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Abstract

Today, with increasing Internet complexity, Network Management [1, 2, 3] be-
comes a complex activity requiring the human intervention to create action
management plans, to coordinate network assets and to face fault situations.
Network Management involves several functionalities grouped together in five
areas: fault, performance, configuration, accounting and security. Traditional
Network Management applications are coordinated by a central management
entity, as in the Simple Network Management Protocol (SNMP) [4, 5], and very
often the managing entity consists of a simple interface to a human system ad-
ministrator. Recently, some authors [6, 7] have proposed a knowledge-based
approach to face Network Management problems. These works propose the
adoption of a higher level Knowledge Representation. According to these works,
our project proposes the improvement of computer network management by the
adoption of artificial intelligence techniques [8].

A Logical Reasoner acts as an external managing entity capable of directing,
coordinating and stimulating actions in an active management architecture [9].
Our system is based on the adoption of an active network framework, extend-
ing the distributed architecture proposed in [10] In order to capture network
events, the Reasoner deploys programmable sensors on active nodes. Active
networks enable network dynamic programming and allow an easy deployment
of “ad hoc” solutions. The Logical Reasoner is based on the logical formalism
provided by the Situation Calculus [11, 12] a logic language specifically designed
for representing dynamically changing world. To implement the Reasoner, we
adopted the Reactive Golog language, a specification of the Situation Calculus
designed to model reactive behavior.

The remainder of this work is structured as follows. Chapter 1 introduces
how the Situation Calculus, and in particular the Reactive Golog implemen-
tation, can be adopted to model dynamism of network events. Chapter 2 il-
lustrates the Network Management architecture in which the logical Reasoner
interacts with other network components; a high level description of various
agents that compose the Reasoner is also presented, and section 2.1 describes
the communication role of the Gateway, a fundamental component of the archi-
tecture. Chapter 3 describes how the network, in its static and dynamic aspects,
is represented inside Reasoner agents. In chapter 4 are explained reasoning ways
of principal Reasoner agents. Finally, in chapter 5 the Global database, used to
store Reasoner inference results, is described.



Chapter 1

Situation Calculus

Our Logical Reasoning system finds its theoretical foundation in a second order
logical language called Situation Calculus[11]. In the Situation Calculus repre-
sentation, every domain changing is seen as result of an action. A world history
is represented by a first logic term called situation, a simple sequence of actions.

Situation Calculus uses two terms to indicate situations:

S0, denotes the initial situation;

do(A,S), denotes the situation following from the situation S after the
execution of the action A.

Language terms referred to world entities are objects. Relations whose truth-
values may vary in different situations are called relational fluents. They are
represented by means of predicate symbols which take a situation term as their
last argument. The causal law between an action and the consequent change
of a fluent value is expressed by an instance of the successor state axiom. For
example, we can consider a simple fluent showing if a network node is on:

node on(X, S). If this term is true, the node X is on in the situation S.

Actions that affect this fluent are:

node up(X), denotes turning on the node X;
node down(X), denotes turning off the node X.

The successor state axioms provide a complete description of the fluent evo-
lution in response to primitive actions. They are needed for each predicate that
may change its truth value over the time. The successor state axiom for node on
fluent is:

node on(X, do(A,S)) : − A = node up(X).
node on(X, do(A,S)) : − node on(X, S), not A = node down(X).
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This axiom indicates that the node X becomes on after the execution of
action node up(X), or after the execution of every action different from the ac-
tion node down(X), if the node X is on in the last situation. Primitive action
preconditions are rules describing when actions can be carried out given a state
of the world. The preconditions are stated by fluents. For example action pre-
conditions for actions node up(X) and node down(X) may be:

Poss(node down(X), S) : − node on(X, S).

It indicates that the execution of the node up(X) action is possible in a sit-
uation in which node X is not on.

Poss(node up(X), S) : − not node on(X, S).

It indicates that the execution of the node down(X) action is possible in a
situation in which node X is on.

1.1 Reactive Golog

In order to implement the system we adopted the Reactive Golog[12] (RGolog)
language as the specific reasoning environment. RGolog, is a language planned
for modelling reactive systems, implemented in Prolog language. The formal-
ization of the world in the RGolog is performed through well formed formulas
of the first order logic, while the dynamism is captured through the primitive
concepts of state, primitive action and fluent. We can think the state as a snap-
shot of the world at a determined moment. All changes to the world can be
seen as the result of some primitive actions. Relations whose truth-values may
vary in different situations are called relational fluents. They are represented
by means of predicate symbols, which take a situation term as their last ar-
gument. Primitive actions preconditions are rules that describe when actions
can be carried out given a state of the world. The preconditions are stated by
fluents. The successor state axioms provide a complete description about the
fluents evolution in response to primitive actions. They are needed for each
predicate that may change its truth-value over the time. Procedures represent
the complex actions and constitute one of the most important features of the
Reactive Golog. They allow to group long sequences of primitive actions and to
implement recursive formulas. Like in the imperative languages, they use formal
parameters. Generally, dynamic systems are not totally isolated by the rest of
the world, but they continually receive solicitations and they interact with the
external world. The Reactive Golog rules allow these interactions describing
how the world evolves when an external action is performed. This aspect is the
so-called “reactive behaviour”.

In Reactive Golog there are two types of actions: primitive actions, exe-
cuted by the system, and exogenous actions, executed by the external world.
Therefore, there are two kinds of interaction between the system and the exter-
nal world: the system changes the world by its actions, and the external world
influences the system behaviour by its exogenous actions. A primitive action
has an explicit identification by the term primitive action. For instance for the
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action node up and node down we can have:

primitive action(node up(X)).
primitive action(node down(X)).

The insertion of exogenous actions into the system is realized by a Prolog
rule, whose head is

exoTransition(S, S1).

The situation S1, returned by this rules, follows the situation S after the ex-
ecution of an exogenous action. Reactive system behaviour is implemented by
a concurrent interleaving of a control procedure with a procedure for interrupt
management. For convention this procedure is called rules. The implementa-
tion of RGolog interpreter implies that a primitive action execution triggers the
introduction of an exogenous action and the execution of the rules procedure.
The operator that returns the situation obtained from another situation after
an action execution is doR operator, defined by the following rule:

doR(A,Rules, S, S1) : −primitive action(A), poss(A,S),
exoTransition(do(A,S), S2), doR(Rules,Rules, S2, S1).

The doR operator allows the execution also of complex actions. For example
we report main complex actions used in the system implementation:

doR(E,Rules, S, S1) executes of the action or the procedure E;
doR(?(P ), Rules, S, S1) tests the truth value of expression P;
doR(E1 : E2, Rules, S, S1) executes actions E1 and E2 sequentially;
doR(E1#E2, Rules, S, S1) executes E1 or E2 indifferently;
doR(if(P,E1, E2), Rules, S, S1) executes E1 if the expression P is true,

else executes E2;
doR(while(P,E), Rules, S, S1) executes E more times while the condition

P became false.

The expression that defines a procedure is:

proc(procedure name(param 1, param 2, .., param n), actions).
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Chapter 2

System Architecture

In this work a logical reasoning system is proposed as a Knowledge based net-
work management entity. Figure 2.1 shows the system architecture.

Figure 2.1: System Architecture

The whole architecture is based on the active network emerging technology.
By means of active network programmability it is possible to distribute code over
all the network, thus obtaining highly flexible management services that can be
tuned remotely by the logical reasoning system (Reasoner). Moreover, network
programmability enables the distribution of data, reducing the amount of traffic
related to management activities and also the Reasoner computational load. The
Reasoner sends request to the active network and receives information from it,
through a network access point (Gateway). The Gateway provides a translation
service to the Reasoner, offering it a transparent access to the network. This
way, the Reasoner implementation is fully independent of the language adopted
by the active network execution environment.

