
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

An MDA Approach For Multi-Platform Agent
Design Patterns

Massimo Cossentino (2,3), Luca Sabatucci (1), Salvatore Gaglio (1,2) Member IEEE

(1) DINFO - Dipartimento di Ingegneria Informatica, Università degli Studi di Palermo - Viale delle Scienze, 90128 Palermo, Italy
 (2) Istituto di Calcolo delle Reti ad Alte Prestazioni, Consiglio Nazionale delle Ricerche;
(3) SET - Université de Technologie Belfort-Montbéliard - 90010 Belfort cedex, France

cossentino@pa.icar.cnr.it; sabatucci@csai.unipa.it; gaglio@unipa.it

Abstract—The object-oriented paradigm enriched with the

definition of design patterns proved successful in lowering the
development time and number of errors in produced software;
now a similar phenomenon is occurring for multi-agent systems,
where this is related to the great effort that has been currently
spent in methodology definitions by several researchers. In this
work we describe our experiences in the identification,
description, production and application of agent patterns. Upon
our pattern definition, we base a reuse process that can be
considered as a crosscutting phase of the entire PASSI design
methodology, from analysis to development. A classification
criteria and a documentation template was defined in order to
help user in selecting a pattern from the repository. The pattern
solution is described using an MDA multi-level approach
allowing us to automatically produce both source code (for
multiple agent platforms) and UML diagrams (usually almost a
structural and a dynamic diagram) useful for documenting the
process. A concrete case study is reported in order to illustrate
our pattern reuse approach, and some experimental results are
reported for supporting the theory.

Index Terms—Multiagent systems, patterns, process, reuse

models and tools.

I. INTRODUCTION
n the last years, multi-agent systems (MAS) have achieved
a remarkable success and diffusion in employment for

distributed and complex applications; experiences of industrial
applications have been done, for instance, in e-commerce/e-
market contexts where usage scenarios require high quality of
design as well as secure, affordable and well-performing
implementation architectures. In our research we deal with
design process of agent societies; this activity involves a set of
implications such as capturing the ontology of the domain,
representing agent interactions (social aspects), and modelling
the ability of performing intelligent behaviours. Several
scientific works can be found in literature dealing with the
same basic elements; they adopt several different approaches,
they sometimes use different notations/languages and, above
all, give different emphasis to different aspects of the process

(for example the design of goals, communications, roles). In
the following, we are going to pursuit a specific goal:
lowering the time and costs of developing a MAS application
without forgetting the necessary attention for quality of the
resulting software and documentation.

Manuscript received October 9, 2001. (Write the date on which you

submitted your paper for review.)

We think that a fundamental contribution to this field could
come by the adoption of proper reuse techniques and tools
providing a strong support during the design phase. In
pursuing these objectives we defined a reuse technique based
on design patterns; this approach is integrated with the PASSI
methodology [11], a step-by-step requirements-to-code
methodology for developing multi-agent software.

Our work conceives the support for pattern reuse during
almost all the PASSI design process: this practice is a sort of
crosscutting phase occurring during the phases of PASSI. We
define a pattern as a representation and implementation of
some kind of (a part of) the system behaviours that solves a
recurrent problem. In order to support the localization of our
patterns for two of the most diffused agent platforms (JADE
[6] and FIPA-OS [20]) we based our solution on the MDA
architecture, using languages based on XML and
transformations based on XSL. In this way designers can
automatically generate not only the agent source code for the
two selected agent-platforms but also an XMI representation
of the UML diagrams representing the pattern solution. It is
worth to note that although we actually worked with only
FIPA-OS and Jade, our approach is general and the
introduction of another platform in our repository is possible.

This paper is organized as follows: section II quickly
overviews the agent paradigm from the software engineering
point of view and shortly introduces the PASSI methodology;
section III illustrates design patterns state of the art from
literature, considering approaches used for both objects and
agents. Section IV is the core of the paper: it presents our
definition of patterns, based on a three-levels architecture
(problem, solution, implementation); subsection IV.A
discusses the process adopted for generating the source code
for a specific execution environment; subsection IV.B
presents AgentFactory, a tool developed for supporting
pattern reuse. Section V describes the repository and the
classification we adopted to describe our patterns. Finally,

I

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

section VI discusses experimental results obtained for a
proposed case study and some conclusions are presented in
section VII.

II. THE AGENT PARADIGM
Several authors, nowadays consider the agent paradigm as

the key for the implementation of flexible and scalable
applications; Jennings argued that agents can be a successful
solution for two major problems of contemporary design and
development approaches: rigidity of components interactions
and limitedness of available system’s organizational structures
[27]. We agree with these arguments and, in the following, we
report a brief description of the concepts we refer in our work.

Agent. The traditional meaning of agent derives from
Artificial Intelligence where an agent is an entity capable of
perceiving its own environment through sensors and acting
through effectors [49]. Wooldridge [60] introduces that an
agent is an encapsulated computer system that is situated in
some environment and that is capable of flexible, autonomous
actions in order to meet its design objectives. Jennings [27]
speaks about agents as a new theoretical model of
computation that more closely reflects current computing
reality than Turing Machines.

Afterwards agent is endowed with additional characteristics
[18]: its behaviour tends towards satisfying its own goals
(proactivity), taking into account resources and skills in
accordance with its internal knowledge and external events.

The intelligent behaviour, the ability to learn, and the
mobility are skills assigned to agents depending on the nature
of applications in which they are used [22][40].

Multi-Agent Systems. Interactions are one of the most
important features of agents. An agent may communicate with
other agents in order to collaborate for achieving some
common goal. Multi-Agent Systems (MAS) are abstractions
for dealing with complex and open problems: organization
facilitates managing complexity by determining structures,
norms and dependencies [63][64][65]. In some cases these
may be established during design time but, in certain
approaches organization emerges at run time.

A. PASSI
Autonomous agents represent a powerful instrument for

decomposing, abstracting and organizing complex, distributed
and evolving systems [61]. A new branch of the software
engineering [27][60], the Agent-Oriented Software
Engineering (AOSE, sometimes also referred to agent based
software engineering, ABSE) is dealing with using agents to
manage and conquer the complexity in a design process.
Many approaches looked at the problem of requirements
specification and design of agent-oriented systems with a
formal approach [55][56][64] [13]. Non-formal specifications
were adopted by several agent-oriented design methodologies
(such as ADELFE [7], Gaia [65][66], Ingenias [45], MaSE
[14], MESSAGE [9], Prometheus [44], ROADMAP [28],
SODA [43], and Tropos [8]).

In our work we will refer to the PASSI methodology that
we have been using for a few years. It will be the starting
point and the natural context of our pattern definition and
application.

Figure 1 - A portion of the Agent Identification Diagram for the proposed

case study system

PASSI [11] (Process for Agent Societies Specification and
Implementation) drives the designer from the requirements
analysis to the implementation phase in the construction of a
multi-agent system. The work is carried out through five
models composed by twelve sequential and iterative activities.
Briefly, the models and activities of PASSI are:
• System Requirements. It is composed of four different

activities and produces a description of the functionalities
of the system-to-be; it allows an initial decomposition of
the system according to the agent paradigm. The four
activities are: (i) the Domain Requirements Description,
where the system is described in terms of the required
functionalities; (ii) the Agent Identification where agents
are introduced for dealing with requirements; (iii) the
Role Identification where agents' interactions are
described by using traditional scenarios; (iv) the Task
Specification where the plan of each agent is draft.

