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Abstract: In this paper some key elements of the Smoothed Particle Hydrodynamics methodology suitably 
reformulated for analyzing electromagnetic transients are investigated. The attention is focused on the 
interpolating smoothing kernel function which strongly influences the computational results. Some issues are 
provided by adopting the polynomial reproducing conditions. Validation tests involving Gaussian and cubic 
B-spline smoothing kernel functions in one and two dimensions are reported.  

 
Keywords: meshless particle method, Smoothed Particle Hydrodynamics method, Maxwell’s equations, 
electromagnetic transients. 
 

 

1. Introduction 

 

In the last two decades the meshless methods have known a great success in the simulation 
of a wide variety of applications as a valid computational alternative to grid methods. They 
share common features such as the avoidance of the use of grids, but are different in the 
means of function approximation and computational process.  

The numerical technique known as Smoothed Particle Hydrodynamics (SPH) [4]-[6], [10], 
[11] is a meshless method and its attractiveness and popularity is due to the evaluation of 
unknown field functions and relative differential operators by means of an integral 
representation based on a suitable interpolating function. The integral representation is 
discretized by using a set of particles scattered in the problem domain.  

The appropriate choice of the smoothing kernel function is a crucial task before performing any 
calculation using the SPH solver. The smoothing kernel function is of remarkable 
importance since it not only determines the interpolating pattern, but also defines the width 
of the influence area of a particle determined by a parameter h called as smoothing length. The 
choice of this parameter is a key variable for the kernel’s worth. In fact, the smoothing 
kernel function should have a certain degree of consistency which can be expressed by its 
ability to reproduce the polynomials in both the integral and discrete formulations [2], [3], 
[7]. For each smoothing kernel function only a set of h values, related to the interspacing 
particles, verifying the polynomial reproducing conditions must be taken into account. In 
this paper an analysis of the smoothing length h values is carried out by adopting two bell-
shaped smoothing kernel functions widely used in literature [7], [9], [11]. Namely, Gaussian 
and cubic B-spline smoothing kernel functions are considered in one and two dimensions. 
Validation tests are performed by considering the SPH method suitably reformulated for 
solving the partial differential equations (PDEs) governing electromagnetic transients [1]. 
The particle expressions of the Maxwell’s curl equations are provided in one and two 
dimensions in free-space. The 2-D model is proposed for a transverse electric wave. By 
working with curl equations the consistency conditions must be verified by the derivatives 
of the unknown field functions components. Various simulations are reported with 
different values of the smoothing length h by considering the transient propagation of a 
time and space variable pulse.  

The paper is organized as follows. In section 2 the background of SPH method is assumed 
and an analysis of the fundamental issues is reported; namely, the discrete constant and 
linear consistency conditions are investigated and a set of h values is determined. In section 
3 the meshless formulation of the Maxwell’s curl equations is provided in one and two 
dimensions. Simulation results referred to canonical case studies are reported.  
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2. Studies on the SPH method 
 
2.1 Basic issues 
 
In order to approximate a sufficiently regular function )(xf  in a domain Ω⊆Rd by means 

of a convolution function Wff h *≡  the numerical technique known as SPH adopts the 
so-called kernel approximation [6], [10], [11]: 
 

(1)  ∫
Ω

−= yyxyx dhWff h ),()()( . 

 
In (1) the function W is the smoothing kernel function depending on the spatial variables and 
on the smoothing length parameter h: 
 
(2)  )(),( RKhW dα=− yx , 
 
where hR /yx −=  and dα  is a dimension-dependent normalization constant. The 
smoothing kernel function is assumed to be even, normalized and with compact support 
[6], [10], [11]. The smoothing length h defines the size of the support. 
The discrete formulation of (1) is generated by involving points, or particles, in which the 
function is supposed known : 
 

(3)  j

N

j
jj

h VhWff ∑
=

−≅
1

),()( xxx , 

 
where jx  are particles falling within the support of W of a fixed particle x , jV  is the 
measure of the domain surrounding the particle jx  and )( jj ff x≡ . The (3) is called as 
particle approximation of f.  
The spatial operator derivatives also can be approximated by means of (1). For instance, 
for the gradient operator on f, f∇ , under the hypotheses on f and W over reported, 

)(**)( WfWf ∇=∇ . Therefore, the essential idea behind the SPH method is to 
approximate the spatial derivative of a function f  by basing only on its knowledge on the 
particles, i. e. : 

(4)  j
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j
jj
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−∇−≅∇
1

),()( xxx . 