A local management agent, Programmable Local Agent (PLA), is resident
on each active node. Programmability is the most important characteristic of
an active node. Namely, it is possible to change dynamically the management
services offered by each node, by sending opportune messages called active cap-

4



sules. Using these capsules, the Reasoner can distribute code over the whole
network, obtaining a very dynamic and flexible management tool.

PLAs, besides answering Reasoner requests, may perform asynchronous ac-
tions whenever some events occur. This event-response mechanism is imple-
mented by means of a particular structure of the management objects contained
in the node MIB (Management Information Base). These objects are not simple
variables, but complex structures containing code fragments. Because of this
characteristic the Information Base is no longer called MIB, but AMIB (Active
Management Information Base) to indicate active archives of information.

The capability of sending opportune messages, which can set actions that
a PLA must perform when an event occurs, makes possible the introduction
into the network of new behaviors or the tuning of some existing ones. Many
sensors can be installed on a PLA. We can imagine a sensor as an entity that
captures network events. Data obtained by sensor activity may be notified
to the Reasoner to support reactive behavior, or recorded in local Data Bases
(LDB) maintained on each active node. Stored information can be used by the
Reasoner to analyze network history. Furthermore, each PLA provides a set of
parametric sensors, i.e. sensors for which it is allowed the tuning of sampling
or recording frequencies. Active network capabilities are also used to distribute
code over the network in order to implement distributed management services.
An example of distributed services is the service capable of loop discovering.

Fundamentally, reasoning activities can be carried out in two different ways:
on-line and off-line. The two reasoning processes can be executed as independent
tasks, since they are quite dissimilar and exploit different network representa-
tions. For these reasons, two separate blocks compose our logical system: the
On-Line Reasoner (OnLR) and the Off-Line Reasoner (OffLR).

The two reasoning components communicate with the network in different
ways because of their different goals. OnLR is responsible for reactive behavior
and uses information notified by sensors in order to maintain an always-updated
network representation and to gather events that can be interpreted as malfunc-
tion symptoms. It sends messages in the network to set management services
and to actively interfere, modifying network behaviors. Results achieved by
OnLR reasoning are also stored in a Global Data Base (GDB).

In order to perform complex “a posteriori” analysis of network functioning,
the OffLR exploits information stored in both GDB and LDB. Its communica-
tion with the active network is devoted only to obtain information about past
events, and its behavior can be considered static. However, also the results ob-
tained by OffLR are stored in the GDB. As an example we provide the following
scenario of Reasoner intervention. A user, typically a human supervisor, can
send queries to the Reasoner through a GUI, in order to reconstruct the whole
network state during a given time interval, or to examine events happened in
a limited network area. OnLR manages these queries exploiting specific OffLR
capabilities. A more detailed analysis reveals the modular composition both of
the OnLR and of the OffLR.

OnLR is composed by three modules or agents:

OnLR Core,

OnLR TrafficMonitor,

QueryHandler.
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Figure 2.2: OnLR modular structure

Figure 2.2 shows the OnLR structure.
OnLR Core agent is responsible of fault management, OnLR Traffic-Monitor
agent is responsible of traffic sensors tuning in relation to traffic condition,
and QueryHandler agent answers users queries using OffLR capabilities. Since
their different nature, OnLR agents were implemented by using different tools,
in relation with their requirements. OnLR Core and OnLR Traffic-Monitor
agents constitute the reactive part of the system, and are implemented us-
ing the RGolog language. Differently from previous agents, the QueryHandler,
since it does not need to exhibit a reactive behavior, it is implemented in Prolog
language. Furthermore, it does not communicate with the gateway but only
with the GUI, in order to receive user queries, and with the OffLR, in order to
answer queries.

OffLR is composed by various agents specifically designed to manage par-
ticular kinds of query. These agents have different reasoning capabilities, each
of which is devoted to a specific task, or a particular functioning aspect to be
reconstructed or examined. However, each agent gathers only information nec-
essary to it, and it is specialized in performing only a kind of reasoning.
Currently, OffLR agents are:

OffLR SearchOnPath

It searches for causes of faults occurred while
an end-to-end connection. It uses past infer-
ence results contained in the GDB.If neces-
sary, it starts the OffLR SearchLDB agent.

OffLR RestoreNetStatus

It reconstructs the network functioning his-
tory during a given time interval. It uses LDB
information and, if necessary, it starts the Of-
fLR Disconnection agent.
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OffLR SearchLDB

It searches for fault causes on a single path
during a given time interval. It uses LDB
information and the OffLR Disconnection.

OffLR Disconnection
It reconstructs the node status history in order
to verify network connectivity.

2.1 Gateway Communication Services

The communication between the Reasoner and the network agents is mediated
by a Gateway service. Fundamentally, the Gateway offers a translation service
both to the Reasoner and to network PLAs. It is a server listening to network
and to Reasoner agents. In order to manage these two different kinds of commu-
nication, it adopts independent threads. For each Reasoner agent, the Gateway
forks a thread connected to a correspondent one on the network side.

The communications Reasoner-Gateway and vice versa are implemented on
two different channels. The Reasoner sends XML messages to the Gateway
through a port on which this is listening as a server, while the Gateway sends
Prolog predicates to the Reasoner through an apposite communication stream.

Last form of communication is implemented by means of libraries that en-
able a Java process to interface a Prolog one (on which the Reasoner agent is
running). The interprocess communication libraries make the Prolog and Java
processes parts of a single control thread, so, when one of this two processes is
running, the other must be waiting.

In order to execute the Reasoner’s commands, the Gateway operates on
two sides: on the former, it operates as a translator, converting XML message
originated by the Reasoner in a particular language adopted by the network
execution environment; on the latter, it is responsible for injecting into the
network the opportune code implementing the Reasoner requests. To this end,
the Gateway maintains a list of opportune code fragments bounded to each
Reasoner request, thus supplying the Reasoner with a transparent access for
different network architectures. Active nodes support active packets (capsules)
implemented in different languages such as PLAN, ANTS, and ASP. In our
experiments, we adopted the PLAN language to implement services used by the
Reasoner. However, the Gateway services allowed the Reasoner development in
an independent way from the network language.

At start time, the Reasoner sends a special XML message to the port on
which the Gateway is listening, giving the initial signal for the connection setup.
The sending of XML messages from Prolog processes is implemented by means
of C external predicates. The Gateway, at the reception of initial signal, creates
an interface toward the Reasoner process returning the control to it. The Rea-
soner can read from the communication stream created at start time or return
the control to the Gateway in order to continue its execution. This mecha-
nism allows the introduction of exogenous actions into the OnLR Core and the
OnLR TrafficMonitor, and that of Prolog Predicates into OffLR agents.

In the following, as an example, we show the Prolog predicate which allows
the introduction of exogenous actions in the OnLR Core.
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exoTransition(S1, S2) : −
requestExogenousAction(E,S1),
(E = nil, S2 = S1;notE = nil, S2 = do(E,S1)).

requestExogenousAction(E,S) : −
remote yield(peer), read exdr(gw to rnlCore,E1),
( (E1 = nil; poss(E1, S)), E = E1;

not(E1 = nil), not poss(E1, S),
/ ∗ Action not possible ∗ /
requestExogenousAction(E,S)

).

When the Gateway receives an XML message from a Reasoners agent in
order to send a request to the network, it will select an active packet and it will
inject it into the network.

