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Abstract. In designing multiscale models, process informations are reported at
multiple levels of resolution commonly involving operations such as discrete
convolution and upsampling. In this paper a computational tool following the
evolution of a process across the scales by using suitable vectors weight and
involving only initial data sampling is provided. A novel non recursive algorithm
generating the vectors weight is proposed and computational efficiency is
reached when more sets of initial data sampling are considered. B-spline
functions are well known in performing representations at different scales;
experiments involving cardinal B-spline functions are provided validating the
non recursive scheme interesting mono and multidimensional data sampling.

Keywords: multiscale methods; graphical display algorithm; quasi-interpolant
operator; wavelet discrete transform.

1. Introduction

The general idea to represent a process at multiple scales is well known. In the last decades
multiscale methods have been used in numerous areas of applied mathematics as signals
analysis, statistics, image processing and numerical analysis. Multiscale methods are based
on data approximation of a given problem at various resolution levels by travelling through
scales. Efficient scaling mechanisms are required to concentrate on some details or to get a
better overview of the phenomena and the convolution and the upsampling are operations
commonly employed in multiresolution schemes.

In this paper an efficient computational strategy is proposed to avoid the intrinsic
recurrence across the scales so noticeably reducing the computational effort when more
sets of initial data sampling are considered. Namely, a computational law is carried out
generating vectors weight, which enable to directly pass to a desired level of resolution, and
by involving only the initial data sampled. The algorithm is formulated in multivariate
settings. The recurrence-free computational scheme is adopted in the interpolatory
graphical display scheme [1, 3], quasi-interpolant approximations [1, 3] and wavelet
algorithms [1, 3, 11], processes all strongly characterized by convolution and upsampling
operations. A pre-processing stage must be performed to generate a tree of vectors weight
regarding the prefixed resolution level: in the graphical display algorithm and in
approximating scattered data across the scales by means of a quasi-interpolant operator a
binary vectors weight tree is generated, whilst a quad-tree has to be built to produce the
vectors weight in the recurrence-free wavelet algorithms.

A general framework of scale-space representation is in the context of B-spline functions
[1, 4, 10]. Some vectors weight and function values are provided working with cardinal B-
spline functions. The applications previously discussed are performed in univariate and
bivariate B-spline spaces [2]. The paper is organized as follows. In section 2 the non
recursive multiscale algorithm is described and formulated in multidimensional spaces.
Section 3 regards study cases. Subsection 3.1 is devoted to the interpolatory graphical
display algorithm and three levels of vectors weight binary tree, generated by means of
cardinal B-spline function of order 7 =4, are reported. Moreover, some function values at
different resolution levels are carried out. In subsection 3.2 the non recursive algorithm is
examined in the approximation at different scales of scattered data by means of a quasi-
interpolant operator based on centered cardinal B-spline function of order m=4.
Subsection 3.3 provides the recurrence-free scheme for wavelet reconstruction algorithm.
The cardinal B-spline function of order 7 =3 and the corresponding compactly supported
semi-orthogonal wavelet function are used in generating two levels of the quad-tree of
vectors weight.



2. A non recursive multiscale algorithm

A hierarchical representation of a phenomenon can be constructed by means of dilations

and franslations in the bases {¢(2f x —/é)}, J,k €Z, governed by the two-scale relation at
level .

B2 )= pd2 x = k). ©)
&

A function ¢@(x)e L (R) satisfying (1) is called sealing function and p = {p,ﬁ} is the

corresponding coefficients sequence [1, 3, 11]. In the following p will be considered with
finite size s,. A possible representation of a phenomenon f(x) can be expressed at level /

as follows:

f<’/>(x) — Zf/(é/')¢(2/'x — ). (2
£

That is, a phenomenon on a coarse grid 2771 & (or low resolution) can be represented on a

fine grid 27/2 & (or high resolution) with j, < /,. By fixing two successive levels involving
coefficients ¢/ = {t,(e’/ ) } and (/1 = {C/i’/ +1)} the following relation holds [3]:

[2/41) _ Zpkfzzfz(j)- (3
/

The computation of ¢/*" requires only an umpsampling followed by a discrete comvolution. The

upsampling is achieved by treating the index /in ¢\’ as an even index and inserting a zero

between ¢/’ and ¢!/} for each / that is:

(/) : _
{~< /-)}:: e/ if /=2k
0 if /=2k+1. “

Therefore, by taking into account the sequence {?/(/)} the formula (3) involves only a

discrete convolution c,(ej M = Z De- /21 In figure 1 the two operations are displayed.
!
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FIG. 1. Computation of AR by means of #psampling, (T 2), tollowed by discrete convolution,

(-

The coefficients {fé/m} are recursively computed by involving the upsampled values of the

previous level. In the following, a recurrence-free variant of the process is proposed
generating coefficients by means of suitable vectors weight operating only on a subset of

{c,(e/“)} at the initial level 7,. Without lose of generality in the following 7, =0.

D)

In order to compute each fé;/“) ,with 7 +1> ,, a vector weight s s involved where

the index 7 is a sequence of binary digits related to the index 4 and the resolution level.
(/)

/) have been generated and 2/ matrices G/ must be

Namely, at level j, 2/ vectors »

performed as:
G = (i) =017 ® p, iy = sty = s ®)

(7

where &) is the size of the vector

;77 8, is the size of p.

Hence, a new vector is generated:

w,(r):Zggj'>(/é,r—/é+l), r=1,.., .f;j)-l-.!‘p—l, ©)
&

by assuming equal to zeto the addends g\ (&,r—£+1) with r—&+1<0.

The even-numbered components of w, give rise to the vector weight 2™V whilst the odd
p 1 g g 7y

(J+

ones are in the vector »; Y where 7, and 7, are j+1 binary digits obtained juxtaposing
1

0 and 1 ahead of #, respectively.

(0)

At the beginning, a vector »*’, without # index, composed by the values of the scaling

function ¢ computed in prefixed knots must be taken into account.

Ergo, the coefficient c,i;/ U can be generated as follows:

1
+1 j+1 +1 ' IS
e V= I =1 Y, q:(zf-ﬂ]-

J=e

)

The index # of the vector »/*" is the binary value of &mod2/*" by involving j +1 binary

digits.



In figure 2 the vectors weight are schematized as nodes of a binary tree.
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FIG. 2. Binary tree of vectors weight.

2/ 2/
At level j+1, an amount of Zf§j>fp products and Z(JE/) +5,—1) adds is required;
i=1 i=1

(/+1)

moreover, 5" —1 adds and sV ) products are involved in (7). The advantage of the

proposed computational tool is in performing the overall computations only once and
using them for each initial data set.

Dealing with functions of d-variables tensor products are necessary and the algorithm can
be reformulated as:

1 1

1
(+D — 7+ (J+D (J+D) (J0)
‘/e{,kz ..... &y Z Z Z(”;lj ®”;'2/ ®-~-®”;j )(51’52,---’5,1)%{3/1,qz—/z a0y (8)

,,,,,

+1 +1 +1
/1=J‘£l/ >/2=J‘£2j ) /({:J‘E[‘// )

& _ _
where ¢, :l' ‘ —‘, #, is the binary value of & mod 27" and & =5V —/ +1, i=1,..,d .

2/+1

The binary tree of vectors weight is taken into account in generating the coefficients in d-
space involving, this time, matrices whose size depends on the employed vectors in (8).

3. Study cases

3.1 Interpolatory graphical display algorithm

This section is devoted to apply the just reported computational tool to the interpolatory

oraphical display algorithm [1]: by fixing as initial data set /) = { féj“}: { f ( ;0 )} the

5



aim is to compute the values f(*/l) = {f/e(m}:{f(;—;lj}, Vi, > j,, and for values of ;

sufficiently large f ) s adequate to approximate the function f(x).

The process is described by choosing as scaling function the cardinal B-spline function of
order m, N, (x), for which the two scale relation holds [1, 3, 4, 10]:

N, (2/x)= ZZ‘”’“( , ij@f”x —0)=Y p, N, 2" x =) o
5h=0 h=0

and

S =N, (k= 1), (10
/

where

(J+h) | I N ~(/)
¢ =>2 0 = o
J E}, [/ —bj b Eb  Poi=1 (1)

3.1.1 The recurrence-free scheme
In the following the non recursive interpolatory graphical display algorithm is outlined.

A pre-processing stage must be performed to generate the vectors weight of a prefixed
resolution level.