• Agent Society. It is composed of four activities
producing an ontological view of the domain and the
specification of the society. In the Domain Ontology
Description the system domain is represented in terms of
concepts, predicates, and actions. The Communication
Ontology Description focuses on the agents'
communications that are explained in terms of referred
ontological elements, content language and protocol. In
the Role Description the distinct roles played by agents
and the tasks involved in playing each role are detailed.

• Agent Implementation. It is a model of the solution
architecture in terms of classes and objects. It is
composed of two main streams of activities (structure
definition and behaviour description) both performed at
the single-agent and multi-agent level of abstraction.

• Code. It is a model of the solution at the code level. It is
largely supported by patterns reuse and automatic code
generation.

• Deployment. It is a model of the distribution of the parts
of the system across hardware processing units; it
describes the allocation of agents in these units and any

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

constraint on migration and mobility.
• Testing has been divided into two different steps: the

Agent and the Society tests. In the first one the behavior
of each agent is verified with regards to the original
requirements; during the Society Test, integration
verification is carried out together with the validation of
the overall results of iteration.

B. A Case Study
Throughout this paper we will refer to a case study that is

the result of a relevant effort in MAS design and
implementation. It regards a manufacturing system working in
a market environment characterized by a globalization
movement, where the rapid change of customer’s desires and
the mutable requirements of market require a good internal
organization and a decrease in production time. Although we
developed the system for a real company, the problem is very
similar to the one studied in [37].

Agent technology assures the possibility to implement a
flexible, scalable and decentralized architecture where
autonomous entities could interact and organize themselves to
achieve a general objective. MAS features such as autonomy,
cooperation and mobility allow best fitting to the market
changes [53].

The proposed manufacturing system was designed using the
PASSI methodology; the real case from which we originated
this case study regards an iron parts production chain (the
products are directed to industry, carpentry, and other
markets). Generally speaking, such a system may often be
decomposed in three areas: i) a management sub-system for
company trading affairs (relationships with suppliers and
customers), ii) a flexible production chain management sub-
system (storehouse and production control) and iii) an
administrative sub-system to manage data and policies for the
different areas of the whole system.

In the system requirements analysis, according to the
PASSI process prescriptions, we identified 9 agent categories
(more than one agent belonging to each category may exist in
our MAS, for instance 1..n Client agents may interact with
multiple customers at the same time). During the Agent
Implementation phase we enriched the system with other
agent categories (discovered later because they are depending
from implementing choices), such as database wrapper agents,
data caching agent and user agents; the whole system finally
aggregates 27 agent categories. For the sake of brevity we will
report and describe only a selection of the whole system.
Figure 1 is a PASSI Agent Identification Diagram showing
responsibilities of customer interaction area. In this diagram
each agent is modeled as an UML package containing use
cases (functional requirements): in this way the responsibility
of accomplishing these requirements is partitioned among
agents. A “communication” stereotype is introduced (this is
not compliant to UML specifications) for representing
interactions among use cases that are assigned to different
agents. More in details, Figure 1 introduces two actors and
three agents:

• The Customer actor is interested in placing an order
(insert order use case) and it is represented by the Client
agent that presents an interface where the Customer may
insert a new order and verify the status of existing ones
(verify order status use case).

• The Customer Department is the area of the company
specialized in interacting with customers. It is represented
by the CustomerDept agent that is responsible for
handling customer data (manage customer data use case)
and negotiating with the Client agent the agreement on
order parameters (order supervision and represent
company use cases).

• The Order agent is responsible for eliciting the status of
an order during its production; this is done by collecting
data from other agent that are not shown in the figure for
the sake of space.

III. DESIGN PATTERNS AND AGENTS
Designing and developing software is a rough duty because

of the growing complexity of modern software systems but
this activity might be simplified with an appropriate support of
CASE tools and reuse techniques [58][26].

In this paper we focus on both of these aspects using a tool
(AgentFactory, introduced later) that supports the reuse of
agent design patterns. Design patterns born in a context that is
far away from computer science: Alexander [2], a building
architect, recognized common structures in cities,
communities, and buildings that he considered to be "alive”;
he called patterns these recurring themes: “Each pattern
describes a problem which occurs over and over again in our
environment, and then describes the core solution to that
problem”. Alexander intended those patterns as answers to
questions such as “Where should I place a terrace?”, “How
should I design the front entrance?” or even more abstract
such as “How should I organize my community?”. His
research resulted in the creation of a language [3] that he
believed would enable people to design almost any kind of
building and community.

A pattern is a three-part rule that expresses a certain
relationship between a certain context, a problem, and a
solution: this generic definition is the core of the work of
Gamma et al. [17] that applied Alexander’s idea to computer
science and more specifically to the object-oriented paradigm.
They used design patterns to describe best practices, good
designs, and capture experience in such a way that it is
possible for others to reuse them. Design patterns allow
experts to systematically document, reason and discuss about
solutions applied to specific problems. These solutions are
validated by the experience rather than from testing and a
project results more robust and simpler to modify with respect
to traditional projects [46]. Design patters also provide a
comprehensible way of documenting complex software
architectures by expressing the structure and the collaboration
of participants at a level that is higher than source code [50]
[24].

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

The recent growing of methodologies for the design of

multi-agent systems focused the attention of several
researchers towards pattern concepts applied to agents. An
evolution of design patterns should generate solutions rather
than only describe them [15][59]: moreover, pattern
description should be useful not only for understanding a
pattern and its usage, but it should also indicate how the
pattern is related to (or combined with) the others.

One of the first studies in agent patterns come from Kendall
that [29][30] in illustrates an architecture based on role
modeling: Kendall’s patterns are object-oriented solutions
based on a layered structure for implementing agents
composed by: i) Sensory, for perceiving the environment, ii)
Beliefs, representing agent’s knowledge, iii) Reasoning,
addressing goals, plans and capabilities, iv) Action, addressing
agent’s intentions (plans instantiated from the reasoning
layer), v) Collaboration, including protocols, competitive
bidding and coalition formation, vi) Translation, in which the
agent formulates a message for another agent, and finally vii)
Mobility, required for message transmission and reception.

In [38][54] several patterns for agents are presented, these
are inspired by the real world and are described at a very high
level of abstraction. The proposed structure for these patterns
may be viewed as a specialized hierarchy of agents with the
description of their communication mechanisms. These works
do not investigate how patterns should cope with a specific
implementing architecture and therefore remain quite abstract.
Several authors consider design patterns as crosscutting with
respect to the entire development process (from design to
implementation); therefore the solution introduced moves
from different abstraction levels that are generally clearly
separated in the development process. Another approach
proposes the use of Aspect Oriented Programming [31] for
reducing the gap among design and implementation phases
[23]. This work identified a set of aspects that are crosscutting
with respect to the high-level elements of a MAS by exploring
the influence of each aspect on the effective implementation
(in an object-oriented language)

Another interesting source for patterns for agents comes
from a well known AOSE methodology. In [39][16][32] the
authors introduce a framework for using design patterns
within the Tropos methodology. The proposed approach is
“requirement driven”: a problem is decomposed in a set of
goals and their inter-dependencies. Patterns, in this context,
are defined as design idioms based on social and intentional
behaviours and are described from different points of view: i)
the social dimension specifies agents and their interactions
using a sort of second order logic language; ii) the intentional
dimension is focused on services (seen as a functional link
among agents); iii) the structural dimension explores the
internal composition of agents in terms of Believes, Events
and Plan [48][47]; iv) the communication dimension focuses
on agent interaction protocols, using AUML [5] for describing
communications; finally v) the dynamic dimension uses
activity diagrams for defining what operations are involved in

intentional and social actions.

