
 

Consiglio Nazionale delle Ricerche  
Istituto di Calcolo e Reti ad Alte Prestazioni  
 

 
 
 
 
 
 
 
 

 
Avoiding recurrence in multiscale environments 

 

 

  
 E. Francomano, A. Tortorici, E. Toscano 

 
 

 
 
 
Rapporto Tecnico N.: 
RT-ICAR-PA-06-08 novembre 2006 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Consiglio Nazionale delle Ricerche, Istituto di Calcolo e Reti ad Alte Prestazioni 
(ICAR)  – Sede di Cosenza, Via P. Bucci 41C, 87036 Rende, Italy, URL: www.icar.cnr.it 
– Sezione di Napoli, Via P. Castellino 111, 80131 Napoli, URL: www.na.icar.cnr.it  
– Sezione di Palermo, Viale delle Scienze, 90128 Palermo, URL: www.pa.icar.cnr.it 



 1

 

Consiglio Nazionale delle Ricerche  
Istituto di Calcolo e Reti ad Alte Prestazioni  
 

 
 
 
 
 
 
 

 
 Avoiding recurrence in multiscale environments  

 

 
E. Francomano1,2, A. Tortorici1,2, E. Toscano1,2 

 
 

 
 
 
 
  

 
Rapporto Tecnico N.: 
RT-ICAR-PA-06-08 novembre 2006 
 
 
 
1  Istituto di Calcolo e Reti ad Alte Prestazioni, ICAR-CNR, Sezione di Palermo Viale delle 

Scienze edificio 11 90128 Palermo  
2  Università degli Studi di Palermo Dipartimento di Ingegneria Informatica Viale delle 

Scienze, edificio 6, 90128 Palermo 

I rapporti tecnici dell’ICAR-CNR sono pubblicati dall’Istituto di Calcolo e Reti ad Alte Prestazioni del 
Consiglio Nazionale delle Ricerche. Tali rapporti, approntati sotto l’esclusiva responsabilità scientifica degli 
autori, descrivono attività di ricerca del personale e dei collaboratori dell’ICAR, in alcuni casi in un 
formato preliminare prima della pubblicazione definitiva in altra sede. 

 

 



 2

Abstract. In designing multiscale models, process informations are reported at 
multiple levels of resolution commonly involving operations such as discrete 
convolution and upsampling. In this paper a computational tool following the 
evolution of a process across the scales by using suitable vectors weight and 
involving only initial data sampling is provided. A novel non recursive algorithm 
generating the vectors weight is proposed and computational efficiency is 
reached when more sets of initial data sampling are considered. B-spline 
functions are well known in performing representations at different scales; 
experiments involving cardinal B-spline functions are provided validating the 
non recursive scheme interesting mono and multidimensional data sampling. 

 
Keywords: multiscale methods; graphical display algorithm; quasi-interpolant 
operator; wavelet discrete transform. 

