

Consiglio Nazionale delle Ricerche
Istituto di Calcolo e Reti ad Alte Prestazioni

A Network Ontology for

Computer Network Management

Alessandra De Paola, Luca Gatani, Giuseppe Lo Re, Alessia Pizzitola, Alfonso Urso

RT-ICAR-PA-03-22 dicembre 2003

Consiglio Nazionale delle Ricerche, Istituto di Calcolo e Reti ad Alte Prestazioni (ICAR)
– Sede di Cosenza, Via P. Bucci 41C, 87036 Rende, Italy, URL: www.icar.cnr.it
– Sezione di Napoli, Via P. Castellino 111, 80131 Napoli, URL: www.na.icar.cnr.it
– Sezione di Palermo, Viale delle Scienze, 90128 Palermo, URL: www.pa.icar.cnr.it

Consiglio Nazionale delle Ricerche
Istituto di Calcolo e Reti ad Alte Prestazioni

A Network Ontology for

Computer Network Management

Alessandra De Paola2, Luca Gatani1,2, Giuseppe Lo Re1, Alessia Pizzitola2, Alfonso Urso2

Rapporto Tecnico N. 22:
RT-ICAR-PA-03-22

Data:
dicembre 2003

1 Istituto di Calcolo e Reti ad Alte Prestazioni, ICAR-CNR, Sezione di Palermo, Viale

delle Scienze edificio 11, 90128 Palermo.
2

 Università degli Studi di Palermo, Dipartimento di Ingegneria Informatica, Viale
delle Scienze, Edificio 6, 90128 Palermo.

I rapporti tecnici dell’ICAR-CNR sono pubblicati dall’Istituto di Calcolo e Reti ad Alte
Prestazioni del Consiglio Nazionale delle Ricerche. Tali rapporti, approntati sotto l’esclusiva
responsabilità scientifica degli autori, descrivono attività di ricerca del personale e dei
collaboratori dell’ICAR, in alcuni casi in un formato preliminare prima della pubblicazione
definitiva in altra sede.

Abstract

This work describes an ontology for the categorization of computer networks do-
main. The ontology has been defined to support the development of a knowledge-
based system for network management. The system is a logical reasoner capable
of performing management tasks typically executed by human experts; in order
to accomplish these tasks, the logical reasoner needs a detailed representation
of the network domain, that is, all relevant network entities and protocols,
their relationships and their functioning mechanisms. All these concepts need a
standard form of representation, as past experiences in developing networking
reasoning system have shown. The developed ontology can be seen as the for-
mal and explicit specification of the conceptualization that a knowledge-based
system has to use to perform automated management tasks: the concepts and
relationships, the ontology defines, are to be reflected within the internal do-
main representation and inference mechanisms of the reasoning engine. Finally,
in order to represent knowledge, as formalization language for the ontology, the
Web Ontology Language (OWL) has been used.

Chapter 1

Introduction

The Ontology notion originates from Philosophy, where it refers to the meta-
physical study of the nature of being and existence. In Knowledge Engineering,
ontologies are used for a quite different purpose, that is, for modelling concepts
and relationships on some expertise domain. In this area, ontologies can be
defined as formal specifications of conceptualisations [1, 2]. A conceptualisation
is an abstract, simplified view of the portion of “world that we wish to repre-
sent for some purpose; since each knowledge base or knowledge-based system
is committed to some conceptualization, explicitly or implicitly, ontologies are
useful instruments for knowledge sharing among AI software and for knowledge
reusability purposes. Formally, ontologies define knowledge about some area
of interest, providing the structural and semantic ground for computer-based
processing of such knowledge. Moreover, defining a formal vocabulary and pro-
viding the represented terms with formal and univocal semantics, ontologies
abstract knowledge from implementation details, increasing its reusability and
standardization. Thus, human or automated agents, who commit to an ontol-
ogy, can exchange information in a way that is coherent and consistent with
a shared conceptual theory. All these properties represent attractive features
for many AI applications, such as the construction of knowledge-based systems,
which, for their nature, have to present some domain expertise. Our ontology
has been defined to support the development of a knowledge-based system for
network management. The system we are building is a logical reasoner capa-
ble of performing management tasks typically executed by human experts; in
order to accomplish these tasks, the logical reasoner needs a detailed representa-
tion of the network domain, that is, all relevant network entities and protocols,
their relationships and their functioning mechanisms. All these concepts need
a standard form of representation, as past experiences in developing network-
ing reasoning system have shown. For this reason, the ontology presented can
be seen as the formal and explicit specification of the conceptualization that a
knowledge-based system has to use to perform automated management tasks:
the concepts and relationships, the ontology defines, are to be reflected within
the internal domain representation and inference mechanisms of the reasoning
engine. This way, the ontology, providing a unitary view of these concepts,
increases knowledge reusability and favours coordination among human devel-
opers during the system design and development, and it also makes explicit
basic assumptions about the domain. In order to represent knowledge, as more

1

generally as possible, we decided to choose the Web Ontology Language (OWL)
[3, 4], as the formalization language for our ontology. OWL is designed for
the definition of ontologies and knowledge bases. OWL has been recently stan-
dardized by the W3C Working Group in the context of Semantic Web research,
where it represents a higher layer above the language stack made up of XML,
RDF and RDFS. Moreover, OWL allows using available tools, such as Racer
[5], for automated reasoning about ontologies. Reasoning services provided by
these tools are the automated detection of inconsistent concepts and the auto-
mated classification of concepts in a “is-a” hierarchy. These services are useful
during the development of wide ontologies or their merging. Since OWL repre-
sents the result of hard efforts to achieve good expressiveness retaining reasoning
decidability, it presents some limitations, especially in knowledge constraining
possibilities. Furthermore, because of its ties toward other Semantic Web stan-
dards (XML, RDF, RDFS), over which it is constructed, its XML/RDF syntax
is quite verbose and hard to understand; this means, it is difficult to maintain
and update OWL ontologies and to achieve a global view of the represented
concepts, directly using this syntax. For this reason it has been very important,
in our ontological effort, the presence of a powerful tool, Protégé-2000, for the
graphical editing of OWL ontologies. Protégé-2000 [6] is an open-source envi-
ronment for ontologies and knowledge bases. Developed at Stanford Medical
Informatics, it is a large project with a wide user community. Its purpose is to
make easy the knowledge formalization activity, providing suitable support for
ontology definition and maintenance, and for the customisation of knowledge
acquisition forms; in this way, it makes more intuitive both the ontology design
and its population, performed by end-users to construct knowledge bases. Since
Protégé internal knowledge model is frame-based [7], OWL support is provided
by special plugins, first of all the OWL Plugin [8]. It makes possible to edit
OWL ontologies using most of Protégé graphic facilities and to automatically
generate the OWL source. Moreover, the ezOWL and OWLviz plugins allow
to display the ontology using a graphic UML-like syntax and a graph-based
representation respectively.