IV. THE THREE-LEVELS PROPOSED ARCHITECTURE
Our design patterns approach was initially conceived during

the development of PASSI with the objective of introducing a
viable reuse technique for the development of MAS.
Classically, software design is structured in two domains [25]:
the problem context and the solution context that are separated
entities located in two different conceptual positions. The
solution stays in the computer and in its software (machine
domain) whereas the problem is in the world outside from it
(application domain). During the solution discovery phase, the
problem analyst’s duty is to understand the problem exploring
the context in which the machine will fit. Complex problems
are faced using problem decomposition techniques.

A relevant part of the previously discussed literature
proposes an abstract implementation for patterns that can be
situated in the application domain [38] or a concrete
architecture principally located in the machine domain using
object-oriented elements for the solution [30][34][54].

Our approach to the definition of agent patterns spreads
across both of the application and machine domains. However
when using agents as a design paradigm the solution is more
abstract than it is when expressed in object oriented terms; so
we prefer to split the machine domain in two sub-domains,
introducing the “agency domain” between the problem and
implementation domains. In this way designing a multi agent
system passes through three different levels of abstraction: (i)
the “problem domain” catching the problem description; (ii)
the “solution domain” giving a solution in terms of high level
concepts coming from the agent paradigm (agents,
communications, ontology, tasks, and so on); (iii) the
“implementation domain” containing the effective
implementation (often in object oriented terms). This three-
levels architecture is the base for introducing our agent pattern
definition (shown in Figure 2); in the following we will detail
each of the domains of our pattern structure.

Pattern problem. A fundamental part of a pattern is the
description of the problem (see the “problem domain”
compartment of Figure 2) for which it may be useful. It is
composed by: (i) motivation, an explanation of how (and why)
the pattern works, and why it is good, putting into evidence

Figure 2 – Architecture of our Agent Pattern

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

steps and rules required to solve the problem (a concrete
scenario used as an example of the pattern application is
frequently employed); (ii) the application context describes
the conditions under which the problem and the solution seem
to recur, and for which the solution is desirable (pattern
applicability); it is composed by preconditions (condition to
verify before pattern application) and postconditions
(conditions to verify after pattern application); finally (iii)
related patterns element describes other patterns that could
solve a similar problem. All these elements belong to the
problem domain; they are expressed using PASSI artifacts like
scenarios, requirements and domain ontology.

Pattern solution. It represents the solution (introduced
when adopting the pattern) in terms of agent-oriented
elements (see the “agency domain” compartment of Figure 2).
The element “Solution” aggregates a textual and a formal
description of the solution introduced by the pattern. The
textual description illustrates the static structure and the
dynamic behaviour introduced by the pattern in terms of
structure, participants and collaborations. The formal
description introduces some rules expressed by using an
XML-based language that will be detailed in subsection IV.A.

Pattern solution implementation. This represents the
lower level of the solution containing the effective
implementation in an object-oriented language (it is very
common in agent implementation to realize agency concepts
using some object-oriented language like Java, although we
acknowledge the limits coming from this practice, this
remains a merely technological issue and its analysis is out of
the scope of this paper). This phase uses diagrams from the
Agent Implementation Model of PASSI; in Agent Structure
Definition the involved agents are represented in terms of
classes, attributes and methods using conventional UML class
diagrams. The Agent Behaviour Description depicts the
behaviour of agents involved in interactions using activity or
state-chart diagrams.

A. Patterns and Meta Patterns: an MDA based approach
In this subsection we focus on the effective implementation

of our problem-to-solution approach for agent patterns; during
the definition of our architecture and the development of the
supporting tools we chose to be compliant to some industrial
standards; more specifically we adopted: i) MDA [41] (Model
Driven Architecture) for implementing our three-levels
architecture; UML (Unified Modeling Language) [42] for the
graphical semiformal specification of pattern solutions; and

XML/XSL [57] as a language for the effective implementation
of patterns and transformations.

The Model Driven Architecture (MDA) has been proposed
by the Object Management Group (OMG) as an open, vendor-
neutral approach for separating business and application logic
from underlying platform technologies. The main goal of
MDA is to improve the quality of software products and the
development process by allowing the reuse of models and
transformations.

MDA proposes a definition of three models concerning
different viewpoints of a system and addressing different
levels of abstraction; the Computation Independent Model
(CIM) describes the system in the environment in which it
will operate, and what it is expected to do: it is an abstract
representation of the system-to-be, independent from any
computational aspect. The Platform Independent Model (PIM)
defines the computational components that will satisfy the
requirements, independently from the specific target platform.
Finally, the Platform Specific Model (PSM) defines platform-
specific concerns providing more or less details, depending on
its purpose (for implementation purposes it can provide all the
information needed to build the system and to put it on
operation).

TABLE 1 – A PORTION OF THE CIM VIEW OF THE
PARALLELSHARERESOURCE PATTERN (METAPATTERN LEVEL).
<Agent name="ParallelShareResource">
 <Resource name="sharing_resource"
 type="UserDefined"/>
 <Task name="ResourceServiceListener"
 type=”RequestParticipant”>
 <Action name="sendAgree"
 category="communication"
 act="send"
 performative="Agree"/>
 ...
 </Task>
 ...
</Agent>

The interpretation of these MDA models depends on the
specific meaning assigned to the term “platform”; in OMG
specifications it is defined as “a set of subsystems and
technologies that provide a coherent set of functionality
through interfaces and specified usage patterns, which any
application supported by that platform can use without
concern for the details of how the functionality provided by
the platform is implemented“ (MDA Guide V1.0.1 [41], p.
13). In our context we consider the agent programming
language and the deployment infrastructure as lower levels of
our system, that is, the “platform” according to the previous

Figure 3 - MDA view of the proposed pattern architecture

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

definition.
• Platform Specific Model. We selected some FIPA-

compliant platforms for producing our agents: JADE [6]
and FIPA-OS [21], which together represent a relevant
part of the installed platforms in the Agentcities EU
initiative [1]. In this way the source code of agents (that is
principally Java-based) represents the Platform Specific
Model of our architecture.

• Platform Independent Model. Generalizing the elements
of the PSM level of our architecture we deduced the PIM
one. We extracted some common features from platforms
we considered: i) same coding language (Java), ii)
compliance to the IEEE FIPA Abstract Architecture [19]
and iii) several similarities in the structure and behaviour
of agent-classes. Therefore we produced a “meta”
representation of the analyzed platform that is our MDA
Platform Independent Model; we use this generic
platform to describe and abstract solution: the elements
involved in this solution are different from those coming
from the PSM solution, but a simple transformation
allows to move between these two levels.