When the Gateway receives a message from the network, it will produce the
introduction of Prolog predicates into the communication stream toward the
Reasoner.

The OnLR Core and the OnLR TrafficMonitor agents exploit the Gateway
services in order to demand the activation or tuning of services to PLAs, and
to receive exogenous actions from the network.

Differently from them, the QueryHandler agent does not communicate with
the Gateway, since its main task is to wait user queries and to answer them using
OffLR reasoning. It is worth to notice that communication between Gateway
and OnLR Core is not limited only to XML requests to PLA, and to exoge-
nous actions. Namely, at start time, the Reasoner asks the Gateway in order
to obtain the network topology. After this request, the Gateway collects all
topology information sending a special request message to every network node
and waiting for their answers. It then will create a series of Prolog predicates
representing the static network representation for the Reasoner that will be sent
into the communication stream toward the OnLR Core. The OnLR Core will
be responsible to store these Prolog representation in a topology.pl file, which
will be used by each agent needing such static knowledge.

OffLR uses Gateway only to obtain information stored into LDB. These
requests are implemented by single XML messages in which a set of parameters
specifies some attributes such as the node toward which the request is addressed,
the typology of information requested, or the time interval considered. The
request is translated by the Gateway in an active capsule that requests the
PLA to extract this information from its LDB, using all the log files that cover
the whole time interval. The information retrieved is sent to the Gateway, which
will translate it into Prolog predicates to insert into the apposite communication
stream.
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Chapter 3

Network Representation

3.1 Static Representation

OnLR and OffLR adopt a static representation of the network in order to iden-
tify the network hardware entities and their physical connections. This simple
representation is achieved by means of Prolog predicates that the Gateway as-
serts on the basis of its knowledge of the network and sends to the OnLR at boot
time. The OnLR shares this information with the OffLR. The Prolog predicates
used to describe the topology and entities of the network are:

node(X) denote that X is a node;
link(X) denote that X is a link;
iface(X) denote that X is an interface;
iface node(X, Y ) denote that X is an interface installed on node Y;
connect(N1, N2, L, I1, I2) denote that interface I1, on node N1, and

interface I2, on node N2, are connected by link L.

This simple and naive representation can be considered suitable for the OffLR,
which does not need to know the network evolution and the occurrence of events.
Similar considerations can be, also, applied to the QueryHandler agent, since
it does not interoperate with network. On the other hand, OnLR agents need
a dynamic network representation in order to continuously maintain an update
model of the world and to reason in real-time on it.

3.2 Dynamic Representation

The status of the network can continuously change and the OnLR needs to
know such changes and how to represent them. Situation Calculus represents
the dynamic aspects of the world by means of a set of fluents, each of which de-
notes a truth value of a given feature in a particular situation. The OnLR Core
agent and the OnLR TrafficMonitor agent may adopt different fluents in order
to represent the same concept because of their different interests. For instance,
the node status fluent maintained by the OnLR Core agent takes into account
a complex status in order to represent both network and system actions. The
monitored network can notify a node bootstrap or shutdown. The OnLR Core
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agent can require to turn on or to turn off a node in the observed network.
Using this fluent, the OnLR Core is able to understand if the shutdown of a
node was abnormal (it did not send any request) or not. The primitive actions
which influence the node status fluent for OnLR Core are:

node up(N,T ime) PLA action which notifies an effectively node turning
on;

node down(N,T ime) PLA action which notifies an effectively node turning
off;

command node up(N) OnLR action to demand a node turning on from a
PLA;

command node down(N) OnLR action to demand a node turning off from a
PLA;

restore node(N)
External action to notify that a human operator re-
stored a node normally functioning after a fault oc-
curred.

The node status fluent of the OnLR Core is shown in the following:

node status(N, on, do(A, S)):-
node status(N, on, S), not A=node down(N, Time),

not A=command node down(N);
A=node up(N, Time).

node status(N, off, do(A, S)):-
node status(N, off, S), not A=node up(N, Time),

not A=command node up(N);
A=node down(N, Time), node status(N, wait off, S);
A=restore node(N).

node status(N, abn, do(A, S)):-
node status(N, abn, S), not A=restore node(N);
A=node down(N, Time), not node status(N, wait off, S).

node status(N, wait on, do(A, S)):-
node status(N, wait on, S), not A=node up(N, Time);
A=command node up(N).

node status(N, wait off, do(A, S)):-
node status(N, wait off, S), not A=node down(N, Time);
A=command node down(N).

The fluent considers five possible node status values:

• on: indicates the normal node functioning;

• off: indicates that the node was normally turned off, and the possibility
to turn it on;

• abn: indicates an abnormal status where the node is out of service and
some external action is needed to restore normal conditions;

• wait on: indicates node off; however the OnLR Core has required to turn
the node on, but it has not yet received any feedback;

• wait off: indicates node on; however the OnLR Core has required to turn
the node off, but it has not yet received any feedback.
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A different version of the node status fluent is maintained by the OnLR Traf-
ficMonitor agent. This is because OnLR TrafficMonitor is not able to modify
node status, and consequently, it does not model the Reasoner actions. It only
needs to know if a node is on or off, as it is shown in the following:

node status(N, on, do(A, S)):-
node status(N, on, S), not A=node down(N, Time);
A=node up(N, Time).

node status(N, off, do(A, S)):-
node status(N, off, S), not A=node up(N, Time);
A=node down(N, Time).

The OnLR Core and the OnLR TrafficMonitor maintain similar fluents to rep-
resents the status of some other entities (link, interface). Another fundamental
feature represented by both the agents is the status of the network sensors. The
following fluent, adopted for this goal, is similar for both agents:

sensor status(N, Type, on, do(A, S)):-
sensor status(N, Type, on, S), not A=sensor down(N, Type, Time),

not A=command sensor down(N, Type);
/*if the status was on, the command sensor up action

does not cause any change*/
A=sensor up(N, Type, Time).

sensor status(N, Type, off, do(A, S)):-
sensor status(N, Type, off, S), not A=sensor up(N, Type, Time),

not A=command sensor up(N, Type);
/* if the status was off, the command sensor down action

does not cause any change */
A=sensor down(N, Type, Time);
A=node down(N, ).

sensor stas(N, Type, wait on, do(A, S)):-
sensor status(N, Type, wait on, S), not A=sensor up(N, Type, Time);
A=command sensor up(N, Type), not sensor status(N, Type, on, S).

/*command sensor up action sets on the status value,
only if the status is not on*/

sensor status(N, Type, wait off, do(A, S)):-
sensor status(N, Type, wait off, S),

not A=sensor down(N, Type, Time);
A=command sensor down(N, Type),

not sensor status(N, Type, off, S).
/* command sensor down action sets off the status value,

only if the status is not off */
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Previous fluent denotes the status of a particular sensor type installed on a
given node. It is influenced by the sensor up, sensor down, command sensor up,
and command sensor down actions, which have a similar behavior to that of
the analogous actions that influence a node status. Command actions for the
OnLR TrafficMonitor are different from these, since for sensors managed by this
module it is possible to specify some parametric options, such as the sampling
and recording rates. The command action to turn on a sensor is:

command sensor up(N,Type,SamplingRate,RecordRate).
Both the agents adopt a quite similar sensor status fluent, alhtough it rep-

resents different concepts. For the OnLR Core agent, the sensor status cor-
responds to notify a working condition, while for the OnLR TrafficMonitor, it
corresponds only to store a working condition. However, OnLR TrafficMonitor
adopts a different fluent in order to explicitly represent the notification of work-
ing condition. Since the OnLR TrafficMonitor is responsible for the tuning of
traffic sensor funcionalities, it maintains a set of fluents which represent sen-
sor parameters, such as recording rate, sampling rate and queue threshold (for
queue sensor). These features are modeled by the following fluents:

sensor threshold(N,Type,Thr,do(A,S)):-
sensor threshold(N,Type,Thr,S),not A=change threshold(N,Type, );
A=change threshold(N,Type,Thr);
A=command snsNotify up(N,Type,Thr).

sensor smplRate(N,Type,SRate,do(A,S)):-
sensor smplRate(N,Type,SRate,S), not A=change smplRate(N,Type, );
A=change smplRate(N,Type,SRate);
A=command sensor up(N,Type,SRate, ).

sensor recordRate(N,Type,RRate,do(A,S)):-
sensor recordRate(N,Type,RRate,S), not A=change recordRate(N,Type, );
A=change recordRate(N,Type,RRate);
A=command sensor up(N,Type, ,RRate).