 
1. Introduction 
 
The general idea to represent a process at multiple scales is well known. In the last decades 
multiscale methods have been used in numerous areas of applied mathematics as signals 
analysis, statistics, image processing and numerical analysis. Multiscale methods are based 
on data approximation of a given problem at various resolution levels by travelling through 
scales. Efficient scaling mechanisms are required to concentrate on some details or to get a 
better overview of the phenomena and the convolution and the upsampling are operations 
commonly employed in multiresolution schemes.  
In this paper an efficient computational strategy is proposed to avoid the intrinsic 
recurrence across the scales so noticeably reducing the computational effort when more 
sets of initial data sampling are considered. Namely, a computational law is carried out 
generating vectors weight, which enable to directly pass to a desired level of resolution, and 
by involving only the initial data sampled. The algorithm is formulated in multivariate 
settings. The recurrence-free computational scheme is adopted in the interpolatory 
graphical display scheme [1, 3], quasi-interpolant approximations [1, 3] and wavelet 
algorithms [1, 3, 11], processes all strongly characterized by convolution and upsampling 
operations. A pre-processing stage must be performed to generate a tree of vectors weight 
regarding the prefixed resolution level: in the graphical display algorithm and in 
approximating scattered data across the scales by means of a quasi-interpolant operator a 
binary vectors weight tree is generated, whilst a quad-tree has to be built to produce the 
vectors weight in the recurrence-free wavelet algorithms. 
A general framework of scale-space representation is in the context of B-spline functions 
[1, 4, 10]. Some vectors weight and function values are provided working with cardinal B-
spline functions. The applications previously discussed are performed in univariate and 
bivariate B-spline spaces [2]. The paper is organized as follows. In section 2 the non 
recursive multiscale algorithm is described and formulated in multidimensional spaces. 
Section 3 regards study cases. Subsection 3.1 is devoted to the interpolatory graphical 
display algorithm and three levels of vectors weight binary tree, generated by means of 
cardinal B-spline function of order 4=m , are reported. Moreover, some function values at 
different resolution levels are carried out. In subsection 3.2 the non recursive algorithm is 
examined in the approximation at different scales of scattered data by means of a quasi-
interpolant operator based on centered cardinal B-spline function of order 4=m . 
Subsection 3.3 provides the recurrence-free scheme for wavelet reconstruction algorithm. 
The cardinal B-spline function of order 3=m  and the corresponding compactly supported 
semi-orthogonal wavelet function are used in generating two levels of the quad-tree of 
vectors weight.  
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2. A non recursive multiscale algorithm 
 
A hierarchical representation of a phenomenon can be constructed by means of dilations 
and translations in the bases { })2( kxj −φ , ∈kj , Z, governed by the two-scale relation at 
level  j: 
 

 )2()2( 1∑ −= +

k

j
k

j kxpx φφ . (1)

 

A function 2)( Lx ∈φ (R) satisfying (1) is called scaling function and { }kpp =  is the 
corresponding coefficients sequence [1, 3, 11]. In the following p will be considered with 
finite size ps . A possible representation of a phenomenon )(xf  can be expressed at level j 
as follows: 

 

 . )2()( )()( ∑ −=
k

jj
k

j kxcxf φ  (2)

 

That is, a phenomenon on a coarse grid kj12−  (or low resolution) can be represented on a 
fine grid kj22−  (or high resolution) with 21 jj < . By fixing two successive levels involving 
coefficients { })()( j

k
j cc =  and { })1()1( ++ = j

k
j cc  the following relation holds [3]: 
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The computation of )1( +j
kc  requires only an upsampling followed by a discrete convolution. The 

upsampling is achieved by treating the index l in )( j
lc  as an even index and inserting a zero 

between )( j
lc  and )(

1
j

lc +  for each l, that is: 
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Therefore, by taking into account the sequence { })(~ j
lc  the formula (3) involves only a 

discrete convolution ∑ −
+ =

l

j
llk

j
k cpc )()1( ~ . In figure 1 the two operations are displayed.  
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FIG. 1. Computation of )1( +jc  by means of upsampling, )2(↑ , followed by discrete convolution, 
(*). 

 

The coefficients { })1( +j
kc  are recursively computed by involving the upsampled values of the 

previous level. In the following, a recurrence-free variant of the process is proposed 
generating coefficients by means of suitable vectors weight operating only on a subset of 
{ })( 0j

kc  at the initial level 0j . Without lose of generality in the following 00 =j .  

In order to compute each )1( +j
kc , with 01 jj >+ , a vector weight )1( +j

tv  is involved where 
the index t  is a sequence of binary digits related to the index k and the resolution level. 
Namely, at level j, j2  vectors )( j

tv  have been generated and j2  matrices )( j
tG  must be 

performed as: 
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j
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j
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j
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)(
1

)(
21

)()( ==⊗== , (5)

 

where )( j
ts  is the size of the vector )( j

tv , ps  is the size of p.  

Hence, a new vector is generated: 
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j
t

k

j
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(6)

 

by assuming equal to zero the addends )1,()( +−krkg j
t  with  01≤+− kr . 