• Computational Independent Model. From these
considerations we moved to a more abstract level: the
agent solution (expressed in terms of the agent domain)
corresponds to the Computation Independent Model
(CIM) because it provides a view of the system that is
independent from any computational aspects: the details
of the structure of the solution in object oriented terms are
hidden or as yet undetermined.

According to this decomposition we structure our pattern-
to-solution process in three levels and in their correspondent
transformations. In the following we will discuss about the
multi-platform implementation of our pattern solution
schematized in Figure 3.

The meta-pattern contains a generic description of the
solution in terms of agency domain and therefore corresponds
to the CIM. As an instance of meta-pattern, Table 1 shows a
portion of the XML representation of the ParallelShare-
Resource pattern; we specifically report a rule composed by a
resource and a task. The resource is identified by a name and a
type (that the user must define) whereas the task has a name
and a set of possible actions (for sake of brevity only
sendAgree is shown).

It is possible to perform a transformation from a meta-
pattern model to a pattern model using a
query/transformation language (we used a style-sheet based
on XSL, XQuery and XPath). The transformation produces a
description of the solution in object oriented terms. Table 2
shows the result of this transformation when applied to the
ParallelShareResource pattern. The root element is a class
defining the agent and containing an attribute (corresponding
to the agent’s resource) and an inner class (corresponding to
the agent’s task); the action was transformed in a method of
the task class.

Using an opportune XML-XMI transformation we can also
represent a meta-pattern solution or a pattern solution using
the UML notation; resulting diagrams are useful as a
documentation for designers; we prefer to dynamically
generate diagrams instead of manually create them because in
this way any successive maintenance operation on the meta-
pattern has an immediate effect on its documentation.

Until now we have not yet chosen the desired agent
platform. The solution is expresses in object oriented terms
but it is still quite generic. Next step is the specialization for a
specific platform; this transformation produces the agent
complete code corresponding to the PSM. While localizing a
pattern for a specific platform it is time to consider all the
implementing details we have ignored up to the moment. For
instance in FIPA-OS, an agent that wants to communicate
must have a listener task, that is a specific class registered as a
message dispatcher and containing an handleX method for
each type of messages to catch (where the X has to be
substituted with a specific communicative act [51]). The Jade
framework provides not only a Task superclass (as it happens
in FIPA-OS) but the suitable superclass has to be selected
from a hierarchy of behaviour classes; besides, all of them
may handle communications (they do not need a registration
and/or a specific message dispacher).

The process for obtaining the final code is decomposed in
three consecutive sub-steps: i) a transformation replaces all
meta-level placeholders (specifying generic features as
described before) with specific elements of the selected
platform; this intermediate result is still expressed using a
language based on XML but it is compatible with only one
agent platform; ii) another transformation generates a first
instance of the source code: it is only an empty skeleton

TABLE 2 - A PORTION OF THE PIM VIEW OF THE
PARALLELSHARERESOURCE PATTERN (PATTERN LEVEL)

<Class name="ParallelShareResource"
 extends="AgentShell">
 <Attribute name="sharing_resource"
 type="UserDefined"/>
 <Class name="ResourceServiceListener"
 extends="TaskShell"
 type=”RequestParticipant”>
 <Method name="sendAgree" type="void">
 <Argoment name="msg"
 type="FIPAACLMessage"/>

 <Code>sendAgree@FIPARequestParticipantTask</Code>

 </Method>
...

TABLE 3 - A PORTION OF THE PSM VIEW FOR THE
PARALLELSHARERESOURCE PATTERN (JADE COMPLETE CODE)

public class ParallelShareResource extends Agent {
 private UserDefined sharing_resource;
 public class ResourceServiceListener
 extends AchieveREResponder {
 public void sendAgree(ACLMessage msg) {
 // This method can be used to
 // prepare the msg
 // to reply with an Agree
 msg.setPerformative(ACLMessage.AGREE);
 }

 }
...

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

defining the structure of classes constituting the agent; classes
contain attributes and methods, but bodies of these methods
are empty. A final transformation introduces the remaining
code in the skeleton: in this phase, action-specification
patterns are introduced (they are portions of code realizing
some specific behaviour, like for instance the registration to
the system yellow pages service).

In Table 3 the result of this transformation chain applied to
the ParallelShareResource pattern is shown for the Jade
deployment platform.

For summarizing the entire process we could track the
sequence of changes from meta-pattern solution to “code”
focusing on the root element: the agent. In the meta-pattern
solution (Table 1) an agent is described by an Agent tag
containing Resource, Task and Action tags. In the pattern
solution (Table 2) the agent is described by a Class tag with
an extends attribute set to the AgentShell string; this is an
abstract placeholder indicating a generic super-class realizing
the agent. The final transformation produces a Java class
(Table 3) where the placeholder AgentShell has been
substituted by Agent (as defined in Jade).

B. Agent Factory: a tool for patterns reuse
Patterns can contribute to significantly enhance the quality

of software and this is one of the reasons that justify their
diffusion. We think that under precise hypothesis, patterns can
also provide another important contribution to the
development process: they reduce the amount of work done
when designing a system; in particular we aim at enhancing
the amount of code automatically produced by a CASE tool
during the development phase. In order to concretely reuse
our patterns we developed the AgentFactory1 tool; it can be
used as a standalone application, as a web-based applet and as
plug-in of the PASSI PTK tool (thus introducing in it the
support for agent patterns according to the prescriptions of the
PASSI methodology).

The development of AgentFactory motivates the complex
multi-level and multi-platform architecture we previously
described. The problem description is useful when the user
browses the repository searching for a best solution to a

specific design problem. The formal description of the
solution, addressing the design phase, is useful because
AgentFactory automatically modifies the artefacts under
development introducing the changes required by the
application of a pattern. Finally the previously described
transformation chain generates the source code for the system.
The main features of AgentFactory are:

Figure 4 – An screenshot of the AgentFactory tool when browsing the repository. The ParallelShareResource pattern is selected in the left panel and the right

panel shows its documentation.

1 Website: http://mozart.csai.unipa.it/af/

• Repository management. AgentFactory manages a
catalogue of patterns (categorized as presented in
subsection IV.B); for each pattern an accurate
documentation is provided for user navigation. In Figure
4 we can see a screenshot of the tool during the selection
of a pattern from the repository.

• Automatic Pattern Reuse. AgentFactory handles
projects where users can build their MAS selecting
patterns from the repository; when a pattern is chosen a
new agent is created or an existing one is modified
according to the proposed solution.

• Code Generation. Diagrams may be transformed in
source code by using the MDA-based transformation
process described in subsection IV.A. Agent Factory
supports both Jade and FIPA-OS implementation
platforms.

• UML Static and Dynamic diagrams generation. The
tool uses transformations for generating descriptions of
patterns in XMI format and this may be useful both for
documenting a single pattern or the entire developed
system.