 
With some trivial manipulations, similar relations can be obtained for the divergence and 
the curl operators. 
 
 
2.2 About the smoothing kernel function 
 
The choice of a smoothing kernel function W must be dictated by the requirements of 
accuracy, smoothness, compact supportness and computational efficiency.  
A normalized smoothing kernel function guarantees that the kernel approximation is at 
least of 1-st order of accuracy, )(hO ; the requirement of evenness gives rise to the second 
order of accuracy. Moreover, at least the first derivative of W should be continuous so that 
derivatives can be computed.  
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In approximating a function and/or its differential operators the minimum discretization 
error is with evenly spaced particles. For instance, the error for the n-th order derivative of 
a function is of ))/(Δ( 2hxhO n−  where xΔ  is the interparticle spacing [2], [5], [8]. Hence, 
the smoothing length h must be chosen closely near to xΔ  to achieve the best resolution. 
The number xhN Δ≅ /  of neighbours of a fixed particle also influences the discretization 
error; furthermore, the smoothing kernel function should be negligible if σ>R  where σ  
is a scale factor which must be suitable fixed, otherwise too many or few particles 
contribute to local properties. 
A good choice is the Gaussian smoothing kernel function which is sufficiently smooth 
even for high orders of derivative but it is not really compact as it never goes to zero 
theoretically [6], [10], [11]: 
 

(5)  )exp()( 2RRK −=  
 

and dα  equals 32/322/1 1 ,1 ,1 hhh πππ  respectively in one, two and three dimensions. 
However, it is computationally very expensive since it can have a large support with an 
inclusion of more particles in the approximation (3), [6].  
An improvement of the computational efficiency is obtained with B-spline compactly 
supported functions as smoothing kernel functions. The cubic B-spline function frequently 
used in SPH is [6]: 
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and dα  equals 32 23 ,715 ,1 hhh ππ  respectively in one-, two- and three-dimensional 
space. 
For each smoothing kernel function the smoothing length must be opportunely defined so 
that a good approximation could be achieved. To this aim the consistency of the 
computational process must be opportunely taken into account. In the following section 
some ideas on this topic are provided. 
 
 
2.3 Consistency and reproducing conditions 
 
The consistency conditions for SPH approximation can be expressed as its ability to exactly 
reproduce a polynomial up to the k-th order so that the approximation is said to have the 
k-th order of consistency [2], [3], [6], [7]. The polynomial reproducing conditions can be 
expressed by involving the particle approximation as follows: 
 

(7)  0,1,...)()(
1

=δ=−−∑
=
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N
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where δ  is the Kronecker symbol. When the gradient operator must be approximated 
these conditions include the kernel derivatives. In the following the constant and linear 
derivative polynomial reproducing conditions are reported: 
 

(8)  d  i V,hW j

N

j
ji 1,...,  0)(

1
==−∇∑

=

xx  

 

(9)  dr  i V,hW irj

N

j
jirj 1,...,,  )()(

1
=δ=−∇−∑

=
xxxx  

 
where Wi∇  are the smoothing kernel function derivatives with respect to the i-th 
component of the vector ∈− )( jxx Rd. 
The smoothing length choice is related to the reproducing conditions also: for each 
smoothing kernel function more than one value of h could satisfy the conditions (7) giving 
rise to a set of smoothing length h values.  
 

 
Fig. 1 Set of h values by using conditions (7) for the cubic B-spline smoothing kernel function in 1-D. 

 
Fig. 2 Set of h values by using conditions (7) for the Gaussian smoothing kernel function in 1-D. 

