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Abstract. 
 
Today grid middleware is complex to be used, the development of grid-aware applications is 
error-prone and the Virtual Organization grid paradigm contrasts with traditional HPC 
optimisation strategies based on resource stability and known cost models of inter-node 
interaction patterns.   
 
The authors analyse several aspects of grid adaptivity, and identify 5 roles: the active 
resource/execution manager, the proactive resource administrator, the reactive quality-service 
coordinator, the passive resource coordinator . 
 
They present a hierarchical model for a component-based grid-software infrastructure in 
which the resource administrator and the resource coordinator roles are assigned to grid 
middleware and the quality-service role to HPC skeletons. Component interfaces and 
interactions are described.  
 
The resource administrator mimics functionalities of components containers of service-
oriented architectures. The resource coordinator manages the life cycle of sets of processes on 
top of a pool of grid resources and offers to the upper layers a Virtual Private Grid facade 
similar to a standard processor cluster facility.  
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1. Introduction 
 
The computational Grid paradigm defines a flexible, secure, coordinated large-scale resource-
sharing model. Its focus is on large-scale problem solving in dynamic, multi-institutional 
virtual organizations [1].  
 
High performance computing has been, instead, traditionally oriented to performance 
optimisation of proprietary resources on local or wide area networks, based on exploiting 
knowledge of management policies at any level (computational models, resource connection 
patterns, cost models of the processor interaction graphs). In particular, the structured parallel 
programming approach has embodied such knowledge into patterns for the management of set 
of processes described by notable Directed Graphs, called skeletons and parmods [2-3].  
 
Skeletons are automatically coded by parallel compilers to keep high the parallel efficiency 
while maintaining low parallel programming difficulty and software portability.  
 
Code developed with such a structured approach for environments mapped on static networks 
of resources, and controlled by stable policies of exclusive resource allocation or partitioning, 
is inefficient on to grid environments maintained as Virtual Organizations on wide-area 
networks of dynamically discoverable and shareable resources is ineffective because of the 
resource unreliability concept intrinsic in the Virtual Organization model. 
 
One approach to such a problem is to develop self-adaptive parallel coordination patterns, in 
which some node in the process graph is assigned to maintain awareness of past grid nodes 
performance statistics and grid resources present status to optimally adapt component 
coordination pattern. For instance, grid-awareness can be used to drive load balancing through 
optimal mapping of virtual processes over physical nodes according to effective node 
performance [4]. Otherwise it can be used for substituting faulty nodes in a process graph or 
to redistribute data stream processing among workers of a farm if any worker is not honouring 
its performance contract. [5]. 
 
Programming adaptivity for each coordination pattern is a complex and error-prone activity 
and makes porting of legacy (structured) parallel code hard. 
 
We propose to adopt a hierarchical programming approach in which grid adaptivity is 
distributed among various layers of the software environment playing different roles: the 
execution environment (active resource/execution manager), the application coordination 
middleware (proactive resource administrator), the application component layer (reactive 
quality-service coordinator) and the platform management middleware (passive platform 
coordinator).  
 
Specifically, adaptivity is factorised into a) discovery and reservation of grid nodes and 
services and definition of application virtual processes graph assigned to the execution 
environment b) optimal mapping of application process graph assigned to the application 
coordination middleware; c) load balancing for nodes of the actual instance of the process 
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graph assigned to application component(s); d) monitoring of graph process set and (re) 
configuration of process ports, assigned to the lower middleware layer. 
 
Two patterns are defined: the Virtual Private Grid (VPG), a passive facade pattern which 
hides management of physical nodes and processes on the grid, and the Grid-aware 
Component Administrator, a reactive pattern which hides actual management of application 
components according to Quality of Service criteria.  
 
The remainder of this paper is organized as follows. Section 2 sketches the hierarchical 
adaptivity model. Section 3 describes the functionalities of logical components implementing 
the model. Section 4 describes current status of prototypes implementation of the Virtual 
Private Grid runtime support layer.  

 

Processors mapping 

Nodes mapping

 Grid

 

 
Master 

RE

RE 

RE RE

RE
RE RE

RE

Application 
Virtual Processors Graph Execution 

 manager 

Virtual Private Grid  

 

 

 

 

 

 

Fig. 1.  Hierarchical representation of an HPC application over the grid. Upper layer: HPC application as a coordination of 
Virtual Processors DVG and an external Process Manager. Intermediate layer: Virtual Private Grid of computational 
resources administrated by middleware on behalf of application to support adaptivity: DPG + spare nodes (dashed).  
Lower level: actual temporary mapping of VPG nodes over the grid. 
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2. A hierarchical conceptual model for grid adaptivity. 
 