1.1 Ontology overview

The ontology we developed does not cover all the aspects of networking domain;
it should, rather, represent the domain knowledge from the management point
of view, trying to capture those aspects of networking essential for monitoring
and controlling purposes. The described knowledge can then be used by network
management applications to perform fault diagnosis and recovering, to analyze
and evaluate performances, to plan actions aiming at improving the quality of
service. In order to make possible these tasks, ontology should represent all
relationships which hold among the domain concepts; it should make explicit
cause-effect relationships through which distinct events taking place at different
temporal moments and spatial places can be related to each other in order to
represent an integrated view of network behavior; it also should capture how
different network elements can influence each other to determine their global
status and their dynamical evolution over time. This description of ontological
knowledge provides a deep understanding of the network as a whole, presenting
a high-level view of its functioning. More specifically, concepts and relations

2

represented in the ontology describe the main components, features and behav-
iors of the Internet network layer and some elements of the Internet data-link
and physical layers. Besides these aspects, the ontology describes the traffic
concept, the resources involved and its distribution over the network. More-
over, the ontology describes tools and services required by a managing entity to
perform monitoring and controlling tasks and mechanisms through which it can
use them. Furthermore, since the management system itself belongs to the rep-
resentation domain, last part of the ontology should characterize the distributed
framework we designed and the tools and services offered to the management
applications. The Logical Reasoner (i.e. the knowledge-based system acting as a
managing entity in our architecture) is represented within the ontology, in order
to make explicit how it uses knowledge and how it exploits distributed supports
to accomplish its tasks. The inclusion of all these concepts in the ontology, mak-
ing it more complete, provides also support to the system developing activity,
which constitutes one of ontology main purposes.As mentioned in the previous
section, expressive Web Ontology Language (OWL) has been adopted to for-
malize our ontology. More precisely, our ontology is an OWL DL one, i.e. it
has been defined using the OWL DL version among three OWL sublanguages.
OWL DL is a restriction of OWL Full, which is the most complete (but for
this reason undecidable) sublanguage. However, OWL DL is enough expressive,
more than OWL Lite, which is the simplest among OWL sublanguages. Before
detailing ontology description, it is worth to briefly introduce which OWL DL
modeling primitives are used to represent knowledge. As each OWL ontology,
this ontology is structured following a hierarchical taxonomy of classes repre-
senting the main concepts of the domain. The root of each ontology concept
is the general class Thing, which has no special features; all other concepts de-
scend from it. Each concept is described and specified by a set of properties
attached to the correspondent class. Properties can be used to represent both
the features characterizing the concept itself and the associations relating the
concept to other concepts of the domain: the former are called DatatypeProper-
ties while the latter are defined ObjectProperties. DatatypeProperties can take
different kinds of values, such as integer, float, boolean, string, etc.. The class
to which a property is attached represents the “domain” of the property, while
the class, or combination of classes, over which the property can take values, is
its “range”. Moreover, properties can be structured in a sub-property hierarchy,
can have particular features (they can be symmetrical, transitive, functional)
and can be related to each other by inverse relationships. Properties attached
to the most general classes are inherited by their subclasses, and have the same
domain and range. Constraints (called Restrictions) are used to further specify
a property within the scope of a particular class, forcing the property to take
some or all values over a restricted subset of its generic range or to take a par-
ticular value. The number of distinct values a property can take is specified by
cardinality restrictions, which have a class scope, too. Another feature of the
language is the possibility to define classes as arbitrary Boolean combinations
(union, intersection, complement, disjunction) of other classes and to declare
class equivalence and property equivalence.

Using the primitives outlined above, and taking advantage of OWL expres-
siveness, the ontology we developed is organized in a hierarchical structure. The
root classes represent the most general, and consequently, the most reusable con-
cepts of the domain and describe the knowledge at the highest level of abstrac-

3

Figure 1.1: First levels of Ontology with a “is-a” hierarchy

tion. Exploring the hierarchy from root toward leaves, concepts lose generality
to fit more suitably specific environments and architectures we considered.Figure
1.1 shows a comprehensive view of the ontology “is-a” hierarchical tree. The
figure shows only first levels of the hierarchy, including all the Thing direct sub-
classes and some of their subclasses. Black arrows within a class indicate that
the descending sub-tree is hidden.Network structural components are grouped
in the NetEntity class. These components include the physical elements con-
stituting the communication infrastructure (routers, hosts, links and interfaces)
and also some software components, such as routing tables and the queues as-
sociated to node interfaces. Traffic, that is data flowing across the network
and transmitted by network entities, is represented by the TrafficEntity class;
it is viewed at different levels of abstraction and has direct references to the
resources it takes up. Network elements functioning and traffic utilization of
network resources are captured by status properties, whose values depend on
time. Network global status is also determined by general and abstract concepts,
such as Routing and Demand, which outline the set of interdependencies that
contribute to define the overall network behaviour. The dynamical evolution
of network status and traffic distribution is captured by the concept of Event,
which has a precise temporal and spatial location and is related to the features
it affects. Events, (locally caught by Sensors, special ManagementTools), can be
part of the natural network dynamics or symptom of faults and abnormalities;
so, they are necessary for a management application to keep up to date network
representation during its evolution but also to detect faults and infer their root
causes. In order to represent the generic cause-effect relationships that associate
Events to their causes, the concept of Abnormality has been introduced; the rep-
resentation of these associations makes a logical reasoning process able to merge

4

incoming events with its network representation and its high level knowledge
to infer the real presence of an Abnormality. The remaining concepts of the
ontology are mainly related to the elements of the management infrastructure:
they represent how the Reasoner, viewed as an actor, can interact with network
by means of other Actors, the Programmable Local Agents (PLA class). These
interactions describe the mechanisms through which the Reasoner can retrieve
data from the network, tune the monitoring system, actively modify network
status and behaviour, and are represented by the concept of Action. All these
actions allow Reasoner to diagnose Abnormalities and to perform statistical
performance evaluations, by means of TrafficStatistics.

5

Chapter 2

Communication
Infrastructure

The ontology represents all those elements of the communication infrastruc-
ture, which are necessary to define the structure and the functioning of the
Internet network layer; moreover it includes some structural aspects of lower
layers. The concepts represented allow the identification of network topology
and the description of the main aspects of data transmission functionalities,
such as routing and resource allocation for traffic management. All these con-
cepts define the “managed objects”, whose features and functioning parameters
can be monitored and controlled.

All the hardware and software elements forming the communication infras-
tructure are modeled as NetEntities. The concept of NetEntity identifies every
element which takes a role in network functioning, enabling it to carry out some
tasks. The general class is specialized in two main subclasses: hardware enti-
ties (represented by the HWNetEntity class) and software entities (represented
by the SWNetEntity class). The former are physical components of the net-
work, while the latter are those non-physical elements, which explain network
behavior, such, for instance, the resource allocation. The complete NetEntity
hierarchy is shown in 2.1.
The HWNetEntity subclasses are:

• the Node class, divided into two subclasses, Router and Host ;

• the Iface class, which represents the network boards that interface nodes
to the rest of the network;

• the Link class, representing the physical bi-directional links which inter-
connect network nodes by means of their interfaces.

All these entities have a HWStatus, that is a DatatypeProperty defining their
functioning status. This property can take one of three distinct values: “ON”,
“OFF” and “ABN”. The status information “ON” indicates that the entity is
active and properly functioning. The “OFF” status says that the entity, even

6

Figure 2.1: NetEntity sub-hierarchy

if disabled, can be yet controlled and activated if necessary. The “ABN” status
indicates that the entity has gone out of order or is malfunctioning, and cannot
be directly controlled. For example, if a link status is “ABN”, it means that
the link is down, that cannot be used to transport data and that it cannot be
remotely reactivated before a direct recovery action restores its normal status

In order to identify a network topology, HWNetEntities are related among
them by ObjectProperties, representing their physical associations and inter-
connections, as shown in figure 2.2(a). For example, in order to represent the
association between an interface and the node on which it is installed, two prop-
erties are used: the HasIFace property and the BelongsToNode property. The
former is declared in the Node class and has multiple values on the class IFace;
the latter, vice versa, is declared in the IFace class and can take a single value
on the Node class. These two properties are stated to be each the inverse of
the other one, so they create a bi-directional reference between the two classes.
Similarly IFaces are related to Links through the ConnectedToLink property,
which allows to identify how the nodes they belong to are interconnected by
means of physical links. The ConnectedToLink property can generally take
multiple values. Although data are moved from an interface to another one by
a single link, our model allows also the representation of backup links. Backup
links can be opportunely activated to restore connectivity when a disconnection

(a) a (b) b

Figure 2.2: a. Object Properties for network topology definition. - b. As-
sociation among HWNetEntity instances defining the connection between two
nodes.