The actions change recordRate, change smplRate, change threshold mod-
ify sensor parameter values. The setting of these values does not require any
network feedback.
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Chapter 4

Logical Reasoning

4.1 OnLR Core inferences

The OnLR Core managing agent observes, collects, and analyzes network events
in order to detect abnormal behaviours. It performs this task by means of
its reactive behaviour and its capability of interacting with the network. The
interaction capability allows the OnLR Core to exploit the services offered by
the programmable networking environment, in order to perform a more in-depth
analysis of its current conditions. The OnLR Core looks for anomaly symptoms
that may allow it to infer a deterioration of the network quality of services. For
instance, if a network user observes a low quality in its services, perhaps its
communication flow is suffering packet losses. On the basis of this information,
the OnLR Core focuses its reasoning on packet losses occurred in the network.
In order to analyze packet losses, the reasoner uses a basic set of sensors which
is always activated. This basic set is formed by sensors of lost packets and
sensors which notify network condition variations. Sensors which reveal packet
losses are named TTL LostPkt and RT LostPkt. The TTL LostPkt sensor sends
a notification whenever a packet is rejected in a network node because of its
zero time-to-live. The RT LostPkt sensor sends a notification whenever it is not
possible routing a packet on a network node. This last condition can be caused
by the absence of the corresponding entry in the routing table or by an infinite
cost of the path. A Packet loss is notified asynchronously by the PLA resident
on the node where the event occurs.

The AliveNeighbor/DeadNeighbor are two other sensors belonging to the
previous set. They reveal node condition variations that they are capable of
sensing, by using a mechanism based on the exchange of ICMP messages. Their
actions consist, respectively, in the notification of a neighbor status variation
(a neighbor previously on is become off, or vice versa). Without their sensing
actions, the OnLR Core agent could not know the status of network nodes or
at least it could obtain the same information with a big overhead of message
exchange with the Gateway.

The OnLR Core agent is responsible to start and to stop other specific agents
of the reasoning system. However, since all the reasoner agents are completely
independent, no communication form between them is implemented.

Furthermore, the OnLR Core maintains a fluent called fault in order to
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identify faults which have been notified but not yet analyzed. First parameter
of fault fluent allows the identifictaion of the fault type and determines the
number and the meaning of the other following parameters.

For instance, events considered faults are a packet loss due to a null TTL or
a packet loss due to a routing table corruption. An example of the Fault fluent
is shown in the following:

fault(ttl lostPkt(N,Src,Dest), T ime, do(A,S)) : −
fault(ttl lostPkt(N,Src,Dest), T ime, S),

notA = fault down(ttl lostPkt(N,Src,Dest), T ime);
A = ttl lostPkt up(N,Src,Dest, T ime).

fault(rt lostPkt(N,Src,Dest), T ime, do(A,S)) : −
fault(rt lostPkt(N,Src,Dest), T ime, S),

notA = fault down(rt lostPkt(N,Src,Dest), T ime);
A = rt lostPkt up(N,Src,Dest, T ime).

The actions that influence the previous fluent are:

ttl lostPkt up(N,Src,Dest, T ime)

PLA action that notify a lost packet for
TTL at zero; N identify the node on
which packet is rejected, Src and Dest
are packet path parameters;

rt lostPkt up(N,Src,Dest, T ime)

PLA action that notifies a packet loss
due to routing problems; reported pa-
rameters have the same meaning of the
previous action;

fault down(X, T ime) OnLR Core action which makes false
this fluent.

The first two actions are due to the PLA external notifications which are
generated by the asynchronous event reporting mechanism. The fault notifica-
tion contains, also, some information about its local cause. During the fault
management, the OnLR Core can also store information in the GDB, operate
in order to restore network normal working conditions, or activate more deeper
analyses. These analyses are capable of finding global problems that a sim-
ple local sensor cannot reveal. The logical connection between a fault and its
root cause is expressed by logical rules constituting the inferential engine of the
OnLR Core.

A set of test condition in the rules procedure, allows the OnLR Core to
identify the typology of fault it must analyze.

As an example, rt lostPkt fault is identified by the following test:

?(fault(rt lostPkt(Node, Src, Dest), Time))

When this test succeeds the OnLR Core must analyze different possibilities:
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- If the packet destination node is off, it has not to longer investigate:

?(-node status(Dest, on)):
?(writeln(”Destination node is off”)) :
fault down(rt lostPkt(Node, Src, Dest), Time)

- If the destination node is on, the OnLR Core tries to understand if it is not
reachable because of a network disconnection, i.e. because a path connect-
ing the Src and Dest nodes does not exist. In this case, the abnormality
is stored into the GDB:

?(node status(Dest, on)):
?(-minpath(Src, Dest, , )) :
?(writeln(”Network disconnection”)) :
?(sql login(netlogDB, rnl, scalculus)) :
?(sql insert(’RNLInference’,

[’Type’, ’Node’, ’Source’, ’Dest’, ’Time’],
[’disconnection’, Node, Src, Dest, Time])) :

?(sql logout) :
fault down(rt lostPkt(Node, Src, Dest), Time)

In some situations, it is possible to solve this abnormality turning on
some backup nodes or links which can reconnect the network. It should
be noticed that backup node and links in normal conditions have their
status off, i.e. their status can be turned on whenever it is necessary:

?(minpath backup(Src, Dest, Path1, Cost1)) :
/*this predicate finds a connection path from Src node to Dest node

containing backup node also*/
?(check bac(Path1, Temp)):

/*this predicate returns a list composed by all backup nodes contained
in path Path1*/
?(port(P)) : resume node(Temp, P)

/*resume node is a procedure that sends a turning on command to each
node contained in Temp list*/

- If the fault is not due to one of previous scenarios, the OnLR Core infers
a probable routing table corruption which disables the forwarding. This
result is inserted into the GDB:

?(node status(Dest, on)) : ?(minpath(Src, Dest, , )) :
?(writeln(”Routing table corruption”)) :
?(sql login(netlogDB, rnl, scalculus)) : ?(sql insert(’RNLInference’,

[’Type’, ’Node’, ’Source’, ’Dest’, ’Time’],
[’corruptedRT’, Node, Src, Dest, Time])) :

?(sql logout) :
fault down(rt lostPkt(Node, Src, Dest), Time)
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A ttl lostPkt may be caused by a routing loop ob the path from Src to
Dest node. In order to discover a loop, the OnLR Core invokes a distributed
monitoring service:

?(fault(ttl lostPkt(Node, Src, Dest), Time)) :
?(port(P)) : ?(request loop(Src, Dest, P)) :
fault down(ttl lostPkt(Node, Src, Dest), Time)

The distributed service which performs the loop monitoring is implemented
by means of a simple agent that traverses the network from Src to Dest node.
Each visited node is stored on the loop agent. If the loop agent meets a visited
node, the PLA installed on this node executes a code fragment which sends a
notification to the OnLR Core. This notification, is translated by the Gateway
in the following exogenous action:

loop up(N, Source, Dest, Time)
The above action, together with a simmetric loop down action, are captured

by the fluent which is used to represent loops reported but not yet analyzed.
The Loop fluent is shown in the following:

loop(N, Source, Dest, Time, do(A, S)):-
loop(N, Source, Dest, Time, S),

not A=loop down(N, Source, Dest, Time);
A=loop up(N, Source, Dest, Time).