Let’s represent an HPC application at conceptual level as a directed graph DVG describing 
interaction of virtual processes and at the implementation level with graph DPG of the 
physical processing units that implement them.  
 
Each graph node describes some defined application functionality or resource (a data or event 
source/sink, a computation, a control, a service), each arc describes a data /event transfer or a 
path. DVG and DPG nodes are assigned weights representing respectively their expected 
processing load and effective available power. DVG and DPG arcs are assigned weights 
representing respectively expected transfer throughput and effective available bandwidth.  
 
After virtual process coding and DVG graph composition, application life-cycle can be 
factored into five main phases: a) discovery and reservation of a meaningful set of proper 
physical resources, b) mapping of DVG into a DPG, c) initialisation of DPG and activation 
plus execution of DVG processes on DPG, release of resources allocated at completion. 
 
HPC practice requires DVG execution to satisfy Quality of Service constraints sometimes 
express as a performance contract to be honoured by the platform enabling DVG operation.  
Adaptivity of the HPC application is required to cope with events affecting the composition of 
the DVG resource set or even the behaviour of any of its elements: 
 

• Fault of a processing node (graph disconnection)  
• Fault of a connection between nodes (graph disconnection). 
• Availability of additional resource (sub graph join) 
• Redirection of a link towards an external service (leaf node cut+leaf node join) 
• Change of node effective power or link bandwidth (node/arc weight change) 
• Other events are best represented as overall processing states: 
• Performance under contract range (insufficient node weights or sub optimal DVG to 

DPG mapping) 
• Parallel inefficiency (excessive node weights, or sub optimal DVG mapping). 

 
Adaptation to such events is possible only if proper constraints are satisfied: 

 
• Graph disconnection is a catastrophic event whose recovery from checkpoints is 

possible only if a mechanism for periodical backup of application status at checkpoint 
is expressly provided by application and run-time support [6].  

• Adaptation to worker node fault or to node join is possible in master-slave 
implementations of skeletons like a map or a farm if a mechanism is provided to force 
any graph node to perform synchronous re-initialisation of  the communication 
environment. 

• Adaptation to dynamic redirection of a link to a leaf node implementing a service 
requires asynchronously forcing  of the node to close its channel to the service and to 
open a new one. 
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• Adaptation to variance of worker node effective power or link bandwidth is possible 
for stream-parallel skeletons if knowledge of worker sub graph weights is expressly 
used for workload partitioning in the implementation template [7]. 

• Finally, adaptation to global performance states requires access to resource 
management privileges, normally reserved to a coordination process external to the 
process graph. 

 
Each adaptivity case requires a different level of activity and grid-awareness. It can be 
modelled using different actors playing hierarchically cooperative roles.  
 
At top hierarchy level we find (re) selection of proper resources (nodes, services and DVGs). 
It requires grid discovery ability, detailed grid-awareness, reservation privileges and an 
adequate policy to coordinate resource provision and application quality of service. These 
tasks define the role of an active resource/execution manager.  
 
At intermediate level we lay adaptive management of available grid resources for optimal 
execution of a defined application graph of processes. Taking advantage of self optimisation 
capability embodied in parallel skeleton templates, grid-adaptivity may be factorised in two 
roles: optimal administration of a pool of resources on behalf of a quality-application, and 
optimal administration of the set of resources assigned to a single application.  
The first role requires definition of each application quality in terms of a performance 
contract, selection of optimal subset for DVG to DPG mapping, monitoring of DPG 
performance and a policy for DPG reconfiguration. These tasks define a proactive resource 
administrator driven by a moderately complex ontology.  
The second role mimics load (re) balancing of physical processes over a cluster of virtually 
privates inhomogeneous resources labelled with their effective quality indexes plus partial 
reconfiguration of the processor graph after in the event of their variations. These tasks define 
reactive quality-service coordinator implemented in some parallel skeletons.  
 
At lowest level we lay effective monitoring of resource status, support for DVG to DPG 
mapping and re-mapping, detection and registration of events requiring attention and possible 
adaptation, tasks executable by a passive resource coordinator. 
 