7

occurs; the multiple cardinality of the ConnectedTolink property allows that
the substitution of a “normal” link with its backup one un-affects the logical
connection between two nodes. This way, namely, only the ConnectedToLink
value changes, whereas the two nodes are reconnected using the same inter-
faces (and IP addresses. To constraint these concepts more explicitly, a boolean
property, Backup, is attached to the Links class in order to represent each link
type. The logical connection between two neighbor nodes has been explicitly
represented, using the property which has been attached to the Node class; Has-
Neighbor is a symmetric property (i.e. if A is a neighbor of B, it is also true
the inverse) and it relates members of the Node class to other members of the
same class. The intrinsic limitations of OWL expressiveness do not allow to
relate the HasNeighbor property to other topology information, thus limiting
the knowledge representation. Figure 2.2(b) shows an example of HWNetEntity
instances related among them by the above mentioned properties, and defin-
ing the connection between two nodes. A more deeply look at HWNetEntities
reveals that each class owns several properties that define more precisely their
nature and functioning. For instance IFaces are uniquely identified by their
Address and have references to the queue associated to them, where packets
waiting for processing or transmission are stored. Links are modeled in a very
detailed way, because of their importance in monitoring resource allocation and
traffic distribution and in improving network performance. They have proper-
ties (such as Technology, Bandwidth etc...), describing their physical features,
and a Cost, which represents the routing information about their cost shared at
a given moment by the whole network. Other important properties represent
link usage, relating links with the traffic flows they are transmitting. We will
describe in more details these last properties in the following sections, when
traffic concepts will be clearer and traffic distribution representation will be
exhaustively examined. Network nodes are catalogued as Hosts and Routers
(figure 2.1), differing for the number of interfaces they have: the first are all
those nodes that have more than one Iface (i.e. where the HasIFace property
has a minimum cardinality of two) while Hosts have only one.All Nodes, Routers
or Hosts, perform routing functions and need routing information to accomplish
them. This is most important functioning aspect from a management point of
view and it has been formalized by the HasRoutingTable property, which links
each node with its own RoutingTable (figure 2.3).

The RoutingTable class constitutes a subclass of the more general SWNe-
tEntity class (figure 2.1). The concept of SWNetEntity models the software

Figure 2.3: ObjectProperties relating the Node, RoutingTable and RTEntry
classes.

8

components that play a central role in network functioning and that are rel-
evant for monitoring purposes. The SWNetEntity class is further divided in
three subclasses: besides the RoutingTable class, there are the RTEntry class
and the Queue class.The first two classes, RoutingTable and RTEntry, are both
used to describe the routing information present on a node. RoutingTables are
defined as aggregations of instances of the RTEntry class, through the HasEn-
try ObjectProperty. Members of the HasEntry class represent routing table
rows, and contain the information needed to forward packets toward a single
destination; they have explicit references to the destination Node they concern
(DestNode property) and to the neighbor Node (NeighborNode property) to
which packets are forwarded to reach the destination. This specific represen-
tation choice, using a class to represent a single routing table entry, has made
possible to express the ontological connection existing between routing informa-
tion and the network physical nodes it refers to (see figure 2.3). The cost of the
routing path toward the destination is also represented, by means of the Cost
DatatypeProperty. In order to provide knowledge about the consistency and
correctness of routing information of a node, a status DatatypeProperty, RTSta-
tus, has been attached to the RoutingTable class. This property can take one of
two values, “Normal” and “Corrupted”, where the second one represents some
entry lack or an abnormal state. Abnormal entries can present bit corruptions
or infinite cost, and both cases make impossible routing for related destinations.
The third SWNetEntity subclass is the Queue class (figure 2.1). This concept is
used to represent the buffers where packets waiting for processing or transmis-
sion are temporarily stored. To model separately the two cases, the QueueType
property has been introduced, with one of the two values “IN” and “OUT”.
Queues are associated to IFaces by the AssociatedToIFace property, while in
the IFace class there are two distinct functional properties, HasInQueue and
HasOutQueue, meaning that each IFace has exactly one Queue of “IN” type
and exactly one Queue of “OUT” type. Queues, together with links, represent
network resources whose occupation is an important parameter in measuring
traffic load and network performances. Namely, high average levels of in-queues
occupancy can be symptom of node computational resource lack with respect
to the actual traffic load, while out-queue high levels occupancy can indicate
link overload. The different meaning of in-queue and out-queue overflows is the
reason for their accurate modeling. Because of their importance, they present
properties defining their total size and their usage percentage, and explicit ref-
erences (as we will see in the following section) to the traffic data they are used
by.

9

Chapter 3

Traffic data and network
traffic distribution

Traffic is an important component of network representation, because the main
functionality the network offers to its users is to move data from a location to
another one. Network management deals with the observation and evaluation
of functioning parameters to understand whether and how well network meets
efficiency and robustness requirements carrying out the above task. Therefore,
it is impossible to build a network ontology whitout traffic concepts.
The root class of all traffic concepts is the TrafficEntity class, representing all
data flowing through the whole network. Although data could be considered as
“software” elements, they differ from the concepts represented by the SWNetEn-
tity class: namely, while SWNetEntities are part of the network communication
infrastructure that actively contribute to its functioning and participate in traffic
management, TrafficEntities represent the traffic crossing the network and ex-
ploiting its infrastructure, its resources and its ability to move data. The general
concept of TrafficEntity (see figure 3.1) is specialized into two subclasses, Data-
gram and Flow, representing data at different levels of abstraction. The first
one identifies a single IP Datagram, which is the atomic traffic unit managed by
the Internet network layer, and it has properties representing its typical features
like size, source and destination parameters (Length, SourceNode and DestNode
properties). The Flow class defines traffic at higher level, aggregating datagrams
flowing along the same routing path and thus sharing the same source and des-
tination parameters. The Flow class owns the HasDatagram property, it takes
multiple values over the Datagram class and it defines the relationship with the
set of units composing the flow. Moreover, the Flow class has the SourceNode

Figure 3.1: TrafficEntity hierarchy

10

and DestNode properties, but, due to OWL limitations, the constraint between
their values and the correspondent values in the Datagrams composing the flow
must remain implicit. In order to locate the Flow concept into the temporal di-
mension, two datatype properties, StartTime and EndTime, have been attached
to the class defining the time interval during which the flow takes place. A flow
is intended as a continuous data stream, although it is composed of discrete
elements (i.e. datagrams); two datagrams sharing the same routing path can be
considered as part of the same flow if they occur at two sufficiently close time
instants. It should be noticed that the Flow concept modelled here is only a re-
laxed version of the typical “network connection”, identified by five parameters:
〈SourceNode,DestNode, SourcePort,DestPort, T ransportProtocol〉; this cho-
ice has been motivated by the monitoring and controlling tasks the ontology is
defined for and fits well the representation of the three lower layers of the Inter-
net only. Roughly speaking, this view of a flow captures only those parameters
related to the routing function and those features sufficient to understand traffic
distribution. In order to explain how network resources are allocated for data
transmission, specific properties have been introduced explicitly binding traffic
data to the resources, that is queues and links, they exploit. For instance, flows
have bi-directional references to the links they flow through by means of the On-
Link property in the Flow class and the UsedByFlow in Link class. The same
way, Queues refer to the Datagrams they contain at a given instant through
the HasDatagram property. Because of the importance of resource usage mea-
surement, additional properties, such as UsedBandwidth and FlowBandwidth in
the Link class or UsedSpace in the Queue class, precisely quantify data load.
The UsedBandwidth property defines the overall used bandwidth percentage of
a link, while the FlowBandwidth property defines the bandwidth used by a sin-
gle flow in bit per second. It is implicit the association between those flows
referred in the UsedByFlow property and the correspondent usage bandwidth
expressed in the FlowBandwidth property; the binding between the sum of these
flow bandwidths and the total UsedBandwidth is implicit too. Figure 3.2 shows
the associations and properties used to represent traffic distribution.