The even-numbered components of tw  give rise to the vector weight )1(
0

+jvτ  whilst the odd 

ones are in the vector )1(
1

+jvτ  where 0τ  and 1τ  are 1+j  binary digits obtained juxtaposing 
0 and 1 ahead of t, respectively. 

At the beginning, a vector )0(v , without t index, composed by the values of the scaling 
function φ  computed in prefixed knots must be taken into account.  

Ergo, the coefficient )1( +j
kc  can be generated as follows: 
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The index t of the vector )1( +j
tv  is the binary value of 12 +jmodk  by involving 1+j  binary 

digits.  
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In figure 2 the vectors weight are schematized as nodes of a binary tree. 

 
 

FIG. 2. Binary tree of vectors weight. 
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moreover, 1)1( −+j
ts  adds and )1( +j

ts  products are involved in (7). The advantage of the 
proposed computational tool is in performing the overall computations only once and 
using them for each initial data set. 

Dealing with functions of d-variables tensor products are necessary and the algorithm can 
be reformulated as: 
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where ⎥⎥
⎤

⎢⎢
⎡= +12 j

i
i

kq , it  is the binary value of ik mod 12 +j  and 1)1( +−= +
i

j
ti ls
i

ξ , di ,...,1= .  

The binary tree of vectors weight is taken into account in generating the coefficients in d-
space involving, this time, matrices whose size depends on the employed vectors in (8).  

 

 

3. Study cases  

 

3.1 Interpolatory graphical display algorithm 

This section is devoted to apply the just reported computational tool to the interpolatory 

graphical display algorithm [1]: by fixing as initial data set { }
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aim is to compute the values { } 01
)()( ,

2 1
11 jjkfff j

j
k

j >∀
⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛== , and for values of j 

sufficiently large )( jf  is adequate to approximate the function )(xf .  

The process is described by choosing as scaling function the cardinal B-spline function of 
order m, )(xNm , for which the two scale relation holds [1, 3, 4, 10]: 
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and  
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where 
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3.1.1 The recurrence-free scheme 

In the following the non recursive interpolatory graphical display algorithm is outlined. 

A pre-processing stage must be performed to generate the vectors weight of a prefixed 
resolution level. 

______________________________________________________________________ 

ALGORITHM 

Input: m, 1,,1   )()()0( −== miiNiv m K , { }nkkf 0
)0(

= , final level fj  

Output: { } ff
n

k
j

kf 0
)(

=   
______________________________________________________________________ 

 

Vectors weight pre-computation: 

 

1. Computation of { }mhhmp 0, =
  

2. For each level 1,,0 −= fjj K : 

2.1. For each 12,,0 −= ji K : 
2.1.1. t  is the binary value of i by involving j  binary digits  
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j
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When the vectors weight are performed only at most m products are required to compute 
each value )( j

kf  and the computational complexity is independent across the scale. 
Therefore, appreciable reductions in the computation occur when more sets of initial data 
are considered. 

By considering the cardinal B-spline function of order 4=m  [1, 4, 10], the initial vector 
)0(v  is composed by the B-spline function values in the integer knots in [4,0] , 

⎟
⎠
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8
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4,43,42,41,40,4 ===== ppppp . Hence: 
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and 
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⋅
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Consequently, the two vectors )1(
0v  and )1(

1v  are generated by extracting the entries of the 
vector w  located in the even and odd positions, respectively. 

At the next levels 0>j , the following operations must be performed: 
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and 

 

 
4,,1),1,()( )(
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j
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K , 

 

where 4)( =j
ts  or 3)( =j

ts . 

Now, the entries of the vector tw  give rise to the vectors )1(
0

+jvτ  and )1(
1

+jvτ . 

In figure 3 the vectors weight regarding the cardinal B-spline function of order 4=m  are 
reported for 3,2,1,0=j  and for the sake of simplicity the common denominator j86× is 
dropped in the vectors weight. 

 
 

FIG. 3. Three levels of the vector weights tree generated by cardinal B-spline function of 
order m=4. 