 
For instance, in figs. 1 and 2 the set of h values is depicted by using the Gaussian 
smoothing kernel function and the cubic B-spline smoothing kernel function in one 
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dimension and by considering an even interparticle spacing xΔ . The scale factor 4=σ  is 
chosen for the Gaussian smoothing kernel function and it will be used from now on. 
For the bell-shaped smoothing kernel functions reported the set of h values is nearly close, 

]0.1 ,8.0[∈Δxh , but the computational efficiency is better by using the cubic B-spline 
smoothing kernel function which involves a lesser amount of neighbours  particles. 
 
 
 
3. Numerical investigations 
 
In this section, the SPH methodology is used to numerically achieved the time-domain 
electric and magnetic fields. In this context a “particle” is generalized to mean an 
electromagnetic field point.  
In order to better clarify the main features of the method applied to electromagnetic 
phenomena, let us consider the time-dependent Maxwell’s curl equations in free space: 
 

(10)  
,

t

t

0

0

∂
∂

μ−=×∇

∂
∂

ε=×∇

H
E

E
H

 

 
where E and H are the electric and magnetic vector fields, 0ε  is the vacuum permittivity 
and 0μ  is the vacuum permeability.  
The equations (10) in the 1-D formulation can be written as: 
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by supposing the electric field oriented in the x direction, the magnetic field in the y 
direction, and the space variation accounted for the z direction.  
In 2-D, a simple canonical case can be obtained by considering as case study the transverse 
electric field (TE). Equations (10) become: 
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where ),,( tyxEE z=  and the same for the x and y components of the magnetic field H. 
The discretized expressions of (11) and (12) are obtained by employing the SPH particle 
approximation and the leapfrog scheme for space and time integration respectively. 
Namely, the equations (11) are reformulated as: 
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where the magnetic field is computed at whole time steps n and n+1 whilst the electric field 
is calculated at half time steps n-1/2 and n+1/2, [12], [13]. Moreover, the particles E

kr and 
H
kr  involved in the formulas are particles fixed for the E and H fields respectively. 

In the same manner, the discretization in space and time of equations (12) is expressed by 
means of the following formulas: 
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The time integration is subjected to the Courant-Friedrichs-Levy (CFL) stability condition 
[12], [13] requiring the time step to be proportional to the spatial resolution and, 
consequently, to the smoothing length h. 
 
3.1 One-dimensional case study 
 
By working with the Maxwell’s curl equations the polynomial reproducing conditions must 
be imposed on the derivatives of the field functions components in order to recognize the 
set of smoothing length h values.  
In fig. 3 the set of h values carried out by the condition (9) is provided for the derivatives 
of the cubic B-spline and the Gaussian smoothing kernel functions. The 0-th order of 
consistency is always satisfied. 
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Fig. 3 Set of h values for derivatives of the cubic B-spline (dBk) and the Gaussian (dGk) smoothing kernel 

functions in one-dimension. 
 

The equations (13) are used in simulating the transient propagation of the following time 
variable pulse centered in the spatial domain that is of 3.83 m: 
 

(15)  ( ) ( )tftEx 00 sin π=  

 

where the excitation frequency is =0f 7 MHz. The particles are evenly spaced with the 
interparticle spacing equal to 20/λ , where λ  is the wave length. The electric field is 
normalized both in 1-D and 2-D simulations in order to be comparable in value with the 
magnetic field. In fig. 4 the evolution of the space profile of the propagating pulse of the 
electric field is depicted by choosing xh Δ⋅= 92.0  as smoothing length for the cubic B-
spline smoothing kernel function and the Gaussian smoothing kernel function. 

In figs. 5 and 6 the behaviour of the electric field is shown by fixing xh Δ⋅= 6.0  and 
xh Δ⋅= 2.1 , respectively. In fig. 5 the strongly smoothed behaviour of the space profile is 

due to the insufficient number of neighbours particles arising from h lower than xΔ ; on the 
contrary, the noise in fig. 6 is generated by the high number of neighbours particles arising 
from xΔ  far from h.  
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Fig. 4 Comparison among the space profiles of theoretical propagating pulse and SPH simulations using the 

cubic B-spline and the Gaussian smoothing kernel functions with h=0.92⋅Δx. 