The occurrence of a Loop is analyzed by the procedure rules and it represents
one of the events which are stored in the GDB:

?(loop(Node,Src,Dest,Time)) :
?(write(”Loop”)) :
?(sql login(netlogDB,rnl,scalculus)) :
?(sql insert(’RNLInference’, [’Type’,’Node’,’Source’,’Dest’,’Time’],

[’loop’,Node,Src,Dest,Time]))
?(sql logout) :
loop down(Node,Src,Dest,Time).

It is worth to notice that the OnLR Core manages only the current faults
and anomalies. It never looks at the past network history to understand which
scenario has generated a fault, but it observes only what occurs in the network
at monitoring time. Therefore results of OnLR Core inference are recorded
in a GDB table in which a single time parameter is present. This parameter

16



represents the time at which a PLA senses a fault or in which the OnLR Core
detects an anomaly. This GDB table is named OnLR Inference and it is used as
a buffer for results achieved by the OnLR Core. Periodically, the OnLR Core
re-analyzes the information contained in this table, mining hidden data and
upper level information. For instance, through this summarization process, it
is possible to discover temporal relationships between different events, grouping
together results that can refer to a single failure. Results of this data-mining
process are inserted in “ad-hoc” tables, specific for each anomaly, in which two
temporal parameters delimit the time interval during which the anomaly occurs.

4.2 OnLR TrafficMonitor Inferences

The OnLR TrafficMonitor is responsible of the traffic sensors tuning on the basis
of the network congestion situation. As the OnLR Core, this agent communi-
cates with the Gateway agent sending XML messages and receiving RGolog
exogenous actions. The OnLR TrafficMonitor adopt a network representation
which is different from that maintained by the OnLR Core. Differently from
the latter, the former agent does not look at the network behavior in order to
detect failures, but it monitors how traffic flows exploit network resources, in
order to tune sensor activities. Sensors will collect the data used by a special
OffLR agent which will extract statistical information of network performances.
For this reason, on one hand, the OnLR TrafficMonitor does not maintain a
complex node status fluent similar to the one maintained by the OnLR Core
agent, while on the the other hand, OnLR Core agent does not use fluents which
represent the parametrical features of the sensors. On the same basis, also the
exogenous actions are different. The OnLR TrafficMonitor constitutes only a
component of a performance management tool, currently under development.
The aim of the whole subsystem will be the network traffic analysis in order
to perform network traffic optimization. Traffic optimization will increase the
quality of service and will minimize resource utilization.

The different phases of performance management, i.e. monitoring and con-
trol, will be distributed both on the OnLR and OffLR agents. The OnLR Traffic-
Monitor manages the performance monitoring, and periodically it requires a
special-purpose OffLR agent to compute the link-cost assignment by means of
algorithms [13, 14], which exploit the information stored in the local data-bases
(LDB). Using the results obtained in this phase, the OnLR TrafficMonitor exe-
cutes a performance control phase, where it sends the opportune actions to the
network in order to apply the required adjustments. Figure 4.1 illustrates the
agents and the communications involved by these activities. In this paper we de-
scribe only the OnLR TrafficMonitor. This agent is responsible of choosing the
network entity to be monitored and the monitoring parameters, such as preci-
sion level and granularity. In order to quantify the amount of resources used and
how each communication flow uses network resources, the OnLR TrafficMonitor
agent adopts three kinds of sensors: Flow sensor, InQueue sensor and Out-
Queue sensor. First sensor measures the percentage bandwidth occupied by
each flow; other sensors measure the queue occupancy over the time.

A great accuracy in recording this information is very expensive, even-
thought recording only statistical information with a too large granularity may
cause a loss of significant information with advantage of the not relevant one.
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Figure 4.1: Interactions among performance management agents

The OnLR TrafficMonitor main activity is the tuning of sensing and record-
ing instruments in order to use great accuracy in the detection of only the
meaningful information. To perform its task the agent can adjust a set of
parameters of previous sensors. For instance, all these sensors offer the capabil-
ity of tuning the sampling frequency (SamplingRate parameter) or the record-
ing rate (RecordingRate parameter). This means, it is possible to tune the
precision of information sampling and the granularity of information record-
ing. Also the queue sensors offer a Threshold parameter: it represents the
queue occupation level over which a notification message must be sent to the
OnLR TrafficMonitor. Queue overflow notification messages are translated by
the Gateway agent in exogenous actions, such as:

A = inQoverflow up(Node, Value, Time);
A = outQoverflow up(Node, IFace, Value, Time).

First action refers to an abstracted single queue associated with all the incoming
links, and second action refers to the link connected with a single outgoing
interface. This differentiation is made necessary to attribute to congestion for
outgoing link saturation more relevance than to congestion due an insufficient
node computational capability. The above actions operate on fault fluent which
collects events notified, but not yet analyzed:

fault (inQoverflow (Node, Value), Time, do(A, S)):-
A=inQoverflow up(Node, Value, Time);
fault(inQoverflow(Node, Value), Time, S),

not A=fault down(inQoverflow(Node, Value), Time).
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fault(outQoverflow(Node, IFace, Value), Time, do(A, S)):-
A=outQoverflow up(Node, IFace, Value, Time);
fault(outQoverflow(Node, IFace, Value), Time, S),

not A=fault down(outQoverflow(Node, IFace, Value), Time).

The fault down action makes false the fault fluent. There are no exogenous
action, which notify the link occupation by flows. This information is only
stored in the LDB.

OnLR TrafficMonitor distinguishes among different alarm levels and some
corresponding different levels of information accuracy. The monitoring process
starts from a low level alarm in which only the inQueue sensors are activated
with low values for all parameters. Low SamplingRate and RecordingRate
values mean a low accuracy in the information recording. A low Threshold value
means a high reactivity of the agent, given that, it receives an update whenever
the low value of threshold is exceeded. When the agent receives a notification,
it recalculates the alarm level and if there is a meaningful variation, it should
decide if the alarm notifications are homogeneusly or locally distributed over
the network. In the first case, the agent may infer that no traffic contidions
are present but threshold values are too low. It, simply, performs a threshold
tuning phase in order to reduce notification overhead. In the second case, if
the notification distribution is locally concentrated in a small network area,
it performs a more accurate spatial analysis with the aim of determining if
the congestion phenomenon occurs on a single node. In the case of isolated
phenomenon,the sensor tuning will occur only the on congested node, whilst in
the other case, it will be applied both to the congested node and to its neighbors.