• Reverse Engineering. AgentFactory may parse the
generated source code (even if modified by programmers)
for rebuilding agents’ internal representation. This feature
is exploited in the Agile version of the PASSI
methodology [12] that is principally oriented to coding
and testing rather than designing. The building of a multi-
agent system using Agile PASSI is an iterative process. In
each iteration the developer uses patterns for modelling
its system and then AgentFactory generates the code for
the prototype (that is manually completed by the
programmer). When this phase ends, the code may be
imported (using the reverse engineering feature) so that a
new iteration is possible (changes and more patterns may

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

be applied).
• Import/Export as XMI. In order to be integrated in other

CASE tools (in particular with the PASSI Toolkit)
AgentFactory supports the generation and the acquisition
of an XMI representation of the designed multi-agent
system.

V. PATTERN REPOSITORY AND REUSE
In section IV we presented our definition of agent patterns

and our repository. We are now going to discuss the proposed
approach for pattern classification based on functional and
structural criteria, and to present a template for documenting
each pattern. In subsection V.A, we will apply our reuse
technique to the proposed case study.

A typical approach to patterns classification can be found in
[17], where design patterns are classified according to two
criteria: purpose and scope. With “purpose” authors refer to
what a pattern does: they enumerate creational patterns
(dealing with the process of object creation), structural
patterns (dealing with the composition of classes and objects)
and behavioral patterns (describing the interactions of
classes/objects). The “scope” is directed to clarify patterns
according to the different kind of elements they can be applied
to (i.e. classes or objects). A different, agent-oriented,
classification is proposed by Lind in [34] where patterns are
classified in accordance to the views defined in the MASSIVE
methodology [33] that are: i) Interaction view, ii) Role view,
iii) Architecture view, iii) Society view, iv) System view, v)
Task view, and vi) Environment view. Another (functional
oriented) classification has been proposed in [36] where
patterns are clustered in three categories: i) traveling (dealing
with agent mobility issues), ii) task (regarding the breakdown
of agent’s tasks and the delegation of them from one agent to
another) and iii) interaction (dealing with agent
communications).

In our approach, we summarize these classifications using
two criteria: the first criterion is the application context
regarding the structural aspects of the solution. We enumerate
four kinds of patterns in this first category:
• Multi-Agent patterns. Concerning collaborations among

two or more agents; they can be thought as an
aggregation of roles (played by several agents) and rules
to observe during the interaction.

• Single-Agent patterns. They are entire-agent patterns;
these patterns propose a solution for the internal structure
of an agent together with its plans for realizing specific
services.

• Behaviour patterns. They propose solutions addressing
specific agent capabilities, introducing features to agent
behaviours; we can look at each of them as a collection of
actions.

• Action Specification patterns. They address an atomic
functionality of an agent; their granularity can be
resembled to a method of a class.

The second criterion is functionality; we consider four

categories in it:
• Resource management patterns. They deal with

information retrieval, manipulation of data sources,
access to external resources.

• Communication patterns. They represent solutions to the
problem of interaction among agents using an interaction
protocol.

• Internal Architecture patterns. They deal with
deliberation, plan management, message dispatching,
knowledge management and other internal agent’s basic
functionality.

• Mobility. These patterns describe the possibility for an
agent of moving from one platform to another,
maintaining its knowledge.

Our repository actually contains 27 patterns (among multi-

agents, single-agent and behaviour patterns), and about 170
action-specification patterns (many of them available for both
Jade and FIPA-OS). In Table 4 we can find a summary of our
pattern classification whereas Figure 5 shows the two types of
relationships among patterns in the repository: generalization
and use. The generalization relationship is used when a
pattern extends another by adding new properties or elements;
for instance the ParallelShareResource and the
SequentialShareResource patterns are both specialization of
the ResourceAgent (useful for assigning a resource to an
agent). Both the ParallelShareResource and the
SequentialShareResource patterns give an agent the ability to
share its resource as a service for the community; the
difference is in the mechanism used for updating the status of
the resource. The second type of relationship (use) occurs
when a pattern includes another in its solution for solving a
sub-problem; for instance, the ParallelShareResource pattern
uses the FIPARequestInitiator pattern for handling incoming
FIPA Request communications.

The documentation schema we used in our repository is
composed of a few keys derived from [17], however their use
and meaning are different because of the specific needs of the
agent-oriented paradigm.
• Name. The name of the pattern (preferably a single word

or short phrase).
• Classification. The classification of the pattern

addressing the already discussed categories (see Table 4).
• Intent. A short description of the pattern solution, its

rationale and intent.
• Motivation. A description of pattern relevant forces, how

they interact/conflict with one another, and goals they
achieve. A concrete scenario which serves as the
motivation for the pattern is frequently employed. Forces
[17] reveal the intricacies of a problem and define the
kinds of trade-offs that must be considered in the
presence of the tension or dissonance they create.

• Preconditions. The preconditions under which the
problem and its solution seem to recur, and for which the
solution is desirable. This shows us the pattern

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

applicability context. It can also be thought of as the
initial configuration of the system before the pattern is
applied to it.

Parallel Resource Sharing
<<SingleAgent Pattern>>

Sequential Resource Sharing
<<SingleAgent Pattern>>

Publish Subscribe
<<SingleAgent Pattern>>

Resource Caching
<<SingleAgent Pattern>>

RequestParticipant
<<Behaviour Pattern>>

QueryInitiator
<<Behaviour Pattern>>

QueryParticipant
<<Behaviour Pattern>>

FIPAQuery
<<MultiAgent Pattern>>

InformInitiator
<<Behaviour Pattern>>

InformParticipant
<<Behaviour Pattern>>

InformProtocol
<<MultiAgent Pattern>> ContractNetInitiator

<<Behaviour Pattern>>

ContractNetParticipant
<<Behaviour Pattern>>

ContractNet
<<MultiAgent Pattern>>

Memento
<<SingleAgent Pattern>>

PersistentAgent
<<SingleAgent Pattern>>

LogAgent
<<SingleAgent Pattern>>

SecureRequest
<<MultiAgent Pattern>>

SecureQuery
<<MultiAgent Pattern>>

Generic Agent
<<SingleAgent Pattern>>

Explorer
<<MultiAgent Pattern>>

FIPARequest
<<MultiAgent Pattern>>

RequestInitiator
<<Behaviour Pattern>>

Resource Agent
<<SingleAgent Pattern>>

AStarPlanner
<<Behaviour Pattern>>

Planner
<<SingleAgent Pattern>>

VFHPlanner
<<Behaviour Pattern>>

Figure 5 - Relationships among patterns in the repository

• Postconditions. It describes the state or configuration of
the system after the pattern has been applied, including
the consequences of applying the pattern, and other
problems and patterns that may arise from the new
context.

• Solution (Structure, Participants and Collaboration).
Static relationships and dynamic rules describing how to
realize the desired outcome. This is often equivalent to
giving instructions which describe how to construct the
required work products. The description of this solution
may indicate guidelines to keep in mind (as well as
pitfalls to avoid) when attempting a concrete
implementation.

• Implementation availability. Availability of the
implementation code for the FIPA-OS/JADE platforms
and UML diagrams of the solution for importing them in
the existing system design.

• Implementation description. Comments on the most
significant code fragments for illustrating the pattern
implementation in the specific agent platforms

• Related Patterns. The static and dynamic relationships
between this pattern and the others if any. Related
patterns often have an initial or resulting context that is
compatible with the resulting or initial context of another
pattern. Such patterns might be predecessor patterns
whose application leads to another one; successor
patterns whose application follows from the current one;
alternative patterns that describe a different solution to
the same problem but under different forces and
constraints; and codependent patterns that may (or must)
be applied simultaneously with this pattern.

