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Introduction 
High Energy Physics (HEP) experiments generate huge amounts of data that require classification 
and event discrimination. As example, a run on the Collider Detector at Fermilab generates a 
dataset of events characterized by the generation of top/anti-top quark couples. 
The top/anti-top quark couples was discovered at the Fermilab Tevatron in 1995. This was either 
the culmination of the nearly two decades of intense research at particle accelerators around the 
world, or the major triumph for the Standard Model of particle physics since it predicted the top 
quark existence. In HEP experiments, along with interesting events, background noise is generated 
by the collision, which occurs in a very small time lapse. Different backgrounds have very different 
kinematics properties, so HEP data classification is a very complex tasks. 
Neural networks have been applied in HEP experiments as function approximators to obtain a 
functional form which describes some distribution [1], [2], or for event classification, combining 
information from different variables [3], [4], [5]. On the other hand, neural based high speed 
triggering devices, normally organized in a hierarchy, are then required to discriminate useful data 
from background noise [6], [7]. 

 

 

Background 
Notoriously, data sets used in typical neural network applications are characterized by large 
cardinality and unknown statistical distribution. There is in fact no guarantee that input-output pairs 
be statistically significant when considered under neural network testing, which makes the 
traditional test-set validation procedure potentially incorrect. 
The authors have previously introduced three ”quality factors” to give a measure, without using the 
test set, of the generalization capability of a feed-forward neural network. Based on the properties 
of these quality indexes, the E-αNet architecture has been developed and successfully employed in 
several application contexts [8], [9]. 
In other application arenas, the authors have developed a simulation environment for a Multi-Layer 
Perceptron (MLP) design showing large performance ratings in terms of both recognition rate and 
classification speed. This design uses sinusoidal shaped activation functions for hidden layer 
neurons and linear functions for output layer neurons. Successful applications of the design have 
been reported in the area of handwritten character recognition [10] and road sign recognition [11], 
[12]. 
The EαNet is a feed forward neural architecture capable to learn the activation function of its 
hidden units during the training phase. These networks are characterized by low quality factors 
when compared to traditional feed-forward networks with sigmoidal activation functions. Network 
learning capability has been obtained through the combination of Powell modified Conjugate 
Gradient Descent (CGD) [13] and the Hermite regression formula. Hidden layer activation 
functions are based on the first R Hermite orthonormal functions where R is a priori chosen before 
the learning process. 
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Experiments and Results 
 

Balanced 10-fold cross validation 
The performances of our artificial neural network, E-αNet, were evaluated on a 10-fold cross 
validation strategy, balanced version, referred to as  1B Strategy. In this strategy,  ten (10) different 
groups of events comprised four hundred and nineteen (419) background pattern, and four hundred 
and nineteen (419) "top" patterns were available. Hence, both train and test are balanced. These ten 
groups were stored onto ten files that are referred to as S1B_01.txt, S1B_02.txt, ..., S1B_10.txt. 
Each of these files has eight hundred and thirty-eight (838) rows, and nine (9) columns. The first 
eight columns represent the features characterizing an event, whereas the last column defines the 
class which an event belongs to ( zero for a background event, and one for a top one).  Furthermore, 
nine sets were used to carry out the train phase, and only one set for the test phase. All possible 
combinations of the ten (10) files were gathered by pooling together the data according to the 
following equation  
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 , where n=10 and k=9. 

 
Each of the above combinations was labelled as G#, where # goes through  1,2, …, 10, and Figure 1 
gives a picture of  the generating  procedure. 
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Figure. 1 
The classification quality is given averaging over the ten test seasons the efficiency and purity 
factors, which are defined as follows, 
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Data Pre-elaboration 
Since E-αNet doesn’t work well with the given raw data, a pre-elaboration of the G# groups was 
performed. For each of the G# a new group, labeled Gtemp#, was generated according to the bello 
criteria, 
 

• For each G#:  merge together nine training files in only one file,  called set9 
• Suppose each feature (Fj) of the set9 as belonging to a Gaussian with means µj and variance 

σj
2, where j runs from one (1) to eight (8). Each column is then normalized as follows, 
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• All features of the test set are normalized using µj and σj

2 and (4). 
 
The new groups are referred to as G°#, and Fjs are the new features.  
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Architecture set-up 
E-αNet is an artificial neural network characterized by different parameters,  some of them are tied 
up to the problem others have to be assigned by the developers. 
E-αNet parameters are input/output numbers, Hermite polynomials numbers, and number of the 
hidden units. 
The number of Input/Output is established and in our problem is eight (8 ) for inputs and two (2) for 
output, indeed fourteen Hermite polynomials have been chosen to catch the best performance. 
Setting the number of hidden layer is more difficult than others parameters, then CSAI developers 
have decided to extract from experimental method (try and error?). In the following of this 
paragraph the above strategy will be shown. 
 