Main OnLR TrafficMonitor procedure code is shown following:

( ?(fault(X,Time)) :
( ?(X=inQoverflow(Node,Value)) # ?
(X=outQoverflow(Node,Iface,Value)) ) :

/*following procedure return new alarm level*/
alarm level calcul(Node,NewLevel) :
/*control old level*/
?(alarm level(Node,OldLevel)) :
( ?(NewLevel¡=OldLevel) #

/*if the old level is lower than the new level it must
control if notification distribution is homogeneous over
the network*/

?(NewLevel¿OldLevel) :
( /*if notification distribution is homogeneous it must

perform a threshold tuning*/
?(omogeneous distribution) : threshold tuning
#
/*if there is a not homogeneous distribution it must
perform a spatial analysis */
?(-omogeneous distribution) :
( /*if Node congestion is an isolated malfunction
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phenomenon it must tune sensors only for this Node*/
?(isolated malfunction(Node)) :
?(sensor tuning([Node],OldLevel,NewLevel))
#
/*if also Node neighbor is involved in a congestion
phenomenon it must tune sensor for node and for all
its neighbor*/
?(-isolated malfunction(Node)) :
?(findall(Neigh,ph neighbor(Node,Neigh, , , ), NeighList)) :
?(sensor tuning([Node—NeighList],OldLevel,NewLevel))

) ) ) )

A graphical view of this procedure, i.e. a state diagram representing the
OnLR- Traffic-Monitor reasoning activity, is shown in figure 4.2:

Figure 4.2: State diagram of the OnLR TrafficMonitor reasoning

4.3 OffLR Inferences

The OffLR agent is responsible of executing an “a posteriori” network analysis,
using the information stored in the LDB and in the GDB. The off-line reasoning
activities are exploited by the OnLR monitoring activity and they, also, allow
to answer queries about the network past history addressed by a human ad-
ministrator to the Reasoner. This way, OffLR reduces the OnLR computations
which involve large amount of data, thus allowing it to timely react to network
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events. Off-line activity integrates the OnLR functionalities with more extensive
reasoning on long time periods rather than instantaneous sensing.

However, differently from the OnLR, OffLR performs a passive monitoring
and can not actively operate on the network. Its main task is retrieving, merging
and mining local information in order to derive global results about the network
as a whole and its functioning. Since the OffLR does not consider the network
evolution, it is not implemented in RGolog, but the Prolog language is more
suitable for its static representation of the network. The OffLR knowledge base
does not store any information about the current network condition, but it
evolves by inference about past information. OffLR reconstructs the succession
of the network functioning states during a given time interval without consider
which events triggered the transition from a state to another one. It does not
achieve a global history reconstruction for each network entity, but produces a
description of single aspects during the time, such as, for instance, the history
of a node routing table, the succession of the different states of a node, etc.
After this phase of data collection, the OffLR may relate different aspects on
the basis of its specific reasoning procedures.

Currently, traffic performance management functionalities are being added
to OffLR. With these features, OffLR will be able to perform reasoning about
the congestion phenomenon using information stored in the LDBs. In turn,
the OffLR to perform this task, exploits another agent capable of calculating
a redistribution of link cost assignment which improves the quality of service
offered by the network.

Furthermore, the OffLR is used by the network administrator to request
information about the network functioning in a past time interval. The OnLR,
through the QueryHandler agent, assigns each request to an opportune OffLR
agent that in turn may delegate other OffLR agents. When the QueryHandler
agent has to start an OffLR agent, it starts a child Eclipse process responsible of
executing the agent code compilation and the starting procedure. For instance,
in order to start the OffLR SearchOnPath agent, the OffLR agent executes the
following code:

exec([ ‘‘<ECLIPSEDIR>/bin/i386 linux/eclipse’’,‘‘-e’’,
‘‘compile(’init searchOnPath.pl’), start(Src,Dest,T1,T2)’’],

[in,out], PidCore).

The file “init searchOnPath.pl” contains the instructions for compiling the
RGolog interpreter and the opportune libraries, such as the mysql library nec-
essary to communicate with the GDB. Src and Dest parameters identify the
flow communication vertices, T1 and T2 are the lower and upper bound of the
investigated time interval. The [in,out] pair contains references to the input and
the output pipes, toward and from the child Eclipse process. Each agent that
needs to communicate with the network to obtain LDB information, starts a
connection with the Gateway. This communication is implemented by two dif-
ferent streams, as previosly explained. The first one contains XML stetements
and it is directed from the OffLR to Gateway. The second one contains Prolog
predicates and it is directed from the Gateway to the OffLR. The OffLR agent
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reads the Prolog predicates contained in the communication stream from the
Gateway agent, and it asserts them into its KB after a preprocessing analysis.
OffLR sends XML messages to the Gateway only in order to obtain LDB infor-
mation. In these messages it specifies the nature of information and the time
interval. Currently, two types of requests are implemented: the first concerns
a single communication flow, identified by a [Source, Destination] pair, and the
second one concerns a global reconstruction of a past network state. For both
the cases, a bounded time interval must be specified.

4.3.1 Request of information about a single path

Let us consider the following scenario. A network user wants to know the root
causes of a network problem, such as, for instance, the difficulty to start a new
connection, the interruption or the degradation of a connection, etc.. In order
to formulate such queries to the OffLR, the user must specify two different
parameters: the time interval and a pair of nodes representing the connection
vertices. Figure 4.3 shows the agent interactions to answer such queries. When

Figure 4.3: Agent involved in a SearchOnPath query

the QueryHandler agent receives such a query, it starts the OffLR Search-On-
Path to find in the GDB the anomalies which can be relevant for the monitored
path during the indicated time interval.

In order to increase the efficiency and the responsiveness, the OffLR Search-
On-Path agent reuses, if possible, the results of past reasoning activities, pre-
viously inserted into the GDB. This behavior may avoid heavy computation
previously done. If no information regarding the selected path and the tempo-
ral interval is found in the GDB, the information research is addressed to the
involved LDBs. This research is performed by the OffLR Search-LDB agent.

In order to verify if the GDB contains the required information, the Of-
fLR Search-On-Path lookups NetMonitor and PathMonitor tables. The former
contains time intervals in which a global network monitoring was performed by
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the OnLR Core or by the OffLR Restore-Net-Status. The latter contains the
time intervals during which the functioning of a single path was analyzed by the
OffLR Search-LD.

The monitored time intervals, for the whole network or only for a monitored
path, are obtained by OffLR Search-On-Path agent, executing the following
instructions:

findall(PRes,
sql query([’startTime’, ’endTime’], ’pathMonitor’, Where, ”, [Pres]), PList),

/*PList will contain all tuples returned by the following query:
“select startTime, endTime from pathMonitor
where pathMonitor.source=Src and pathMonitor.dest=Dest” */

findall(NRes,
sql query([’startTime’, ’endTime’], ’netMonitor’, ‘’, ‘’, [Result]), NList)

The union of the lists returned by last two predicates represents the temporal
interval in which the observed path was monitored in the past by some Reasoner
agent. For each of these time periods it is very probable that occurred anomalies
were detected and stored in the opportune GDB table. The anomaly tables
examined by the OffLR Search-On-Path agent are RTCorruption, Loop, and
Disconnection. These tables contain all the results directly obtained by the
OffLR Restore-Net-Status and the OffLR Search-LDB, and a summarization
of OnLR Core results. Namely, while last agent performs inferences that are
related to a single instant, the inferences of the other agent concern a time
interval, which is coherent with startTime and endTime attributes of the three
tables, above mentioned. For instance, to retrieve data from the Loop table the
OffLR Search-On-Path executes the following code:

findall(Result,
sql query([’type’, ’node’, ’startTime’, ’endTime’], ’cause’, Where, ”,

[Result]), List),

/*List will contain all tuples obtainined from the following query:
“select type, node, startTime, endTime from Loop

where Loop.source=Src and Loop.dest=Dest
and ( (Loop.startTime≤T1 and Loop.endTime≥T1)

or (Loop.startTime≥T1 and Loop.startTime≤T2))” */

If the whole observation time interval was monitored, results obtained by
GDB queries are returned to the QueryHandler agent and the OffLR Search-
On-Path stops its execution. If not the whole observation period was monitored,
the OffLR Search-On-Path must retrieve other information from the LDBs and
perform new inferences. The OffLR Search-On-Path starts a new process, which
is responsible to compile the OffLR SearchLDB for each time interval not mon-
itored, and waits its termination to obtain other results. The set of information
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obtained by the merging of GDB information and that retrieved by the Of-
fLR Search-LDB is returned to the QueryHandler agent.