The hierarchical role model for HPC grid-adaptivity may be mapped to a component-based 
grid software infrastructure. The resource administrator and the resource coordinator roles are 
assigned to grid middleware while the quality-service coordinator role is assigned to 
skeletons. The resource administrator mimics functionalities of components containers of 
service-oriented architectures. The resource coordinator manages the life cycle of sets of 
processes on top of a pool of grid resources and offers to the upper layers a Virtual Private 
Grid facade similar to a standard processor cluster facility.  
 
Next section describes a logical view of the software infrastructure as cooperation as the 
logical interaction among software components playing model roles.  
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3. Functional model of middleware infrastructure  
 
Software component technology is a young programming-paradigm, even though its 
definition is quite old. Its aim is to enable the development of applications by composing 
existing software elements in an easy way mode. Among various definitions of the component 
concept, we report Szyperski’s one [8]: ”A software component is a unit of composition with 
contractually specified interfaces and explicit context dependencies only. A software 
component can be deployed independently and is subject to composition by third parties”. 
 
Several components models have been proposed. The Globus Project has proposed the OGSA 
architecture for grid services and a component architecture for adaptive grid programming 
compliant with OGSA been defined in [1]. A component architecture focusing on HPC grid 
programming is presently being developed by the Grid.it project [9].  
 
Grid.it components expose their functionalities through a series of interfaces belonging to 
several classes (RPC, streams, events, configuration). Interface signature together with 
implementation technology and communication protocol defines a port type. Components 
with same or compatible port-types can be connected together [10]. In the framework of the 
Grid.it project, we exploit this component architecture to implement a graceful distribution of 
adaptivity roles events and actions. Figure 2 shows the components implementing the 
architecture and their interactions. Each component is represented as an UML-package and its 
interfaces as UML-classes [11]. 
 
Passive roles provide slave functionalities through p_ports (factory, service provide and 
config), active roles use them through RPC u_ports (discovery, system, service_invoke) as in 
CCA compliant frameworks [15]. Event ports of the run time support provide to the reactive 
application component an event bus for meaningful events registration and notification, to 
enable its reactive role.   
 
The Execution Environment uses services exposed by Grid services, Component 
administrator and Application components. 
 
The Component Administrator component exposes the following interfaces: 

• component_factory: an extension of the factory design pattern [12] to the domain of 
distributed computing. It has the same goal of the OGSA Factory Port Type, even 
though it differs in some details. Factory services include submission of a Virtual 
Process Graph with its QoS profile and VPG hardware resources creation and 
modification.   

• service_provide: it exposes a set of functionalities about the status of submitted 
applications.  

• component_config: modification of leaf nodes of DVG (external services binding).  
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Fig. 2. Grid Layered Components Framework  

The Component Administrator uses services of VPG master service_provide port to: 
• deploy a set of processes (DVG) with related libraries on the VPG; 
• start a set of processes (DPG) on the VPG;  
• retrieve information about the status of managed hosts (nodes of the VPG) and about 

life status of started processes.  
• retrieve information about the proceeding status of DPG processes to detect QoS 

violations; 
• send message to application-components to notify that a self-configuration is needed, 

if possible. 
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4. Current Implementation of the VPG RunTime Support  
 
A VPG Runtime Support prototype is presently being developed as a research activity of 
Project GRID.it.   
 
Actual component implementation is based on usage of several design patterns [13]: acceptor-
connector, reactor, proxy, wrapper and adapter. A platform independent SDK for these 
patterns is provided by open-source object-oriented framework ACE [14], which enables code 
portability of the run-time system.  
 
The Virtual Private Grid pattern is implemented by the following two components: 
 
1. VPG-Master: the VPG front-end. It administers hosts by exposing methods for 

administrating node facilities (mount, un-mount, keep alive, get-status) and for controlling 
set of processes (deploy, start, kill, delete, get-status). It exposes this functionality by 
accepting XML-commands through a socket service-provide port. 

2. VPG-Remote Engine: a daemon running on each host mounted on VPG as a slave for 
VPG-Master requests. It implements the remote run-time environment, administering, 
under master control, local processes lifecycle (run, kill, status, clean) and redirects events 
between VPG master and Application components. 

 
The Master communicates with each Remote Engine in two ways: by ports-connection to 
invoke control of process lifecycle, and by event notification to delivery component to 
component event messages.  
 
Grid nodes management and file transfer is implemented over the Globus toolkit2 services: 
GRAM (for start-up of the Remote Engine), GridFTP for deploying processes DPG, GSI 
protocols for authorization and secure file transfer. 
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