As an instance of pattern documentation we report the

description of the GenericAgent pattern, frequently used as a
starting point for building our agents.
Name: GenericAgent
Classification: internal architecture/single-agent
Intent: this pattern may be used as the root for applying all
single-agent patterns because it gives to an agent the ability of
registering/deregistering to/from the platform services (white
and yellow pages).
Motivation: this pattern is useful for agents who want to
discover whether the system offers a specific service and who
provides it. The GenericAgent pattern adds the ability of
registration to the platform so that the agent is reachable for
conversations.
Preconditions: none.
Postconditions: the agent will be able of registering and de-
registering to the white and yellow pages.
Solution: the agent is enriched with an attribute for listing the
description of all its services offered to the community. A
registerDF() and registerAMS() methods with their

correspondent deregisterDF() and deregisterAMS() are
provided.
Related Patterns: this pattern may be the predecessor for all
single-agent patterns. The LogAgent pattern is a variant of the
GenericAgent which may be used specifically for
debugging/testing aims.

Other examples will be provided in the following sections.

A. Pattern Identification from PASSI models
Using the PASSI methodology for developing a multi-agent

system, the designer faces three main different levels of
abstraction (corresponding to three of the five PASSI models):
i) System Requirements, ii) Agent Society and iii) Agent
Implementation .

In the System Requirements model the designer analyzes
and simplifies the problem with a top-down decomposition
discovering system goals and interactions with the
environment. Some high-level problems recur during this
phase; these are classified in three categories: i)
functional/non-functional requirements of the system, ii)
scenarios and responsibilities, iii) components and services of
the system.

The Agent Society model defines social interactions and
dependencies among the agents involved in the solution. In
this phase the agent is the central element of the analysis; it is
considered as an autonomous entity, capable to play one or
more roles in a social context. During its life an agent is able
to communicate with other agents, to execute tasks and
actions for achieving its own goals, and to provide services to
the community. A solution described in these terms is a high
level definition of “how” the system will work.

The Agent Implementation model is strongly related to the
final coding activities and almost all of its phases receive a
great input from selected patterns. This model is composed of
a structural and behavioural definition of the MAS that is
performed at both multi- and single-agent levels. As a result
we have two structural diagrams and two behavioural
diagrams: i) the Multi-Agent Structure Diagram (MASD) that
is a diagram representing all the agents of the society as a
class and communications among agents as relationships, ii)
the Single-Agent Structure Diagram (SASD), reporting all the

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

10

agent implementation details in one different class diagram for
each agent,, iii) the Multi-Agent Behaviour Diagram
(MABD), that is an activity diagram representing all the
agents and their behaviours, and iv) a Single-Agent Behaviour
Diagram (SABD), that is a diagram used to represent the
algorithmic aspects of the solution.

The designer does not need to build this model from scratch
because, as we described before, a great portion of it is
encapsulated in pattern solutions.

The Agent Identification diagram (A.Id.) is the center of the
functional requirements description; Figure 1 shows a portion
of the A.Id. diagram for the manufacturing case study; this is
an UML use case diagram used for representing agent
functionalities and dependencies. In this type of diagram,
packages are used for enclosing use cases that will be assigned
to the responsibility of each agent.

In this diagram we might already discover patterns for
solving multi-agent and single-agent problems at a high level
of abstraction. An example is described in the following
scenario from our case study (see Figure 1); let us consider the
customer department area of a company which purpose is
ensuring the acquisition of new orders for the production: the
customer actor contacts the customer-department actor
(responsible for order acquirement); as a consequence a Client
agent is created for representing the Customer during the
interaction. This agent moves itself to the remote host where it

shows an interface for the introduction of new orders (insert
order use case). Then the CustomerDpt and the Client agents
bargain the best combination of price and deliver data that is
advantageous for both the customer and the company. This
negotiation is described in represent customer and represent
company use cases (Figure 1). From this scenario we may use
the Explorer pattern for realizing the basic part of the Client
agent; this pattern allows to an agent the exploration of remote
platforms with the intent of performing some kind of
operation in them. The pattern is applicable to a couple of
agents: an agent playing the role of Base and an agent playing
the role of Explorer. The Base agent receives the ability of
creating one or more Explorer agents (assigning them a
mission) who has the ability to move from a platform to
another.

Figure 6 - Solution for Explorer pattern: a) role description, b) structure
of Base role and c) structure of Explorer role

Figure 6-a is a Role Identification diagram showing
interactions proposed for these two roles: the Base role creates
an agent who plays the Explorer role, moving itself to a
remote platform. Figure 6-b represents the structure for the
Base agent: this agent has the ability to activate one or more
Explorer agents using the CreateExplorer task. Figure 6-c
reports the structure of the Explorer agent who has a
MoveToRemote with a destination attribute.

In our case study we applied the Base role of the pattern to
the CustomerDept agent and the Explorer role to the Client
agent. It is interesting to note how relevant the backlash of this
pattern in the other phases of PASSI can be.

After the A.Id. phase, the designer performs the Roles
Identification phase where he/she describes scenarios. When a
scenario allows the identification of a pattern, the designer
receives a significant help in designing it from the
documentation that illustrates the collaborations of the pattern.

Figure 7 reports an example of a Role Identification
diagram (describing the “insert new order” scenario), obtained
after the application of the Explorer pattern. The sequence
diagram starts with a client who contacts the customer
department for a new order. The Remote Interface role moves
to the client host and visualizes a graphical interface for
collecting user input. Then the Customer Department, after
using the Customer Data Interface role, activates a Seller and
a Mediator; these agents will contract for establishing the
better combination of parameters for both the customer and
company. In this scenario the Customer Data Interface role is

TABLE 4 - THE PATTERNS IN OUR REPOSITORY
Application Context

Multi-Agent Single-Agent Behaviour Action Spec.

Resource Management

 Resource Sharing, Parallel Resource
Sharing, Sequential Resource
Sharing, Publish-Subscribe,

Resource Caching

53*

Communication

Request, Query,
Inform, ContractNet,

SecureRequest,
SecureQuery

 Request (I/P), Query (I/P),
Inform (I/P), ContractNet (I/P) 66*

Internal Architecture GenericAgent, LogAgent, Planner,
Memento, PersistentAgent

AStarPlanner 44*

Fu
nc

tio
na

lit
y

Mobility Explorer 7*
* Names of these patterns have been omitted because the list would be too long and not really significant to the purpose of this paper

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

11

the Base role of the pattern whereas the Remote Interface role
is the Explorer one.

Several candidate communications can be identified in the
complete (Agent Identification) A.Id diagram and these can be
realized using the corresponding communication/multi-agent
patterns that are the most frequently used because of the
peculiar agent feature to be strongly interactive and
collaborative. For instance the FIPA Query and Request
protocols are used in a great variety of contexts: in our case
study the FIPAQuery pattern was used in eight agents whereas
the FIPARequest in six agents. For instance we used the FIPA
Request pattern for implementing the communication among
the Client agent and the Order agent for implementing the
functional dependencies among order supervision and order
status use cases; this occurs when a client wants to verify the
status of his/her order. The effect of applying this pattern is
that order status is seen as a service offered by the Order
agent to the society. This becomes more evident in the Task
Specification (T.Sp.) phase of the PASSI methodology where
one different activity diagram is drawn for each agent (an
example is reported in Figure 8). In this type of diagram the
designer studies the plan and tasks of each agent with the aim
of defining a first hypothesis of the internal architecture of an
agent and of its interactions with the other agents.