ALGORITHM
Input: z, v (Y=N, () i=1,...,m—1, { ,50)}” final level ;

k=0>
-
Output: {/é/ ! )}/ﬁfzo

Vectors weight pre-computation:

1. Computation of {p,,,,;y }Z:o

2. Foreachlevel ;=0,...,7,-1:

2.1. Foreach i =0,...,27 —1:
2.1.1. ¢ is the binary value of 7 by involving ; binary digits

212, GV =g (i) =1 @ p, s it = s iy = Ly 1
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()
2.1.3. l]/l (r):Zg§/>(/é,r—/é+1), 7,.:1’".’ 55/) +
k=1

)]
; s+ m
214 200 = w, (2r), r=1,..{ : 5 J
(j+1) f§/> +m+1
215 v (r)=w,(2r=1), r=1., I

end of pre-computation

For each data set /) = {f(ﬁj}

Jo
2 £=0

_ 1 _ . .
S = R =g, ézo""’”f’q:{%w
/=;§//) ’

When the vectors weight are performed only at most 7 products are required to compute
each value f, kf/) and the computational complexity is independent across the scale.

Therefore, appreciable reductions in the computation occur when more sets of initial data
are considered.

By considering the cardinal B-spline function of order » =4 [1, 4, 10], the initial vector

v is composed by the B-spline function values in the integer knots in ]0,4[,

141 1 4 6 4 1
0y — — — — — .
v ,—,— | and , , , =—, =—. Hence:
(6 6 6) Pap 3 Paa 3 Pap 3 Pa3 3 Paa 3

1 4 6 4 1

1
G(O):p<0>®b,4,b}2=0:R 4 16 24 16 4
1 4 6 4 1

and

1
w=—(18,2332,238,1).
6-8

1 1 . .
Consequently, the two vectors pé) and vi ) are generated by extracting the entries of the

vector » located in the even and odd positions, respectively.

At the next levels j > 0, the following operations must be performed:

G =@ p,, i,



and

I5/)

wi(r):zggj)(,é,r—/é+l), r=1,...,69 44,

(/) —

where s} 4 or s(/) =3,

Now, the entries of the vector w, give rise to the vectors p</ Y and 2 H).

In figure 3 the vectors weight regarding the cardinal B-spline function of order 7 =4 are

reported for ;7 =0,1,2,3 and for the sake of simplicity the common denominator 6x 8 is
dropped in the vectors weight.

yﬁiﬂ =(G4,256,64)
¥y, =(64,256,64) <
3

) ¥y =(64,1472,1472,64)

¥y =(8,32,8)
IZII
o —(8 184,184,8) <

11III

01 —(2? 235,121,13 <

0y =(27,1223,1697,125)
¥ '=(1,23,23,1)

u—(Ellﬁ 1880,968,8)

@ =(8,968,1880,216)
 =(1,4,1)

(= (343,2003,725, 1)

(3
g =(125,1697,1223,27)
y =(1,121,235,27 <

I ! —(1,725,2003,343)

FIG. 3. Three levels of the vector weights tree generated by cardinal B-spline function of
order m=4.

In figures 4 and 5 the initial function values and the vectors weight involved in the

computation of some function values f, ,5/ ) are shown.
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FIG. 4. Generation of f7<1>
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FIG. 5. Generation of £2) and £.

In the following the bivariate formulation is reported:

S
AN
ROl
z
1l
M-
M-
<

i+1 i+1 (Jo)
51/ ) ®y§2j >)(§1’§2)fq1/—0/1 go—ly 2 (12)
+1)

p2 . .
where ¢, = IVZ : —‘, t; is the binary value of £, mod 2/ and &= JE_JH) -/ +1,7i=1

2.