The classes and properties described above define the structural aspects of
network functioning and traffic. Nevertheless, some interdependencies cannot
be captured through a detailed and low level description of single elements and
need a more general view of the global network status and traffic distribution.
For example, the links holding a flow are simply determined by the routing tables
of the intermediate nodes on the path from source to destination, and the flow
rate depends on the data amount the source tries to transmit; Furthermore, a

Figure 3.2: Association relating TrafficEntity subclasses to the used resources

11

Figure 3.3: Associations between Routing, RoutingTable and Flow classes

flow depends only on these routing tables or is only determined by its source
demand. Namely, the flow rate (and the used links bandwidth) depends also
on the presence and the rate of other flows, sharing the same links and the
computational resources at the same nodes. To express this kind of knowledge,
two more general classes have been introduced, formalizing the abstract concepts
of Routing and Demand respectively. Although these classes have not a direct
binding to any network element, they are useful in describing network load and
performances. Both classes are direct Thing subclasses (see figure 1.1).

The Routing concept is used to represent how the routing in the whole net-
work, determines resource allocation and usage, thus affecting performances.
This concept has two main relationships with other ontology classes: the Re-
latedTo property, which links the Routing class to the RoutingTable one, and
the DependsOnRouting property, relating the class Flow to the class Routing
(see figure 3.3). The first property shows that node routing tables represent
concretely the global routing activity, while the second one represents the de-
pendency between the resources employed by a flow along its path and the
routing activity performed by all network nodes, which forces other flows to
share the same path.

The Demand concept represents the hypothetical traffic load that would be
transmitted over the network without resource limitations. The Demand class
owns only two properties: StartTime and EndTime, representing the considered
time interval. The Demand class is furtherly specialized into two subclasses:
DemandMatrix and DMEntry (see figure 3.4), in which each source demand is
quantified. The DemandMatrix class is an aggregation of DMEntries, each one
representing the data amount (Value property) each source wanted to trans-
mit toward all the possible destinations (SourceNode and DestNode properties).
Demand is obviously an abstract concept, but its representation is useful to
make explicit that it determines real traffic load. This relationship is expressed

Figure 3.4: Demand class and its subclasses

12

Figure 3.5: ObjectProperty relating the Flow and Demand classes

by the DependsOnDemand property, linking members of the Flow class to the
Demand class (see figure 3.5).

13

Chapter 4

Events and abnormalities

As already said, NetEntities define network structural describing their statu;
TrafficEntities describe network traffic and its distribution over Links and Queues,
Routing and Demand outline the internal mechanisms that generate a particular
global status of the network. The external representation of network dynamic
evolution from a state to the following one can be done introducing the concept
of Event. The Event class represents a general concept, used to identify what-
ever can happen in the network; it has the only Time and OnEntity properties,
indicating the instant and location at which it takes place. This general concept
is then specified into more concrete classes which model different kind of event.
Event hierarchy is displayed in figure 4.1.

The Event class has three main subclasses, which group together events hav-
ing a similar nature and affecting network state in a similar way: LostPkt Evt,
StateChange Evt and Traffic Evt. LostPkt Evts are used to indicate that a
datagram has been discarded by a router, and they are subdivided accord-
ing to the local reason that has caused the loss: RT LostPkts indicate data-
gram losses because of forwarding impossibility during the execution of the
routing function, while TTL LostPkts indicate datagram discarding because of
TimeToLive expiry. StateChange Evts indicate functioning status changes on
hardware or software entities (such as the going up or down of a Link or a Rout-

Figure 4.1: Event hierarchy

14

ingTable updating) and are further subdivided into NodeStateChange, LinkStat-
eChange, IFaceStateChange and RTChange. Traffic Evts describe the dynamic
flowing of traffic data through network resources and they are distinguished in
LinkUsage Evt and QueueUsage Evt. This last event is further specialized by a
more specific event, the QueueOverflow Evt.
Events in network changing play a role that is expressed by properties relating
them to entities where they take place and to functioning aspects they affect.
The Event class owns the OnEntity property, relating it to the NetEntity where
the event takes place. Event subclasses have restrictions about the entity type
in the OnEntity range. For example, within the StateChange Evt class, the
value of the OnEntity property identifies the hardware or software entity whose
state has changed; in its LinkStateChange subclass, the same property is re-
stricted to have values only over the Link class. The three StateChange Evt
subclasses, LinkStateChange, IFaceStateChange and NodeStateChange classes,
also have the ChangeType property which can have values ”ON” and ”OFF”,
indicating whether the pointed HWEntity is now active or not. Instead, the
RTStateChange class has the ChangedEntry property which takes values over
the RTEntry class, and explicitly indicates the entries that have been substi-
tuted, deleted or added. Events descending from the Traffic Evt present the
same properties used before to indicate resource usage, this mean that they up-
date this property values accordingly to actual traffic distribution. Therefore,
the LinkUsage Evt has the UsedByFlow and FlowBandwidth properties, notify-
ing the change of the link bandwidth used by a single flow (this way, we also
made explicit the binding between a flow and the correspondent bandwidth it
takes on a specific link, a relation that cannot be expressed in the Link class).
In a similar way, a QueueUsage Evt has the UsedSpace property, that is also
owned by the Queue class. As an example, figure 4.2 shows how the relationship
between a QueueUsage Evt and the features it affects is represented within the
ontology.

Events embody the knowledge necessary for a management knowledge-based
system to keep up to date its network representation and to undertake diagnosis
tasks. They can be part of normal network dynamics or can be considered
as fault symptoms. In this second case, the root cause of such symptoms is
formalized, within the ontology, in the Abnormality class and is related to events

Figure 4.2: Association between Event and Entity classes

15

Figure 4.3: Abnormality hierarchy

by general cause-effect relationships. An Abnormality is linked to the set of
events it causes by means of the Causes property, inverse of the CausedBy
property in the Event class. Events and Abnormalities have a very different
ontological nature: while Events are instantaneous manifestations of a change
or happening, have a precise temporal and spatial location and can be locally
caught by ”ad hoc” sensors, Abnormalities represent a more global kind of
information and define a misfunctioning state, which can involve many network
elements placed at different locations, can persist over time and can reveal itself
in a wide range of external symptoms. For this reasons Abnormalities and
Events have no inheritance relationships in their ontological representation and
they are direct subclasses of the generic Thing class. The multiple symptom
manifestation is reflected by the multiple cardinality of the Causes property.