In these diagrams it is quite easy to find a great variety of
patterns to reuse (principally behavioral ones). For instance
for implementing a service three patterns (from our
repository) may be considered: the ParallelShareResource
pattern, the SequentialShareResource pattern and the Publish-
Subscribe pattern; all of these give a solution to the same
problem, but they starts from different contexts, preconditions
and produce different postconditions. Here we report the
description for the ParallelShareResource pattern (Figure 9)
chosen for implementing the needed service.
Name: ParallelShareResource
Classification: resource management/single-agent
Intent: this pattern solves a problem of coordination: while
continuously reading the status of a resource the agent has to
provide a service based on this resource.
Motivation: when an agent provides a service depending

from a resource (resource sharing) which status changes in
time, there is a problem of coordinating the update activity
with the resource sharing. The pattern solves this problem
putting in parallel these two activities: a listener task is always
ready for offering the service, and in the same time a cyclic
behaviour continuously reads the status of the resource. In this
way when a request incomes, a reply is sent without any delay
(thus obtaining a good response time). Two side effects are: i)
the cyclic behaviour requires a lot of computational resources
(it is always running), so other agents deployed in the same
node may suffer of a significant slow down; ii) incorrect or
older information may be given as a response because of the
independency among service providing and updating cycle.

Figure 7 - Example of PASSI Role Identification

Pre-conditions: none
Post-conditions: the pattern uses the GenericAgent pattern for
registering the service to the yellow pages and the
FIPARequest Participant pattern for the incoming
communications. The pattern specifically introduces a
resource handling ability (to read/change the resource status) a
synchronization mechanism to access the resource and a
cyclic task for updating the resource status readings.
Solution: the solution proposed by this pattern is composed
by only one participant: the ParallelShare agent. Figure 9-a
shows the structure of this agent: it inherits the ability of
registering itself to the platform (from the GenericAgent
pattern) and the ability of manipulating a resource (regarded
as an abstract element of the ontology domain). The agent also

TABLE 5 - STATISTICS FOR MAIN AGENTS OF THE MANUFACTURING SYSTEM CASE STUDY

Lines Of Code Percentage (%) Agents
Manually Generated Method Body Generated Method body

Agenda 1334 662 358 50 54

Customer 1306 746 392 57 53

CustomerDpt 1398 612 364 44 59

Order 502 410 226 82 55

Production 680 606 400 89 66

ProductionAdmin 488 248 132 51 53

Repository 3634 504 162 14 32

Supplier 570 198 120 35 61

SupplierDpt 476 248 132 52 53

Total 10388 4234 2286

Average 41 54

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

12

receives the ability of participating to a conversation with
other agents (using the FIPARequest pattern) and uses a cyclic
task for updating the ResourceStatus value (see Figure 9-b);
this task has an abstract method updateStatus() where the
programmer has to put the code for reading the resource.
Related Patterns: the SequentialShareResource and the
Publish-Subscribe solve the same problem using different
approaches. A solution could be to read the status of the
resource only when required thus avoiding the cost in
computational time (SequentialShareResource). When several
agents are interested on the same resource the Publish-
Subscribe pattern may be useful: the agent responsible of the
resource manages a list of subscribed agents to notify every
time the resource status changes.

We used the ParallelResourceSharing pattern for
implementing the architecture of the order status service: in
Figure 8 we can observe the Task Specification diagram for
the resultant Order agent; the agent’s life begins with two
tasks running in parallel: the requestStatusListener waiting for
incoming requests (and accomplishing the service) and the
updateOrderStatus responsible for evaluating the current
status of the order; this is not an atomic operation, since an
order may be composed by various components; therefore this
task has to query for the status of all the components
(information available via the Agenda agent that is not showed
in reported diagrams) for building the complete information.

The System Requirements model for our case study has
been completed with a massive use of patterns and the
designer effort in this phase has been significantly reduced.
Some work is still to be manually performed: as an instance
the domain ontology (used by agents for their knowledge and
communications) has to be completed with the specific
concepts, predicates and actions of the application.

Finally the code is automatically generated by the
AgentFactory tool, and the programmer can manually
complete classes and methods with specific behaviours not
contained in pattern solutions.

VI. EXPERIMENTAL RESULTS

Figure 8 - Example of PASSI Task Specification for Order agent

In this section we will report results obtained applying the
PASSI methodology within our pattern approach to the
manufacturing case study presented in subsection II.B.

The initial prototype has been designed without a
significant reuse of patterns, since our repository was almost
empty at that time. Now, in our experiment we reproduced it
applying the patterns with the support of PTK and the
AgentFactory tool thus obtaining good results in decreasing
the production time and increasing the quality of code and
documentation. As an instance it is worth to consider that with
a few mouse clicks, selecting the Explorer and FIPARequest
patterns we can produce an application composed of two
agents, six classes and about 190 lines of code. The
documentation is provided by UML class diagrams (structure
of the system) and UML activity diagrams (behaviour of the
system); these can be exported in XMI format and included in
the design of the remaining part of the system.

The system we built was composed by 9 early agents
(identified in the System Requirements Analysis phase)
covering main functionalities of the system, plus other 18
agents identified later (during the Agent Society phase), used
for implementing details of the system, such as database
wrappers, data caching and user agents; the whole system is
finally composed by 27 types of agent.

In order to quantify the contribution provided by the reused
patterns, here we compare the number of lines of code (LOC)
of the original agents with the LOC obtained by the patterns
application. For the sake of brevity we will discuss statistics
only for a selection of the whole system mainly focusing on
the most important functionalities (agents representing the
core of the system): in Table 5 we have summarized some
data regarding nine agents. The first column reports the names
of the agents we are studying. The “manually” column reports
the number of lines of code manually produced for the first
instance of the system (when the system was entirely
manually developed). The “total” value (10.388 LOC) gives
an indication of the dimension of the considered portion of the
system (that is the core of the system). The “generated”
column reports the number of LOC automatically produced by
AgentFactory when the project was rebuilt using our pattern
approach; we obtained a total of 4.234 automatically
generated LOC. This “generated” code (as described in
section IV.A) is the sum of code for the skeleton of classes
(representing agents and tasks) plus the code inside the
methods of these classes. The next column, labelled “method
body”, indicates the LOC automatically generated just for the
body of method bodies.

The last two columns indicate (for each agent) the
percentage of code automatically produced with respect to the
total and the percentage of method body automatically
produced with respect to the total automatically generated
using patterns. As an average the pattern approach has
produced a 40% of the final code of the system; best
performances are obtained for agents that are involved in a

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

13

great number of communications (we have a great number of
patterns for that). Worst results are obtained for agents where
tasks are essentially algorithmic.

About a half of the automatically generated code is about
the internal part of methods (2286 over 4234 LOC). We think
this is an important result because such a code is not generally
produced by a conventional CASE tool.