J+1 >

By choosing 7 =4 the following two-dimensional vectors weight are generated at level
J =1

04 256 64
(1) M _
vy’ Qg = g 256 1024 256 |,
04 256 04

8 184 184 38

1
yg“®p§1>=(y§”®yg”)T=TSZ 32 736 736 32
8 184 184 38

bl

123 23 1
1 |23 520 529 23
2x82| 23 529 529 23

123 23 1

oy Yo

and the formula (12) is applied in computing the function value 7<’19) :



11
1
7(,19) = Z Z(”il) ®”§1>)(5_/1>5_/2)f4<8>/1,5f/2 s ><82_[<f0’1 +foat Ssat fi4)t
/

=41, =4

T23(foot Jos T fiat Siat ot foat o+ [55) 529 fia+ fist oot [23))

3.2 Data approximation by quasi-interpolant

When scattered data are considered the approximation results can be appreciable improved
by applying a gquasi-interpolant operator Qf [1, 5, 6, 7]. The main advantage is that this
operator is local, 1. e. the value of (Qf)(x) depends only on values of fin a neighbourhood
of x. Moreover, (f has a rather small infinity norm, so that it is nearly optimal
approximant [1, 8, 9].

By considering the centered cardinal B-spline function of order » a quasi-interpolant
operator can be expressed as:

(ON) =Y (NN, (x+27 m=1), (13)

leZ

where A, ( /) is alocal linear functional.

In the following the quasi-interpolant operator generated by the functional [1]:

14
D =<l fia48f = fil, 1€, (14

and the centered cardinal B-spline function of order » =4 is considered:

15
(Q)(X)=Z%[—ﬁ1+8f/—f/+1]N4(><+2—/)- ()

leZ

The non recursive algorithm previously exposed can be applied in approximating a function
with the Qf operator (15). Namely, the non recursive algorithm generates the matrices:

HY = (b iy, 1)) =11 @, =15 i =123, (16)

where »/) are the vectors of the pre-computed binaty tree in subsection 3.1.1,

v, =(-1/6,4/3,-1/6) and:

10



,(r)= D b (kyr =k +1), r=l,., s 42, a7
&

by assuming equal to zero the addends 4 (&, —&+1) with r—&+1<0.

. . . — —(7 —(7+1
By extracting the even and odd-indexed entries of », the vectors vij ' and 7);/ U are

generated and involved in the computation of the data sampling at the level j+1:

1
1 § — 1 1 0 2
]fé./Jr )= Zj;/+ )(J‘;./+ ) / 1)]rq(7§+l’ q = ’V 2/‘+1 —‘

Japl)

(18)

fﬁl) is the size of the vector El(*/ﬂ) .

In figure 6 the binary tree of the vectors weight is reported for ; =0,1,2,3 and for the sake

where s

of simplicity the common denominator 6% x87 is dropped.

In the following the £ and f1<52) values are reported by adopting the formula (18):

1
£ :m(—fl—15f2+160f3 +160 f, =15 f5 = /o),

1
2) = g A3 TR +1732f, 19, =2710).

Note that the centered cardinal B-spline functions involve initial data values symmetrically
placed around the computed value.

T =(-512,2048,15360,2043-512)
7= (-64,256,1920,256,-64) <(3)
i Flgg = (-64,-940,1228, 1228 -940,-64)
7, '=(-8,32,240,32,-8)
B8

5(2) (5120,1280,1250, 120 8)(a‘a'nw—(—216,512_,13856,—5856,—904,—8)

10~ Lo Ll 5 - Lal-
_(5)
ﬁ(u):(_l 430,41 ¥ =(-8,-904,5856,13854,-153)

@

o 7 =(-343,741,14956,3796,-717,-1)

7o,=(-27.-19,1732,732,-113 - 1)<
@

o 7, =(-27,-1007,8060,12228 -697,-125)

7 =(-1,-15,160,160,-15,-1)

_(3)
7, =(-125,-697,12228,8060,-1007,-27)

fﬁ)= (-1,-113,732,1732,-19,-27) <
7, =(-1,-717,3796,14956,741,-343)

FIG. 6. The binary tree generated by using the quasi-interpolant operator of formula (15).
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3.3 Wavelet decomposition and reconstruction algorithms

When a given problem is investigated in a wavelet multiscale framework, as well known [1,

3, 11] the problem modeling function f“*V(x)el” 41 is decomposed as:
f(j+1)(X) — f(/)(x) + gU)(X) ) (19)

where /) (x) e V., d(x) e W, and:

f(j)(X) — Zfi/>¢(2./x — k)
: 0)
V)= d (2 k).
k

Hence, ) = {c/g')} and 4V = {dé/)} are used instead of f(-/)(x) and gm (x) as output

and input data sequences in the decomposition and reconstruction algorithms, respectively.