The abnormalities represented in our ontology are those detected by the
Logical Reasoner; therefore, as shown in figure 4.3, there are four Abnormal-
ity subclasses: Loop, Disconnection, RTCorruption and Congestion. Each of
these classes has suitable properties defining what are entities involved in the
abnormal situation and, what is the Abnormality location (e.g. source and des-
tination parameters of cyclic or disconnected paths, nodes and links involved in
a congestion situation etc...). Moreover, each Abnormality is related explicitly
to its possible symptoms by restrictions on the Causes property. Restrictions
have been placed on the CausedBy property of the Event class, too. For in-
stance, through restrictions the Causes property in the Disconnection class is
forced to take values only over the RT LostPkt class, while this kind of event
can in turn be caused by both Disconnection and RTCorruption abnormalities.
All the restrictions expressing the cause-effect relationships between Event and
Abnormality subclasses are shown in figure 4.4. It is worth to notice that, in our
ontological representation, Events are not classified on the basis of their normal
or abnormal nature, but with respect to the network change they produce. This
form of representation derives from the active interpretation performed by a
reasoning process that identifies the abnormal nature of an Event and detects
its Abnormality root cause. Namely, while Events can be locally detected, Ab-
normalities need an analysis process to be detected, combining different events
with more general knowledge and with global status information. For exam-
ple, a Disconnection abnormality, which commonly causes RT LostPkt events
on the involved routers (where specific sensors are installed), can’t be locally
identified; it is necessary a comprehensive view of network status and a high

16

Figure 4.4: Restrictions on the Causes/CausedBy properties relating Abnormal-
ity and Event subclasses

level knowledge about RT LostPkt possible causes to determine its presence.
Since Events are very important in the execution of management tasks, they
represent a central concept of this ontology and occur as reference in a wide
set of properties, describing how they are locally caught and stored, notified to
the central management application and used to undertake fault diagnosis and
statistical performance evaluation. All these properties will be full detailed in
the remainder of the paper.

17

Chapter 5

Actions and tools for the
execution of management
tasks

The ontology previously described covers the conceptual definition of the net-
work as a self-contained system; it features its structure, functioning and dy-
namic evolution, capturing the high level knowledge that is necessary to un-
derstand the different factors, interdependencies and cause-effect relationships
which contribute to determine network behavior. This account of knowledge
makes a management application able to perform high-level management tasks.
Even though the ”operational knowledge”, which such an application uses to
solve problems and undertake specific strategies, is not represented (accord-
ing to ontology purposes), our ontology models the most representative man-
agement infrastructure elements and the most representative interactions that
enable management. Therefore ontology doesn’t represent, for instance, the
logical path the reasoner uses to classify events and detect abnormalities, nor
the criteria it uses to evaluate performances or the reasoning and computations
it performs to decide on suitable interventions. The ontology describes the
underlying infrastructure and knowledge necessary to accomplish these tasks,
making explicit the relationship between monitoring and controlling tools and
the network functioning parameters they respectively observe and affect, thus
providing the Logical Reasoner with a high level view of how to use them. How-
ever, the first part of the ontology remains the most general and, therefore, the
most reusable one.
Next section briefly introduces the system architecture and outlines how its main
elements are represented within the ontology. Then, the following paragraphs
full detail ontological representation of the interactions between these elements,
grouping them according to phase they are involved in and the management
tasks they support.

18

Figure 5.1: Architecture overview

5.1 Architecture overview and architectural el-
ement representation

The management system we are developing is based on the presence of a logical
inference engine, the Reasoner, and distributed agents, the programmable Local
Agents. The first one acts as a centralized management application while the
second one provide the Reasoner with support for the execution of high-level
management tasks.

The architectural framework is based on the Active Network paradigm. Rea-
soner and PLAs represent the end points of management communication. Com-
munication is made possible by a gateway service provided by one of network
nodes. The Reasoner issues command and receives information from ANGate-
way having the task of receveing and sending active packets from the network;
active packets can contain code to be executed on network nodes. Figure 5.1
shows the network management architecture and its main elements, while figure
5.2 shows the main classes used by the ontology to represent them.
PLAs are provided with a set of sensors, which are able to monitor specific
aspects of the node, that is, specific functioning parameters. Thanks to net-
work programmability provided by Active Network, sensors can be dynamically
deployed by Reasoner across the whole network; moreover they can be oppor-
tunely tuned by Reasoner exploiting PLAs services. Sensors are represented,
within the ontology, by the Sensor class, subclass of the ManagementTool class
(see figure 5.3), which groups together some instruments that the managing
entities, (Reasoner and PLAs) can use to perform management tasks. Beside
the Sensor class, another ManagementTool specialization is the Capsule class,
which represents active packets containing some code to be executed on network
nodes. Sensor ability to capture local events is expressed by the CatchesEvent
property, relating the Sensor class to the Event one. The Sensor class is fur-
ther subdivided into more specific classes, each one representing a particular

19

Figure 5.2: The main classes used to represent the management framework

Figure 5.3: ManagementTool hierarchy

20

kind of sensor, which catches a particular kind of event. Furthermore, some
Sensors have additional properties, which represent monitoring parameters the
Reasoner can tune. Sensor tuning consists in the variation of these parame-
ters, such as the sampling frequency at which observations take place or the
conditions under which events are raised. For example, the QueueUsage Sns
class have the SamplingRate property, which represents the sampling frequency
at which queues are observed; instead, the Threshold parameter represents the
alarm value above which a QueueOverflow Evt has to be raised. The Reasoner
performs two kinds of reasoning processes: reactive on line reasoning and off-line
analyses about past. Since these two management activities have been devel-
oped as independent tasks, two different reasoning agents can be singled out.
The OnLineReasoner (OnLR) performs dynamic reasoning: it collects real-time
information about the network, reasons about it to infer abnormalities and, on
the basis of its inferences, opportunely reacts to tune the monitoring system
and to undertake fault recovery interventions. Complex statistical analysis and
performance evaluation are more difficult tasks, involving knowledge about net-
work past functioning and requiring complex reasoning; they are executed by
the OffLineReasoner (OffLR), which can in turn suggest suitable actions aim-
ing at improving the quality of service. OffLR suggestions are then transformed
into concrete interventions by the OnLR; namely, it is the only agent that ef-
fectively performs control tasks and issues commands to be locally executed by
the distributed agents.
The distributed agents, then, have two accomplish two main tasks: they have
to manage monitoring information, making it available for the Reasoner, and
to execute issued commands, allowing remote control of managed devices.
PLAs and Reasoner are represented as Actor subclasses (see figure 5.2). The
Actor concept has been introduced in order to represent the active role played
by managing agents. Actors are described through their properties and, through
the actions they perform, which make clear actors interactions and the mecha-
nisms through which they carry out their tasks.
PLA class is shown in figure 5.4. It has some properties identifying PLA loca-
tion, status and managed elements. It has the OnNode property, which specifies
the node on which the PLA is running and takes values in the Node class. The
PLAStatus DatatypeProperty defines PLA status, expressing whether the PLA
is now active or not. Since PLAs are responsible for sensor concrete tuning and
for observations notification and storing, they have references to the installed
sensors and to the installed LDB; these associations are represented by the
HasSensor and HasLDB properties, which have value respectively in the Sen-
sor and LDB classes. The SupportedSensorType property represents all kinds
of sensors that can be installed on the considered PLA. PLAs representation,
together with the actions they perform, lets one understand the information flow
from the network to the Reasoner for monitoring information retrieval and, vice
versa, the command flow from the Reasoner to the network for control purposes.
Figure 5.5 shows the Reasoner class; it has the property InfersAbnormality de-
scribing its reasoning capability and, expressing one of its features that cannot
be seen through its actions.
The Reasoner class is further specialized into two subclasses, the OnLineRea-
soner (OnLR) and OffLineReasoner (OffLR), which represent the two different
agents into which the Reasoner is decomposed. The role distinction between
the two agents is made clear by the different kinds of actions they execute, as

21

Figure 5.4: PLA class

Figure 5.5: Reasoner class and its subclasses

shown by opportune restrictions on their Acts property. Another distinction
between the OnLR and the OffLR classes is represented by the ComputesMa-
trix property, only present in the OffLR class. This property ranges over the
TrafficMatrix class, which is a subclass of the more general TrafficStatistics
one representing statistical information about traffic load and traffic distribu-
tion and are drawn out by means of complex computations that the OffLR is
able to perform. The OffLR retrieves the information it need from suitable in-
formation bases. Sensor observations are locally stored into special databases,
called LocalDatabases, installed on network nodes and managed by PLA. Lo-
calDatabases can be remotely queried by the OffLR and they are not the only
information source for the OffLR. Nemely, there is also a centralized database,
called GlobalDatabase (GDB), where both the OnLR and the OffLR store the
results of their inferential process. GDB information is retrieved only by the
OffLR, to support its reasoning about past. The two database are represented,
in the ontology, by the LocalDatabase and GlobalDatabase classes, both direct
subclasses of the Database class (see figure 5.6). The Database class has no
special properties, while each of its subclasses has a single property which es-
tablishes the correspondence between the stored information and the network
aspects it concerns.