 

In figures 4 and 5 the initial function values and the vectors weight involved in the 
computation of some function values )( j

kf  are shown.  

 

FIG. 4. Generation of )1(
7f . 
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FIG. 5. Generation of )2(
15f  and )2(

16f . 

In the following the bivariate formulation is reported: 
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where ⎥⎥
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⎡= +12 j

i
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kq , it  is the binary value of ik mod 12 +j  and 1)1( +−= +
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By choosing 4=m  the following two-dimensional vectors weight are generated at level 
1=j : 
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and the formula (12) is applied in computing the function value )1(
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3.2 Data approximation by quasi-interpolant 

When scattered data are considered the approximation results can be appreciable improved 
by applying a quasi-interpolant operator Qf  [1, 5, 6, 7]. The main advantage is that this 
operator is local, i. e. the value of ))(( xQf  depends only on values of f in a neighbourhood 
of x. Moreover, Qf  has a rather small infinity norm, so that it is nearly optimal 
approximant [1, 8, 9]. 

By considering the centered cardinal B-spline function of order m a quasi-interpolant 
operator can be expressed as: 

 

 ∑
∈

− −+λ=
Zl

ml lmxNfxQf )2()())(( 1 , (13)

 

where )( flλ  is a local linear functional. 

In the following the quasi-interpolant operator generated by the functional [1]: 
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6
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and the centered cardinal B-spline function of order 4=m  is considered: 
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The non recursive algorithm previously exposed can be applied in approximating a function 
with the Qf  operator (15). Namely, the non recursive algorithm generates the matrices: 
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where )( j
tv  are the vectors of the pre-computed binary tree in subsection 3.1.1, 

)6/1,3/4,6/1( −−=
l

vλ  and: 
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2,...,1),1,()( )()( +=+−=∑ j

t
k

j
tt srkrkhrw , 

 

(17)

 

by assuming equal to zero the addends )1,()( +− krkh j
t  with 01≤+− kr . 

By extracting the even and odd-indexed entries of tw  the vectors )1(
0

+
τ

jv  and )1(
1

+
τ

jv  are 
generated and involved in the computation of the data sampling at the level 1+j : 
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where )1( +j
ts  is the size of the vector )1( +j

tv . 
In figure 6 the binary tree of the vectors weight is reported for 3,2,1,0=j  and for the sake 
of simplicity the common denominator j862 ×  is dropped. 
In the following the )1(

7f  and )2(
15f  values are reported by adopting the formula (18): 
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7 fffffff −−++−−
×

= ,
 

 

 
)27191732732113(
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1
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)2(

15 fffffff −−++−−
×

= . 
 

 
Note that the centered cardinal B-spline functions involve initial data values symmetrically 
placed around the computed value. 
 

 
 

FIG. 6. The binary tree generated by using the quasi-interpolant operator of formula (15). 

 



 12

3.3 Wavelet decomposition and reconstruction algorithms  

When a given problem is investigated in a wavelet multiscale framework, as well known [1, 
3, 11] the problem modeling function 1

)1( )( +
+ ∈ j

j Vxf  is decomposed as: 

 

 )()()( )()()1( xgxfxf jjj +=+ , (19)

 

where j
j Vxf ∈)()( , j

j Wxg ∈)()(  and: 
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(20)

 

Hence, { })()( j
k

j cc =  and { })()( j
k

j dd =  are used instead of )()( xf j  and )()( xg j  as output 
and input data sequences in the decomposition and reconstruction algorithms, respectively.  

Namely, to find )()( xf j  and )()( xg j  from )()1( xf j+  the following recursive relations 
among coefficients hold: 
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(21)

 

Note that both )( jc  and )( jd  are obtained from { })1( +j
lc  by a discrete convolution with 

filters sequences { }kaa −=  and { }kbb −= , respectively, followed by a downsampling (usually 
denoted by 2↓ ) achieved by discarding the odd-numbered components. 