 
Fig. 5 Comparison among the space profiles of theoretical propagating pulse and SPH simulations using the 

cubic B-spline and the Gaussian smoothing kernel functions with h=0.6⋅Δx. 

 
Fig. 6 Comparison among the space profiles of theoretical propagating pulse and SPH simulations using the 

cubic B-spline and the Gaussian smoothing kernel functions with h=1.2⋅Δx. 
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3.2 Two-dimensional TE wave simulations 
 
In R2 the constant and linear derivative polynomial reproducing conditions (8) and (9) are: 
 

 (16)     0)()(
1

2
1

1 =−∇=−∇ ∑∑
==

j

N

j
jj

N

j
j V,hWV,hW xxxx  

 

(17)  1)()()()(
1

22
1

11 =−∇−=−∇− ∑∑
==

j

N

j
jjj

N

j
jj V,hWV,hW xxxxxxxx  

 

(18)  0)()()()(
1

12
1

21 =−∇−=−∇− ∑∑
==

j

N

j
jjj

N

j
jj V,hWV,hW xxxxxxxx  

 
and they provide the set of h values.  
By working with the cubic B-spline smoothing kernel function, the 0-th order of 
consistency is verified when 8.00 ≤Δ< xh ; the 1-st order is verified for 

55.053.0 ≤Δ< xh  as shown in fig. 7 depicting the xh Δ  values for the (17) and (18) 
conditions. In the same manner, the values of h fall in ( ]0.68 ,0  for 0-th order, and in 
[ ]0.386 ,382.0  for 1-st order of consistency by using the Gaussian smoothing kernel 
function (fig. 8). 
 

 
Fig 7 Set of h values for the cubic B-spline smoothing kernel function in two-dimension. 
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Fig. 8 Set of h values for the Gaussian smoothing kernel function in two-dimension. 

 

The transient evolution of a time variable zE  field turned-off after the second time step is 
simulated: 
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where =0f 20 MHz and 0c  is the speed of light in free space. The square domain 
[ ] [ ]40 ,040 ,0 ×=Ω  is arranged by evenly spaced particles with 1.0=Δ=Δ yx .  

 

 
Fig. 9 Section of space profiles of the electric field EZ at time step t=20. 

 

In fig. 9 the computed space profile of the electric field EZ on a plane =y const is shown in 
comparison with the theoretical result at a fixed time step. The SPH simulations are with 
the cubic B-spline smoothing kernel function and the Gaussian smoothing kernel function, 
respectively. The experiments are performed by fixing the smoothing length xh Δ⋅= 534.0  
and xh Δ⋅= 385.0 , for the two smoothing kernel functions respectively. In figs. 10, 11, 12 
the space profiles of the electric field is reported too. A good agreement has been reached. 



 12

 

 
 

Fig. 10 Theoretical expected result for the electric field EZ. 
 

 
 

Fig. 11 Computed result with the cubic B-spline smoothing kernel function for the electric field EZ. 
 

  
 

Fig. 12 Computed result with the Gaussian smoothing kernel function for the electric field EZ. 
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4. Conclusions 
 
This paper provides an objective method, based on the polynomial reproducing conditions, 
to determine a set of values of the smoothing length h to achieve a good SPH 
approximation of the unknown field functions. Two bell-shaped smoothing kernel 
functions, i.e. the cubic B-spline and the Gaussian smoothing kernel functions, have been 
taken into account. At first, the criterion has been adopted to recognize proper h values 
verifying the constant and linear consistency conditions. Moreover, the consistency has 
been analyzed for the curl differential operator. Numerical investigations have been 
performed on Maxwell’s curl equations in free space for 1-D and 2-D formulations. By 
considering the h values recognized by means of the described criterion, a good agreement 
has been obtained in comparison with the theoretical expected results. 
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