In particular, the LDB class has the CaughtEvent property, while the GDB
has the InferredAbnormality property. LDBs, in fact, store rough data about
all monitored functioning parameters, that is, they store all detected events.

22

Figure 5.6: Database hierarchy and the ObjectProperties of related subclasses

The GDB, instead, stores higher level information about past, so its informa-
tion content is more dense and meaningful. The InferredAbnormality property,
relating the GDB class to the stored Abnormalities, expresses the above con-
cept. The two CaughtEvent and InferredAbnormality properties, making clear
the ontological relationship that holds among stored information and network
functioning, provide this information with univocal semantics. To understand
what is actors’ active role, it is necessary to examine their actions. The Action
class and the Actor one are related to each other by two inverse properties: the
Acts property in the Actor class, which ranges over the Action class, and the
ActedBy property in the Action class (see figure 5.7). Actions are classified on
the basis of their nature and of the effects they are able to produce in network
behavior; therefore, each actor can execute different kinds of actions. To express
explicitly the role of each actor, restrictions are attached to the Acts and Act-
edBy within the Actor and Action subclasses, respectively. These restrictions
identify what actions each actor performs and, on the contrary, what actors
can execute each action. Figure 5.8 shows all these restrictions, giving a first
overview of Actors role and, displays all of Action direct subclasses.
Since Actions are used to describe the mechanisms through which management
takes place, they will be described in detail according to the management tasks
they are involved in.

Figure 5.7: Relationships binding Actor and Action classes

23

Figure 5.8: Restrictions on the Acts property expressing what kind of Action
each Actor performs

5.2 Information gathering

In order to explain the mechanisms of monitoring information collection and
their storage in the Reasoner, the ontology describes the events capturing mech-
anisms and those Actions executed by PLAs to store information locally or to
provide the OnLR with real-time data; it also describes those Actions the Of-
fLR uses to retrieve information from databases about past network function-
ing, and those that both Reasoner agents use to store their inferential results
for further off-line reasoning. The first step toward information gathering is
represented by the sensor monitoring activity. Each Sensor instance is linked
to those events it captures through the CatchesEvent property. This property,
whose generic range is the Event class, has suitable restrictions in each Sensor
subclass, expressing what sensors capture what events: for instance, sensors of
TTL LostPkt Sns type are related to instances of the TTL LostPKT Evt class
and, similarly, the RoutingTable Sns class is related to the RTStateChange one
(see figure 5.9).

Figure 5.9: Restrictions on the CatchesEvent property, expressing what kind of
Event each Sensor captures

24

The representation of the ontological association between Sensors and Events
is necessary for the OnLineReasoner in order to opportunely deploy sensors over
the network and to tune them according to the current network state; only if
the Reasoner knows what sensors are able to collect the information it needs,
it can activate and adjust them to capture the right information at the right
moment and place.
Sensors and sensor observations are locally managed by the Programmable Lo-
cal Agents running on network nodes. PLAs notify events to the Reasoner
throughhe actions that are represented by the NotifyAction class, direct sub-
class of the Action class. The NotifyAction class owns three main properties,
Notifies, CaughtEvent and SensorID, and its ActedBy property is restricted to
take values in the PLA class. The CaughtEvent and the SensorID properties
are used to identify the notified event and the sensor which has caught it. The
Notifies property relates the action to the actor who is notified. Since the OnLR
is the only agent which need real-time information about network dynamic evo-
lution to support its reactive behavior, the Notifies property has values only
in the OnLR class. Figure 5.10 shows how events are caught and notified in
real-time.
To store sensor observations into the LocalDatabases, PLAs perform the LD-
BInsert Actn; it is a special kind of DBAction, which is one of the Action direct
subclasses. The LDBInsert Actn class (as the NotifyAction one) has the Caugh-
tEvent and SensorID properties; these properties relate it to the Event that has
to be stored and to the Sensor which has caught it (see figure 5.11).

The NotifyAction and the LDBInsert Actn represent the two main services
concerning sensor observation treatment. Since the OnLR can enable or dis-
able notification and recording services as necessary, the above actions are per-
formed only when required; for this reason two flags have been attached to
the Sensor class; moreover the NotifyAction and LDBInsert Actn has been
bound to their values. The two flags are NotifyToRNL and RecordOnLDB, and
indicate whether the notification and recording services, respectively, are en-
abled. Within the NotifyAction and the LDBInsert Actn classes, the SensorID
property is constrained to take values only over those instances of the Sensor
class having the value ”true” in their NotifyToRNL and RecordOnLDB flags re-
spectively. Moreover, in the Sensor class, the SensorStatus property indicates

Figure 5.10: Relationships expressing how sensor observations are notified to
the OnLR

25

Figure 5.11: Properties expressing how sensor observations are stored into Lo-
calDatabases

whether a Sensor is ”ON” or ”OFF”, where an ”OFF” status implies that both
the two mentioned flags are ”false”.
Since the OffLR is devoted to off-line complex computations, it does not ”react”
to network evolution, nor it takes any measure directly. So, the only actions
the OffLR perform aim at information retrieval and storing. Off-line informa-
tion retrieval is formalized by the LDBQuery Actn and GDBQuery Actn classes
(see figure 5.12). To collect rough data directly from LocalDatabases, the Of-
fLR performs the LDBQuery Actn. Through this action, it can retrieve all the
events that have taken place during a specific time interval. The time interval is
specified by the StartTime and EndTime properties, while the collected events
are pointed by the CaughtEvent property. The LDBQuery Actn also inherits
from the Database class the DB property, which identifies the queried Database.
The GDBQuery Actn class, very similar to the LDBQuery Actn one, represents
information retrieval from the GDB. Reflecting the type of information GDB
stores, it differs from the LDBQuery Actn class only for the InferredAbnormal-
ity property, which substitutes the CaughtEvent property. It takes values over
the Abnormality class and identifies those Abnormalities, eventually of a specific
kind, which have involved the network during the specified time interval.

The actions that permit the storage of information about detected abnormal-
ities in the GlobalDatabase are represented as instances of the GDBInsert Actn

Figure 5.12: Actions performed by OffLR to retrieve information and related
associations

26

Figure 5.13: The Action used to store information into the GlobalDatabase and
its related associations

class, also subclass of the DBAction one. As shown in figure 5.13, this action
is executed by both OnLR and OffLR to allow further off-line reasoning. The
GDBInsert Actn class is very similar to the LDBInsert Actn one, instead of the
CaughtEvent property it owns the InferredAbnormality one.