In order to recover )()1( xf j+  from )()( xf j  and )()( xg j  the input sequences )( jc  and 
)( jd  are firstly upsampled and subsequently convolved with the scaling and wavelet filters 

sequences, { }kpp =  and { }kqq = , respectively: 

 

 ∑ −−
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j
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j
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2
)(

2
)1( . (22)

 

In figure 7 decomposition and reconstruction algorithms are schematically displayed. 
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FIG. 7. Wavelet decomposition-reconstruction scheme. 

 

3.3.1 The recurrence-free scheme 

The recursion can be avoided by employing the computational tool described in section 2 
and in the following the wavelet reconstruction algorithm is formulated. Namely, at each 
level j, the matrices ))(( Sj

tG and ))(( Wj
tG  involving the scaling and wavelet sequences must be 

generated: 

 

 pvG Sj
t

Sj
t ⊗= ))(())(( , (23)

 

 qvG Sj
t

Wj
t ⊗= ))(())((  (24)

 

and 
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S
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k
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t

W
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(26)

 

The even-numbered components of the vectors )(S
tw  and )(W

tw  give rise to the vectors 

weight ))(1(
0

Sjv +
τ  and ))(1(

0

Wjv +
τ , whilst the remaining compose the vectors ))(1(

1

Sjv +
τ  and 

))(1(
1

Wjv +
τ . 

At the beginning ))(0( Sv  is a vector whose entries are the values of the scaling function φ  
computed in prefixed knots. The vectors weight pre-processing step is schematically 
described by means of a quad-tree (figure 8). 
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FIG. 8. Quad-tree of vectors weight in wavelet reconstruction algorithm. 

 

The non recursive algorithm just described is now investigated by considering the 
multiresolution analysis in which { }

ZjjV
∈

 are the cardinal B-spline functions spaces.  

In the following the compactly supported semi-orthogonal wavelet )(xmψ , corresponding 

to the scaling function )(xN m , are taken into account. This function, with support 
]12,0[ −m , is unique and is given by [1]: 

 

 
∑
−

=

−=
23

0

)2()(
m

n
mnm nxNqxψ , 

 

(27)

 

where 

 

 
23,,0,)1(

2
)1(

0
21 −=−+⎜⎜

⎝

⎛
⎟⎟
⎠

⎞−
= ∑

=
− mnlnN

l
m

q
m

l
mm

n

n K .
 

(28)

 

By referring to )(3 xN , the scaling sequence is: 
4
1

0,3 =p , 
4
3

1,3 =p , 
4
3

2,3 =p , 
4
1

3,3 =p ; the 

corresponding wavelet function is )(3 xψ  and wavelet sequence is: 
4
1

0,3 =q , 
4
29

1,3 −=q , 

4
147

2,3 =q , 
4

303
3,3 −=q , 

4
303

4,3 =q , 
4

147
5,3 −=q , 

4
29

6,3 =q , 
4
1

7,3 −=q .  

At the beginning ⎟
⎠
⎞

⎜
⎝
⎛==

2
1,

2
1))2(),1(( 33

))(0( NNv S . In figure 9 two levels of the vectors 

weight quad-tree is reported and for the sake of simplicity the common denominators, 
j42×  and !542 ×× j  for scaling and wavelet vectors weight, respectively, are dropped. 
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FIG. 9. Two levels of the quad-tree generated by cardinal B-spline function of order m=3. 

 

 

4. Conclusions 

 
In this paper an efficient computational strategy is proposed to avoid the intrinsic 
recurrence across the scales when multiscale processes are investigated. The main result of 
the proposed tool is in formulating a computational law which generates vectors weight, 
enabling to directly pass to a desired level of resolution, and involves only the initial data 
sampled. The computational law is used in the interpolatory graphical display algorithm, in 
approximating scattered data across the scales by means of a quasi-interpolant operator and 
in wavelet reconstruction algorithm. Vectors weight and function values are provided 
working with cardinal B-spline functions. The algorithm is also formulated in multivariate 
settings. 
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