The OffLR Search-LDB is responsible to find all the possible causes of the
anomalies occurred on an end-to-end connection during a given time interval,
by using the information stored in the network node LDB. The agent looks for
two different anomaly types, i.e. routing table corruptions and loop occurrences.
This is done with the analysis of the routing tables of all the nodes along all the
possible paths followed by the flow in the observation time period. Furthermore,
the OffLR Search-LDB delegates the OffLR Disconnection agent to discover
eventual network disconnections.

As above mentioned, to perform its task, the OffLR Search-LDB analyzes
the routing tables of all the nodes along the routing path from Source node
to Dest node and it registers all the discovered anomalies. The OffLR Search-
LDB needs a static network representation to identify the network topology.
The knowledge of the initial conditions is obtained from the file (“topology.pl”)
created by the OnLR Core at bootstrap time. In order to obtain the LDB
information the agent starts a connection with the Gateway and waits for the
answers on an opportune communication stream. The progressive search moves
along the path followed by the data of the communication flow identified by the
[Source, Dest] pair. The search can arrest because one of the following four
different reasons:

• the destination node is reached and no routing anomalies occurred along
the path;

• the same node is meet two times, i.e. a loop occurs in this branch;

• it is not possible to find any routing entry toward the Dest node, because
of a routing table corruption or an infinite cost entry;

• it is not possible to obtain information from a node because it is off.

The results obtained are compared with the OffLR Disconnection results in
order to verify if an anomaly of a routing table entry is due to a network discon-
nection or simply to a temporary alteration. The information about paths and
periods monitored by the OffLR Search-LDB are stored into the PathMonitor
table of GDB.

The OffLR Disconnection agent is responsible of reconstructing the on/off
state transitions of all network nodes during a given temporal interval, in order
to find network disconnections. This reconstruction is made by using AliveNeig-
bor/DeadNeighbor sensor traces. To understand when a node was on, it must
analyze the sensor traces produced by its neighbors. At bootstrap time, the
OffLR Disconnection agent compiles the initial topology information and sets
up a connection with the Gateway and the OffLR SearchLDB agents. The Of-
fLR Disconnection task can be distinguished in two phases. In the first one it
collects information from LDBs and it reconstructs the temporal behavior of
the nodes. During the second phase, it uses more detailed information about
paths to carry out higher level analyses.
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4.3.2 Network global history reconstruction

The OffLR can be asked by a network user to reconstruct an integral and com-
plete network history for a given time interval. The OffLR agent which performs
this task can be viewed as an image of the OnLR Core, although it does not
pressnt the capability of reacting to the network events and to actively operate
on the network. In order to execute its task, the OffLR agent maintains an on-
tological representation of the network together with some basic knowledge on
the cause-effect relationship between an anomaly and its symptoms, similar to
that maintained by the OnLR Core. This way, the agent can perform the same
“a posteriori” inferences of those that the OnLR Core performs in real-time.
The “Network global history reconstruction” query can be used both to verify
the consistence of OnLR Core results or to integrate them. For instance, it can
be applied to a temporal interval in which the OnLR Core was not working.

This point of view, moreover, points out the importance of the off-line rea-
soning capability of performing the filtering of large amount of data stored in
the LDBs. These data are characterized by large sizes and low information den-
sity. Furthermore, their interpretation results difficult for a human agent since
in their original form they do not result meaningful. By exploiting the OffLR
filtering capalities, they can grouped in higher level concepts, thus increasing
the information density. In order to manage this query, the QueryHandler agent
starts the OffLR RestoreNetStatus and waits the results to pass them the user.
Figure 4.4 shows the agent behavior in order to manage this kind of query.

Figure 4.4: Agent Behavior for the Restore Network Status query

The OffLR RestoreNetStatus, once retrieved data from LDBs, is capable
of finding anomalies, for instance routing errors, such as loops and routing
table corruptions. It, also, uses the OffLR Disconnection reasoning to find
eventual network areas isolation. When The OffLR RestoreNetStatus obtains
OffLR Disconnection results, it merges them with its results to find all pos-
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sible anomalies. Global results are inserted in the GBD and returned to the
QueryHandler agent. Also an indication about the investigated time inter-
val is stored in the GDB NetMonitor table. In order to find all anomalies,
the OffLR RestoreNetStatus agent starts from the analysis of basic symptoms
such as packet losses. Its reasoning is similar to OnLR Core reasoning. Both
the modules start from a fault to find its cause. The interaction between Of-
fLR RestoreNetStatus and OffLR Disconnection is strict. The former needs
results of the latter to refine its reasoning about rt lostPkt. The latter needs
the reasoning results of the former in order to perform its analyses: for in-
stance, only by means of these it can know which [Source, Dest] pair identify
the path to analyze. Results obtained by both the agents are stored in GDB
tables containing anomalies. The diagram of activities performed in order to
reconstruct the global history of the network is shown in figure 4.5.

Figure 4.5: Restore Network Status Activity diagram
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Chapter 5

DB

5.1 Global Database

The Global Database (GDB) stores the most relevant results inferred by the
different Reasoner agents. The GDB role assumes, hence, a great importance in
order to perform an “a posteriori” analysis of network problems. At the current
stage of the project, the aim of a query to the GDB, is to answer user requests
about problems which have involved a network area during a given temporal in-
terval in the past. However, a wider GDB table set has been designed, necessary
for the support of future reasonings. Currently, the system elements interacting
with the GDB are the OnLR Core and several OffLR agents. The first one
can only add information to that contained in the GDB, whilst OffLR agents
exploit this information for their own reasonings and can insert new knowledge
inferred by their deductive processes. The GDB is constituted by three groups
of table: the first one is formed by tables containing results of anomaly monitor
processes, the second one is related to the history of network monitoring, and
the third one has been designed to support the future system development on
the congestion analysis.

5.1.1 Anomaly tables

Tables of this group contain records about anomalies discovered in the network
by the OnLR Core, the OffLR SearchLDB, and the OffLR RestoreNetStatus
agents. A graphical view of this set is shown in figure 5.1.

OnLR Inference

The OnLR Inference table buffers the inference results produced by the OnLR-
Core. Since data results are inserted in this table without any further elabora-
tion, there are no relations among results obtained at different times but regard-
ing the same problem. Periodically data of this table are unloaded, elaborated,
and summarized by the OnLR in ordert to obtain meaningful information. The
obtained information is then inserted in other tables of this group.
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Figure 5.1: GDB network anomalies tables

OnLR Inference Table
Attributes:
ID Numeric field. It represents the table primary key.
TYPE Indicates the anomaly type. Currently, it can have one of following

values: { loop, corruptedRT, disconnection }.
NODE The interpretation of this attribute depends on the Type parameter.

if TYPE=loop, it represents the node that close the loop;
if TYPE=corruptedRT, it represents the node that has suffered
a routing table corruption;
if TYPE=disconnection, it represents the node starting the
Reasoner investigation in which the packet loss occurred.

SOURCE Identifies source and destination nodes on the path where
the anomaly occurred. These two parameters individuate

DEST communication flows involved in the anomaly.
TIME Indicates the time when the packet loss event, which started the

Reasoner inference, occurred.