5.3 Network control and monitoring

In this section we are going to analyse the control mechanisms through which
network control can be performed by the OnLR. We will also describe the Re-
storeAction class, which represents control actions executed by external actors.
Since the OnLR is devoted to reactive management, the event notification makes
it able to keep up to date its network representation, following network dynamic
evolution. Moreover it can perform on-line inferences by merging incoming
events with its network status representation.
The OnLR can then use the results of its on-line reasoning to ”react” to network
status. This reactive behavior shows the OnLR in two functionalities: fault re-
covery and monitoring tuning. Moreover, since the OnLR can interact with
the network to affect its behavior, it undertakes actions on the basis of OffLR
suggestions aiming at performance improving. To accomplish control tasks and
to opportunely focus monitoring resources, the OnLR needs to know the remote
services it can exploit and the commands it can issue; in particular, it has to
know sensor features and to represent how its actions affect network behavior.
For this reason, the ontology includes classes and properties to represent this
knowledge. In order to represent explicitly OnLR ability to influence network
behavior, the CommandAction class has been introduced. CommandActions are
in opposition to the BasicAction class, which represents those actions performed
by PLAs on the basis of OnLR commands. The ontological difference between
the two classes is that BasicActions can directly affect network behavior, while
CommandActions cannot do it. Nevertheless, CommandActions representation
is necessary to express OnLR ability to initiate a sequence of steps that will fi-
nally cause network status changes. Namely, each CommandAction is related to
the correspondent BasicAction to be executed, by means of the RequestedAction
property. To explicitly represent effects produced by BasicActions, they have
the Causes property relating them to the Events they cause. The BasicAction
class is intended to represent the internal mechanism that forces a change, while
Event instances represent their external manifestation. As it should be noticed,

27

Figure 5.14: Set of properties which represent how OnLR commands are exe-
cuted and affect network behavior

this is the same cause-effect relationship between Events and Abnormalities;
this is the reason why the same pair of properties, Cause/CausedBy, is used in
both cases. Events caused by BasicAction instances can be detected by sensors
as other events. The representation of the class chain between OnLR, Comman-
dAction, BasicAction, Event (see figure 5.14) provides OnLR commands with
clear semantics, since it expresses explicitly what is their ontological association
with the network functioning changes they determine.

CommandAction and BasicAction classes are both direct subclasses of the
Action class and they have the same hierarchical structure, creating, then, a
one-to-one correspondence between them. This correspondence is clarified by
the RequestedAction property, which, as mentioned above, links each Comman-
dAction to the correspondent BasicAction to be executed. Restrictions are
placed on the RequestedAction class within each CommandAction subclass to
link each command only to the correspondent BasicAction. Figure 5.15 shows
CommandAction hierarchy.

The CommandAction class also has the ToPLA property, which has val-
ues in the PLA class and identifies the PLA whose support is requested for
command execution. The CommandAction class is specified (as BasicAction
class) into three subclasses: ChangeLinkCost Cmd, SwitchLink Cmd and Tune-
Sensor Cmd, whose correspondent classes in the BasicAction subtree are respec-
tively ChangeLinkCost Actn, SwitchLink Actn and TuneSensor Actn. While the
first two classes represent network control actions, the TuneSensor Cmd groups
together all those actions through which the OnLR can adjust sensors in order
to capture the most meaningful information at the right moments and places.

Figure 5.15: CommandAction hierarchy

28

Parameters necessary to specify each command are not included in the consid-
ered CommandAction subclass, but only in the related BasicAction. Namely,
since the CommandAction is already related to the BasicAction by means of its
RequestedAction property, further parameter specification would be redundant.
For example, the link to be switched is specified within the SwitchLink Actn
class (through the OnLink property) and not in the SwitchLink Cmd class.
The SwitchLink Cmd is an example of a reactive control action, which causes in-
stances of the LinkStateChange Evt. The ChangeType property attached to the
SwitchLink Actn specifies if the link has to be activated or disabled. Switch-
ing on a link represents a fault recovery action. Namely, it is issued by the
OnLR when a disconnection occurs in order to restore connectivity; it takes
advantage from backup link presence (modelled within the ontology as HWNe-
tEntities description explains). The ChangeLinkCost Cmd is an example of
those actions, undertaken on OffLR suggestion, aiming at improving network
performances. They need complex off-line statistical analyses for network per-
formance evaluation and are the result of suitable algorithms for OSPF link
weight optimisation. On the basis of this computation, the OnLR effectively
orders the link cost redistribution, issuing the ChangeLinkCost Cmd. The re-
quested ChangeLinkCost Actn presents the OnLink and Cost properties. The
former relates the action to the link it concerns. The latter is a datatype prop-
erty that identifies the new link weight. It is interesting to notice that the
Causes property of this BasicAction is restricted to take values in the RT-
StateChange class. This association makes clear the ontological relationship
between the action and the functioning aspects it affects; together with the
Routing concept, it represents what knowledge the Reasoner need to capture
how traffic distribution is related to the routing activity and, so, how traffic
can be redistributed to exploit better available resources and meet user needs.
The TuneSensor Cmd class is subdivided into five subclasses, each modifying
a monitoring parameter of programmable sensors. Its correspondent TuneSen-
sor Actn class has the SensorID property, which identifies what sensor has to
be tuned. Each TuneSensor Actn subclass has suitable restrictions on its Sen-
sorID property, necessary when the action affects monitoring parameters that
only some sensors have. For example, the ChangeThreshold Actn concerns only
the QueueUsage Sns class, because only QueueUsage sensors have a thresh-
old parameter. Two TuneSensor Actn subclasses, SwitchRecording Actn and
SwitchNotification Actn concern the enabling of the two main services asso-
ciated to sensor observations described above, in the context of information
gathering. These actions affect the two flags, NotifyToRNL and RecordOnLDB,
in the Sensor instance pointed by the SensorID property. The other three
TuneSensor Actn subclasses, ChangeRecordingRate, ChangeSamplingRate and
ChangeThreshold, are used to change sensor monitoring parameters. The consid-
ered parameter is specified by the same properties that describe it in the Sensor
class. For example, the new threshold value for a QueueUsage Sns instance is
specified by the Threshold property in the ChangeThreshold Actn class, which
is the same property as in the QueueUsage Sns class. Knowledge about the
sensor monitoring parameters and the mechanisms to change them can be used
by the OnLR not only to gather the necessary information, but also to make
the right information available for OffLR statistical computations. For exam-
ple, the traffic sensors have many parameters (SamplingRate, RecordingRate,
Threshold) which the OnLR tunes according to the actual traffic load in or-

29

Figure 5.16: RestoreAction class hierarchy

der to focus attention and intensify monitoring in those areas where congestion
situations have been inferred. So, the OffLR will successively have much more
information about the most meaningful periods and areas for performance eval-
uation purposes. A special kind of control actions, which are not acted by the
actors represented within the ontology, is the RestoreAction class. This class
represents those actions performed by external actors (i.e. human operators)
in order to recover the proper functioning of some entities. RestoreActions are
necessary when an entity is gone out of order and cannot be remotely controlled
because it needs a direct intervention. This kind of intervention is typically nec-
essary only for hardware entities, so the RestoreAction class is subdivided into
three subclasses, each concerning a HWNetEntity subclass: RestoreNode Actn,
RestoreIFace Actn, RestoreLink Actn. The OnEntity ObjectProperty relates
the RestoreAction class to the HWNetEntity one and it is further specified by
suitable restrictions within RestoreAction subclasses (see figure 5.16). As pre-
viously said, an abnormal state in HWNetEntity functioning is represented by
an ”ABN” value in its HWStatus property. So, the OnEntity property can
take values only over those HWNetEntity instances whose HWStatus is actu-
ally ”ABN”. The RestoreAction can change this state into ”OFF”, meaning
that entity can be controlled again and reactivated as necessary. Then, the rep-
resentation of RestoreActions is necessary for the Reasoner to understand the
mechanism through which external interventions recover abnormal states, and
the Reasoner can update properly entity status.