Namely, to find f W(x) and g“(x) from Vi () the following recursive relations
among coefficients hold:

f/(ej) = Z ”/—2&”5‘/“)

! 1)
. -
d/(ej> = E [7172@”5]+ g
/

Note that both ¢/’ and 4" are obtained from {[Eﬁ—l)} by a discrete convolution with
filters sequences @ = {a_ ,e} and b= {b_ /e}» respectively, followed by a downsampling (usually
denoted by J 2) achieved by discarding the odd-numbered components.

()

In order to recover f“*V(x) from f“(x) and ¢“(x) the input sequences ¢’ and

4 are firstly upsampled and subsequently convolved with the scaling and wavelet filters

sequences, p = {p k} and ¢ = {q,ﬁ}, respectively:

- . ,
/™ = Z(P/«—zzfgj) +q0idf”). (22)
/

In figure 7 decomposition and reconstruction algorithms are schematically displayed.

12
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FIG. 7. Wavelet decomposition-reconstruction scheme.

3.3.1 The recurrence-free scheme

The recursion can be avoided by employing the computational tool described in section 2
and in the following the wavelet reconstruction algorithm is formulated. Namely, at each

level j, the matrices G/ and G involving the sealing and wavelet sequences must be

generated:
G =) @ 5 (23)
GO = (DO @ 4 24)
and
B NS
! ><,):§g§./>< Yyr —k+1), -
) = (L) —
w| (r)—;gf (k,r—k+1). 26
The even-numbered components of the vectors »*) and »(""’ give rise to the vectors
weight zz% ) and i/% D07 " Whilst the remaining compose the vectors ﬂ;/ ) and
L)

31

(0)($)

At the beginning » is a vector whose entties are the values of the scaling function ¢

computed in prefixed knots. The vectors weight pre-processing step is schematically
described by means of a quad-tree (figure 8).
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FIG. 8. Quad-tree of vectors weight in wavelet reconstruction algorithm.

The non recursive algorithm just described is now investigated by considering the

multiresolution analysis in which {T/j } , are the cardinal B-spline functions spaces.
J€

In the following the compactly supported semi-orthogonal wavelet ¥, (x), corresponding

to the scaling function N, (x), are taken into account. This function, with support

[0, 272 —1], is unique and is given by [1]:

3m=2
n=0
where
CU SN, (ns1-1) 0yr 3w —2
= n+1-=1), n=0,....3m—=2.
qﬂ 2;”71 yr / 2m (28)
. . . 1 3 3 1
By referring to N;(x), the scaling sequence is: ps ZZ, P34 :Z’ V2% :Z s Pis :Z; the
. o : 1 29
corresponding wavelet function is y;(x) and wavelet sequence is: g5, :Z’ 954 :_T’
T L L
93,2 4 933 4 93,4 4 93,5 4 936 4 937 4

At the beginning p ) = (N3(1),N5(2)) = (%,%) In figure 9 two levels of the vectors

weight quad-tree is reported and for the sake of simplicity the common denominators,

2x47 and 2x 47/ x5! for scaling and wavelet vectors weight, respectively, are dropped.

14



y(j;‘i’(m,m)

L ee
e @p TN
@4 [ PoRZ) 112,-624,624,112)

@)
Yy =(4,472,0,-472-4)

(20
Yor =(9,22,1)

Er -
SO ?P[yﬁ)(sz)@??ﬁ)
&y

—3-'1 =(1JG:1

@)
N ¥y =(-23,550,1368,26,-1)

(20T
#,, =(1,-26,-1368-550,23)

(1)
P, =(-28-156,156,28)
\{ (w0
¥, =(1,118,0,-118,-1)
FIG. 9. Two levels of the quad-tree generated by cardinal B-spline function of order 7=3.

4. Conclusions

In this paper an efficient computational strategy is proposed to avoid the intrinsic
recurrence across the scales when multiscale processes are investigated. The main result of
the proposed tool is in formulating a computational law which generates vectors weight,
enabling to directly pass to a desired level of resolution, and involves only the initial data
sampled. The computational law is used in the interpolatory graphical display algorithm, in
approximating scattered data across the scales by means of a quasi-interpolant operator and
in wavelet reconstruction algorithm. Vectors weight and function values are provided
working with cardinal B-spline functions. The algorithm is also formulated in multivariate
settings.
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