Constraints:
A Unique constraint involves all the attributes of this table except the ID one:

UNIQUE UN OnLR Inference 1 (Type, Node, Source, Dest, Time)
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Loop

In this table are stored all the information regarding a loop on the routing.
Loops are identified on the basis of the involved communication flows and of
the time interval during which they occurred.

Loop
Attributes:
ID Numeric primary key;
SOURCE Identify the source and destination nodes on the path

involved by the loop. DEST is the node which the loop
DEST makes unreachable starting from SOURCE.
STARTTIME Start and end instant bounding the time interval
ENDTIME during which the loop occurs.

Constraints:

A Unique constraint involves all the attributes of this table except the ID one:

UNIQUE UN Loop 1 (Source, Dest, StartTime, EndTime)

Disconnection

This table stores the extremes of the paths interrupted by network disconnec-
tions that make the Dest node unreachable from the Source node.

Disconnection
Attributes:
ID Numeric primary key;
SOURCE Extremes of the path interrupted by the disconnection.

Starting from the analysis of [Source, Dest] pairs
DEST it is possible to determine if the communication flow

was involved in an anomaly.
STARTTIME Start and end time of the period during which

packets sent from the Source node were not able to reach
ENDTIME the Dest node because of the disconnection.

Constraints:

A Unique constraint involves all the attributes of this table except the ID one:

UNIQUE UN Disconnection 1 (Source, Dest, StartTime, EndTime)
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RtCorruption

This table stores all the routing table corruptions that caused packet losses for
different communication flows. For each corruption is indicated, together with
the flow parameters, also the node in which the loss occurred.

RtCorruption
Attributes:
ID Numeric primary key;
NODE Indicates node in which the routing table corruption

was detected.
SOURCE Identify source and destination nodes indicated
DEST in the lost packet header.
STARTTIME Indicate the starting and ending time of the period
ENDTIME when the routing table corruption occurred.

Constraints:

A Unique constraint involves all the attributes of this table except the ID one:

UNIQUE UN RTCorruption 1 (Node, Dest, Source, StartTime, EndTime)

5.1.2 Monitoring history

Tables of the Monitoring History were designed in order to reconstruct the time
periods during which the whole network, or a single path, have been monitored.
The aim of these tables is to provide to the OffLR the information that will allow
it to establish if the GDB data are sufficient to answer user queries. Figure 5.2
shows the monitoring history tables.

Figure 5.2: GDB monitoring history tables

NetMonitor

This table stores all time periods during which the whole network has been mon-
itored. The monitoring can be performed by both the OnLR Core, during its
natural active monitoring task, or by the OffLR RestoreNetStatus, when it per-
forms the reconstruction of a past network period during which the OnLR Core
was disabled.
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NetMonitor
Attributes:
ID Numeric primary key;
STARTTIME Extremes of the monitoring time interval.
ENDTIME
MODULE ID identifying the particular Reasoner (OnLR, OffLR)

agent that has performed the monitoring activity.

Constraints:

A Unique constraint involves all the attributes of this table except the ID one:

UNIQUE UN NetMonitor 1 (StartTime, EndTime, ReasonerModule)

PathMonitor

When the OffLR is started to answer some user queries about anomalies that
involved a given path, it performs a specific analysis regarding only the particu-
lar path and not the whole network. However, the information inferred by this
reasoning activities are stored in the anomaly tables. The PathMonitor table
maintains the different periods when single paths have been analyzed.

PathMonitor
Attributes:
ID Numeric primary key;
SOURCE Indicate the end nodes of the monitored path.
DEST
STARTTIME Starting and ending time of the period concerning
ENDTIME the path monitoring.

Constraints:

A Unique constraint involves all the attributes of this table except the ID one:

UNIQUE UN PathMonitor 1 (Source, Dest, StartTime, EndTime)
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5.1.3 Congestion Tables

The tables of this group were designed for future system development concerning
the network congestion. Currently the information contained in these tables is
not used by any agents, even-thought in the next future it will be exploited by
both the OnLR and the OffLR agents. Figure 5.3 shows a graphical view of the
congestion tables.

Figure 5.3: GDB congestion tables

CongestionArea

This table maintains a congestion measurement value for each monitored area.
Each area will be identified by its central node. Each node belongs to a single
area at each time.

CongestionArea
Attributes:
ID Numeric primary key;
AREA Represents the most central node of the congested area;
TIME Represents the evaluation time;
VALUE Congestion measurement value.

Constraints:

A Unique constraint involves all the attributes of this table except the ID one:

UNIQUE UN CongestionArea 1 (Area, Time).
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AreaNodes

This table, together with the CongestedLink one, individuates the monitored
areas as the sets of nodes and connecting links. More specifically, this table
allows the identification of the nodes composing an area, at a given time.

AreaNodes
Attributes:
ID Numeric primary key;
NODE Represents a monitored node;
TIME Represents the evaluation time;
AREA Represents the area where the node stays.

Constraints:

A Unique constraint involves all the attributes of this table except the ID one:

UNIQUE UN AreaNodes 1 (Node, Time).

[AREA,TIME] attributes have a reference to “CongestionArea” [AREA,TIME]
ones:

FOREIGN KEY (Area,Time) REFERENCES CongestionArea (Area, Time).

CongestedLink

Although this table defines the area concept, it does not maintain information
about links composing an area, but only about links which have experienced an
utilization above the alert threshold.

CongestedLink
Attributes:
ID Numeric primary key;
LINK Represents a monitored link;
TIME Represents the evaluation time;
AREA Represents the area where the node stays.
VALUE Congestion factor calculated for the single link.

Constraints:

A Unique constraint involves all the attributes of this table except the ID one:

UNIQUE UN CongestedLink 1 (Link, Time).

[AREA,TIME] attributes have a reference to the “CongestionArea” [AREA,TIME]
ones:

FOREIGN KEY (Area,Time) REFERENCES CongestionArea (Area, Time).
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FlowCongestion

This table maintains references to those flows which are most involved in a con-
gestion situation, relate to a given area during a given temporal range.

FlowCongestion
Attributes:
ID Numeric primary key;
SOURCE Represent source and destination nodes of the flow
DEST involved in the congestion phenomenon;
TIME Represents the evaluation time;
LINK Represents a link used by the flow.

Constraints:

[AREA,TIME] attributes have a reference to the “CongestionArea” [AREA,TIME]
ones:

FOREIGN KEY (Link,Time) REFERENCES CongestedLink (Link, Time).

5.2 Local Databases

In order to provide support to the OffLR agent, we designed and implemented
some special DBs, which are located on each node of the network and some “ad
hoc” procedures to retrieve data stored on them.

The OffLR agent needs to know the network past situations, with temporal
continuity.

With the aim to obtain a “continuous” historical knowledge, we introduced
the concepts of snapshot and log. The log is a file where are stored all the
changes occurred to some determined variables, and as snapshot we mean a
complete image of all the variables taken at regular time interval, and fully
registered in the log file. The OnLR is responsible of choosing the variables to
be monitored for both the the methods. Using the above tools it is possible
to trace the whole history of each variable at any time, since we can retrieve
an absolute value using the previous snapshot and all the successive variation
stored on the log file. For instance, this technique is particularly suitable to
register the routing tables: at each snapshot all the routing table is stored,
whilst, between two successive snapshots only the routing table entries which
are affected by variations are registered. As above mentioned, the OffLR agent
can require the data related to a specific time interval and to some particular
network variables. The LDBs are organized on the basis of the time they were
created, and furthermore, for each variable also the registration time is stored.
Using this temporal information, it is straightforward to obtain the whole set
of the values assumed by the variables in a given time period.
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