5.4 Inferential processes: fault diagnosis and sta-
tistical analyses

The Reasoner ability to reason about network events, merging them with
its global status representation and with its high level knowledge, is one of its
features that cannot be represented through its actions. To represent explicitly
this aspect of management, two properties have been introduced: InfersAb-
normality and ComputesMatrix. The first one represents the fault diagnosis

30

activity, which is performed by both Reasoner agents, then it is attached to the
Reasoner class. Instead, the ComputesMatrix property is present only in the
OffLR class, because it refers to statistical complex computations performed
only by this agent. As we have outlined in previously sections, the InfersAbnor-
mality property is useful to represent active interpretation of events performed
by the Reasoner, which effectively establishes the connection between event
instances and abnormalities at their origin. The logical process which guide
the Reasoner toward abnormalities diagnosis is supported by knowledge about
network topology, network status at the considered time instants, general cause-
effect relationships between events and abnormalities and also representation of
the actions performed by PLAs executing it commands. Knowledge about the
general cause-effect relationships between Events and Abnormalities (expressed
by means of the Causes and CausedBy properties as seen above) is used by
the Reasoner to know where and how to look for fault root causes; given some
alarms related to possible abnormal events, it uses this account of knowledge
to gather the right information, and to analyse the right network areas and the
right network functioning aspects in order to infer the presence of a specific
abnormality. In this mechanism, particular events (for example, packet losses
and queue overflows) are ”alarms” that initiate further reasoning and analysis
in the Reasoner inferential process. It is worth to notice that the cause-effect
relationships relating ontology Event and Abnormality classes are intended to
be the high level knowledge guiding the information retrieval and the logical
process toward fault detection; instead, the binding between a specific Event
instance and its specific Abnormality cause represents the result of this infer-
ence process; only at the end of this process, events will be classified. Thanks
to active interpretation, two instances of the same kind of Event can be con-
sidered both ”normal” or ”abnormal” according to the actual network status.
The above consideration explains also other representation choices, such as the
classification of events according to their nature and the explicit formalization of
action effects on network functioning. During reactive management, knowledge
about action effects is necessary to make the OnLR able to interpret incoming
events in the right way. Looking at the classes already described, we can see
as the representation of the class chain between OnLR, CommandAction, Ba-
sicAction, Event makes the OnLR able to recognize what events are caused by
its commands. The ability to discern unforeseen events from those generated
by control commands makes possible to interpret the same event in different
ways. For example, when the OnLR orders to switch off a HWNetEntity (as
with the SwitchLink Cmd class), it knows that the consequent StateChange Evt
raised by sensors is caused by its command, then, it knows that it isn’t abnor-
mal, but a foreseen result of its actions. This way, the entity status in OnLR
representation will not become ”ABN”, but will take the ”OFF” value. It is
worth to notice that sensor observations are not ”intelligent”: sensors can only
detect the activity of an entity; so the raised StateChange Evts can have only
two values in their ChangeType property: ”ON” and ”OFF”. On the contrary,
entity status in Reasoner’s representation can have three values: ”ON”, ”OFF”,
and ”ABN”: between event notification and status updating there is Reasoner’s
interpretation ability. At the end of some inferential steps an event will be clas-
sified as ”normal” or ”abnormal”. If it is part of normal network dynamics, its
CausedBy property will not have any value; if it is caused by issued commands,
its CausedBy property will have as value the BasicAction at its origin; if it is

31

Figure 5.17: Set of properties describing how reactive management takes place

caused by a fault situation, its CausedBy property will be bound to the inferred
Abnormality. Figure 5.17 shows the main properties which allow to understand
how OnLR receives real-time monitoring information, how it infers the presence
of some abnormalities and reacts to network state performing an active events
interpretation.
Off-line reasoning, besides fault diagnosis purposes, aims at statistical evaluation
of network performances. In order to represent this ability, the ComputesMatrix
property relates the OffLR class to the TrafficMatrix class, descending from the
TrafficStatistics class that represents statistical information about traffic load
and traffic distribution. To represent the time interval they concern, the Start-
Time and EndTime datatype properties are attached to the class. The Traffic-
Statistics class is divided into two subclasses: TrafficMatrix and TMEntry (see
figure 5.18).

As the DemandMatrix class, the TrafficMatrix class is represented has an ag-
gregation of TMEntry instances, through the HasEntry property. The TMEntry
class represents the traffic information (Value property) concerning only a pair
of source and destination nodes, referenced by the SourceNode and DestNode

Figure 5.18: TrafficStatistics hierarchy

32

Figure 5.19: ObjectProperties relating each TMEntry instance to the events,
flows and nodes it concerns hierarchy

properties (see figure 5.19). These two properties take values over the Node class
and show the ontological relation between the statistical information and the
nodes it refers to. Since statistical information is drawn out from a large amount
of rough data about past network functioning, the ComputedFromEvents prop-
erty makes clear the tie between original data and high-level statistical results.
This property has values in the LinkUsage Evt subclass of Event, because this
kind of event represents the basic input for traffic statistics computation. The
AboutFlows property expressly relates the statistical information in a TMEntry
to the traffic which has flowed between the two source and destination nodes.
This property makes clear that, even if statistical computation produces only a
single result, it summarizes traffic information about (generally) different data
flows. During the whole considered time interval, in fact, various independent
flows could have taken place and, for this reason, the AboutFlows property has
a multiple cardinality. The constraints between event occurrence time and the
statistic time interval are implicit, as also are those relating the SourceNode
and DestNode values in the TMEntry class to the same properties values in the
referenced flows (AboutFlows property).
Statistical information represents information about network functioning at a
higher level of abstraction; it is used by the OffLR to evaluate medium per-
formances, to detect resource deficiency and to suggest suitable interventions.
For example, statistical traffic information can be used to redistribute link costs,
forcing routing to exploit available resources better. Figure 5.20 shows the main
properties used to describe off-line information retrieval and analyses.

33

Figure 5.20: Set of properties describing how off-line analyses take are performed

34

Bibliography

[1] T. R. Gruber, “A translation approach to portable ontology specifications,”
Knowledge Acquisition, vol. 5, no. 2, pp. 199 – 220, 1993.

[2] T. R. Gruber, “Toward principles for the design of ontologies used for knowl-
edge sharing,” International Journal of Human-Computer Studies, vol. 43,
pp. 907–928, 1995.

[3] G. Antoniou and F. van Harmelen, “Web Ontology Language: OWL,”
in The Handbook on Ontologies in Information Systems, S. Staab and
R. Studer, Eds. 2003, Springer Verlag.

[4] S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D. L. McGuinness,
P. F. Patel-Schneider, and L. A. Stein, “OWL Web Ontology Language
guide,” in W3C Recommendation,, Feb 2004, http://www.w3.org/TR/owl-
guide/.

[5] V. Haarslev and R. Mø”ller, “Racer: An OWL Reasoning Agent for the
Semantic Web,” in International Workshop on Applications, Products and
Services of Web-based Support Systems,, Al-Shaer and G. Pacifici, Eds.,
Canada, Oct 2003, pp. 91–95, in conjunction with the 2003 IEEE/WIC
International Conference on Web Intelligence.

[6] J. Gennari, M. A. Musen, R. W. Fergerson, W. E. Grosso, M. Crubézy,
H. Eriksson, N. F. Noy, and S. W. Tu, “The evolution of Protégé: An envi-
ronment for knowledge-based systems development,” International Journal
of Human Computer Studies, vol. 58, no. 1, pp. 89–123, 2003.

[7] N. F. Noy, R. W. Fergerson, and M. A. Musen, “The knowledge model
of Protégé-2000: Combining interoperability and flexibility,” in Proc. 2nd
Int’l Conf. on Knowledge Engineering and Knowledge Management, Juan-
les-Pins, France, 2000.

[8] H. Knublauch, M. A. Musen, and A. L. Rector, “Editing description logic
ontologies with the Protégé OWL plugin,” in International Workshop on
Description Logics - DL2004, i, Ed., Canada, 2004.

35