 

 
 Try and error strategy 

 
G°1 is the only group among the ten ones that will be considered; it will not use directly but 
it is still processed to obtain a new training set; indeed the test set is the same. 
Exactly G°1train has split in three sub-sets that we will call set1, set2 and set3. Set1 is 
compounded by the first 838 rows of G°1train ; set2 is compounded by the first 838*3 rows of 
G°1train and at last set9 corresponds to the whole G°1train  
After the pre-elaboration of the train data set the actually training starts: 

I. E-αNet has trained with the events of the set1. After 100000 iterations a temporary  
train error and  temporary weights will be obtained.  

II.  Starting from the weights of the phase I, the ANN has trained using set2. Also now, 
after 100000 iteration, a temporary train error and temporary weights will be 
obtained. 
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III. It is the last phase, it starts from phase II, the train set corresponds with set9. The 
outputs are a train error and the weights for the given architecture. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
For each train phase a corresponding test phase is run, so efficiency and purity parameters 
and test error can be computed. These values and train error are used to choose the right 
architecture. 
 

 8-12-2 8-20-2 8-25-2 8-30-2 8-64-2 
 Train 

error % 
Test 
error % 

Train 
error % 

Test 
error % 

Train 
error % 

Test 
error % 

Train 
error % 

Test 
error % 

Train 
error % 

Test  
error % 

Set1 0 33,05 0 32,43 0 33,67 0 32,70 0 29,00 
Set2 4 31,26 12 29,50 6,32 32,46 3,38 32,46 0 33,41 
Set3 22,3 21 

 

22,1 22,05 

 

19,5 22,32 

 

19,1 24,82 

 

12,6 30,43 
  

The symbol 8-N-2 will be used to indicate the architecture that has got N hidden layers. 
The tested architecture are: 8-12-2, 8-20-2, 8-25-2, 8-30-2 and 8-64-2. The above table shows all 
results. According with the CSAI researcher knowledge the best compromise between test, train 
error and complexity of the architecture is given by 8-25-2 one. 
 
 

Balanced 10-fold cross validation results 
Now to test the 8-25-2 architecture by (with) 10-fold strategy it is needed that every G°# group is 
processed as it is done for G°1. Then each group is submitted to the I, II and III try and error 
phases, and besides for each group is run a test phase. Table summarized all results.  
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 Group 1 Group 2 Group 3 Group 4 Group 5 

 Train 
error % 

Test 
error % 

Train 
error % 

Test 
error % 

Train 
error % 

Test 
error % 

Train 
error % 

Test 
error % 

Train 
error % 

Test 
error % 

Set1 0 32,7 0 34,84 0 33,65 0 35,68 0 32,34 

Set2 9,62 31,86 7,59 36,16 8,81 32,34 9,14 34,13 9,42 32,34 

Set3 19,53 22,32 18,59 27,09 19,37 28,04 18,85 26,49 19,76 24,94 

Efficiency 
set3 

0,773 0,732 0,727 0,747 0,773 

Purity 
set3 

 

0,778 

 

0,727 

 

0,717 

 

0,731 

 

O,738 

 Group 6 Group 7 Group 8 Group 9 Group 10 

 Train 
error % 

Test 
error % 

Train 
error % 

Test 
error % 

Train 
error % 

Test 
error % 

Train 
error % 

Test 
error % 

Train 
error % 

Test 
error % 

Set1 0 34,84 0 36,87 0 32,22 0 32,22 0 31,03 

Set2 9,22 31,61 8,91 31,86 8,15 30,07 8,27 33,05 8,47 32,22 

Set3 19,96 23,87 19,39 26,25 19,61 25,78 19,57 24,22 18,81 25,78 

Efficiency 
set3 

0,758 0,732 0,758 0,782 0,735 

Purity 
set3 

 

0,762 

 

0,739 

 

0,734 

 

0,745 

 

0,745 

train average 
error % 

test average 
error %  

set1 set2 set3 set1 set2 Set3 

 

 

0 8,77 19,3 

 

33,6 32,5 25,4 

 

 

 

   

efficiency average 0,752 

 

purity average 0,742 

 

  
 
 
 
The efficiency is high when the system is biased towards the positive class (its class estimate is 
likely to be positive). On the other hand, when the system faces with high purity, it classifies a point 
as positive (the true target will probably be positive). Figure 2 shows the purity variation as a 
function of efficiency. 
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Purity vs. Efficiency
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