s series C, D, E, formerly known as
the OR-library, which are random-weights graphs with sizes ranging from 500 to
2,000 nodes. The connection degree is relatively high, ranging from 0.1% up to
10%. The networks in this sample do not present any similarity with the Internet
like topologies [4]. However, we adopted it as test for our parallel implementation
of GA, because it represents a commonly accepted comparison term since the
optimal solutions are known.



Fig. 2. Cumulative Cost Competitiveness on C, D, E SteinLib nets.

Figure 2 shows the cumulative cost competitiveness of parallel GA and the
classical heuristics over the above graphs. The competitiveness is determined
as the ratio between the costs of trees produced by heuristics and the optimal
ones. From the comparison of the solutions obtained by the GA with the optimal
values, it can be observed that in about 80% of the cases both the GAs are able
to determine the optimal solution, and for the 90% of the instances the obtained
solution is at most 1% larger than the optimal value.

The following set of experiments is devoted to investigate the graphs with
topological features similar to the Internet graphs. BRITE (Boston university
Representative Internet Topology gEnerator) was developed to investigate the
growth of large computer networks, and to compare several topology genera-
tion models. The key characteristic of this generator is the incremental growth
and the preferential connectivity used during the generation process. However,
it should be underlined that BRITE adopts an incremental growing strategy,
rather than a hierarchical model; as noted in [15], although it is commonly ac-
cepted the idea of a hierarchical Internet, experimental tests have proved that an
incremental generator, based on the nodes degree, fits the real networks better
than a hierarchy based generator. In our experiments, we tested several net-
works (∼ 400) with homogeneous topological characteristics and sizes ranging
from 1,000 to 2,000 nodes. Figure 3 shows the cumulative cost competitiveness
curves for a test set composed of fifty networks, each of them with 2,000 nodes.
In this and in the following experiments, the competitiveness is determined as
the ratio between the costs of trees produced by heuristics and the best-known
sub-optimal solution. As it can be clearly observed, GA finds the best-known



Fig. 3. Cumulative Cost Competitiveness on Brite nets.

solutions on almost all the instances, thus confirming its effectiveness to be used
as a comparison term for the other heuristics.

In the last experiment, the test set is created starting from the real Internet
data description produced by the Mercator project. This project has produced a
real Internet snapshot, by merging an enormous amount of measurements taken
over the time and gathered into a central database. The resulting network, ob-
tained in November 1999, includes more than 280,000 nodes and nearly 450,000
edges, with a connection degree lower than 0, 001%. To set up our experiment,
we extracted 50 subnetworks of 2, 000 node size from the original map, starting
from a randomly selected node and repeatedly including its neighbors. Differ-
ently from the previous example, since the Mercator data do not provide costs
associated to the edges, the metric is hop count based. The analysis of the cu-
mulative cost competitiveness curves, shown in figure 4, reveals the parallel GA
effectiveness since the best-known solutions are found on about 70% of the in-
stances.

5 Conclusions

In this work we proposed the adoption of a parallel implementation of genetic
algorithm and local search methodologies to obtain near-optimal solution to the
Steiner Problem in Networks for large graphs with topological features similar
to the Internet ones. The results have shown that our implementations achieved
high competitiveness in all the experimented test sets, differentiated for topo-



Fig. 4. Cumulative Cost Competitiveness on Mercator subnets.

logical characteristics. In most of the well known examples of the SteinLib li-
brary we found the optimal solutions. On the sample networks generated by the
Brite tool or extracted from the Mercator graph, which simulate the Internet
structure with the best accuracy, we almost always obtained the best calculated
sub-optimal solutions, thus achieving a useful result for the comparison of the
competitiveness of the polynomial and deterministic heuristics. As regards the
future directions, we are currently developing more sophisticated parallel mod-
els, with the aim of further improving the GA performances and optimizing the
total execution times.
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