We have here discussed only one third of the system agents,
being the remaining part even more significant in size;
nonetheless, percentage results remain nearly the same.

VII. CONCLUSIONS AND FUTURE WORKS
In this work we discussed the impact of pattern reuse in

PASSI, a complete design methodology for multi-agent
systems that is supported by PTK (PASSI ToolKit), an add-in
for Rational Rose, and AgentFactory, a pattern reuse tool. The
use of this methodology and the related tools allowed us the
construction of significant projects with very good results in
terms of automatically generated code and saving in time (as
an example we reported here the rebuild of a part of an
industrial application).

Our MDA oriented approach to the representation of
patterns, based on XML/XSL, allows us the generation of
code for agents for two different multi-agent FIPA-compliant
platforms (FIPA-OS and JADE). In order to cover the entire
process we use different representation languages (UML for
diagrams, XML for patterns and JAVA for the final code) and
we apply several transformations (mainly expressed using
XSL style-sheets).

Experimental results have demonstrated the goodness of the
approach that is however strongly affected by the number of
patterns in the repository and the support the tool offers to
designer in terms of automatically performed operations.

Our work has created new interesting issues we reserved to
explore as future works. Basically we think that our pattern
approach could be extended in order to become independent
not only from the deployment platform (as it already is) but
also from the adopted agent-oriented methodology. Also we
are working on the support for the automatic generation of
documentation about the generated solution in order to
achieve a further improvement in the maintenance process.

Figure 9 - Solution for ParallelShareResource pattern: a)

structure and b) behaviour

REFERENCES
[1] Agentcities Network Services - [Available on Internet]

http://www.agentcities.net/
[2] Alexander C. 1979. The Timeless Way of Building. Oxford University

Press
[3] Alexander C., Ishikawa S. and Silverstein M. 1977. A Pattern Language.

Oxford University Press, New York
[4] Aridor Y. and Lange D. B. 1998. Agent design patterns: Elements of

agent application design. In Proceedings of the second international
conference on Autonomous agents (Agents’98) Minneapolis, Minnesota,
United States, pp. 108 - 115

[5] Bauer B., Müller J. P., Odell J. 2001. Agent UML: A Formalism for
Specifying Multiagent Interaction, In Agent-Oriented Software
Engineering, edited by P. Ciancarini and M. Wooldridge, Springer-
Verlag, Berlin, pp. 91-103

[6] Bellifemine F., Poggi A. and Rimassa G. 2001. Developing Multi-agent
Systems with JADE. In proceedings of The 7th international Workshop
on intelligent Agents. Agent theories Architectures and Languages (July
07 - 09, 2000) edited by C. Castelfranchi and Y. Lespérance, LNCS
1986, Springer-Verlag, London, pp. 89-103.

[7] Bernon, C., Camps V., Gleizes M. P., and Picard G. 2005. Engineering
Adaptive Multi-Agent Systems: The ADELFE Methodology, To appear
in Agent-Oriented Methodologies edited by B. Henderson-Sellers and P.
Giorgini, Idea Group Pub

[8] Bresciani P., Giorgini P., Giunchiglia F., Mylopoulos J., and Perini A.
2004. TROPOS: An Agent-Oriented Software Development
Methodology, Journal of Autonomous Agents and Multi-Agent Systems,
Kluwer Academic Publishers 8(3), pp. 203-236

[9] Caire G., et al. 2002. Agent Oriented Analysis using MESSAGE/UML.
In The Second International Workshop on Agent-Oriented Software
Engineering (AOSE’01), LNCS 2222, Springer-Verlag, pp. 119-135

[10] Chella A., Cossentino M., Sabatucci L. and Seidita V. 2006. Agile
PASSI: An Agile Process for Designing Agents, In International
Journal of Computer Systems Science & Engineering. Special issue on
"Software Engineering for Multi-Agent Systems" (in printing).

[11] Cossentino M. 2005. From Requirements to Code with the PASSI
Methodology, In Agent-Oriented Methodologies, edited by B.
Henderson-Sellers and P. Giorgini, Idea Group Inc., Hershey, PA, USA

[12] Cossentino M., Gaglio S., Sabatucci L. and Seidita V. 2005. The PASSI
and Agile PASSI MAS Meta-models Compared with a Unifying
Proposal, In proceedings of 4th International Central and Eastern
European Conference on Multi-Agent Systems (CEEMAS'05) 15-17
September, Budapest, Hungary, LNCS 3690, pp. 183 - 192

[13] De Giacomo G., Lespérance Y., Levesque H.J., and Sardina, S. 2004. On
the Semantics of Deliberation in IndiGolog - From Theory to
Implementation, In Annals of Mathematics and Artificial Intelligence,
41(2-4), pp. 259-299,

[14] DeLoach S. A., Wood M. F. and Sparkman Cl. H. 2001. Multiagent
Systems Engineering. In the International Journal of Software
Engineering and Knowledge Engineering, Vol. 11 (3), pp. 231-258.

[15] Deugo D. and Weiss M. 1999.A case for mobile agent patterns. In
Mobile Agents in the Context of Competition and Cooperation (MAC3)
Workshop Notes, at Autonomous Agents’99, pages 19-22

[16] Do T. T., Kolp M., Hang Hoang T. T. and Pirotte A. 2003. A Framework
for Design Patterns for Tropos, In proceedings of the 17th Brazilian
Symposium on Software Engineering (SBES 2003), Maunas, Brazil

[17] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. 1994. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-
Wesley

[18] Ferber J. 1999. Multi-Agent Systems, Addison-Wesley: Reading, MA

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

14

[19] FIPA Abstract Architecture – [Available on Internet]
http://www.fipa.org/repository/architecturespecs.html

[20] FIPA ACL Specification – [Available on Internet]
http://www.fipa.org/repository/aclspecs.html

[21] FIPA-OS Website - [Available on Internet], http://fipa-
os.sourceforge.net

[22] Franklin S, and Graesser A. 1996. Is it an Agent, or Just a Program?: A
Taxonomy for Autonomous Agents, In Intelligent Agents III –
Proceedings of the Third International Workshop on Agent Theories,
Architectures, and Languages, LNAI, 1193, Springer Verlag, pp. 21-35

[23] Garcia A., Silva V., Chavez C. et al. 2002. Engineering multi-agent
systems with aspects and patterns. In Journal of the Brazilian Computer
Society, July 8(1), pp. 57-72

[24] Greenfield J. and Short K. 2003. Software factories: assembling
applications with patterns, models, frameworks and tools. In Companion
of the 18th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications (Anaheim, CA,
USA, October 26 - 30, 2003). OOPSLA '03. ACM Press, New York,
NY, pp. 16-27.

[25] Jackson M. 2001. Problem Frames: Analysing and Structuring Software
Development Problems, Addison-Wesley

[26] Jacobson I. 1992. Object-oriented software engineering. ACM Press
[27] Jennings N. R. 2000. On Agent-based Software Engineering, In

Artificial Intelligence 117, pp. 277-296
[28] Juan T., Pearce A., and Sterling L. 2002. ROADMAP: Extending the

Gaia Methodology for Complex Open Systems, In Proceedings of the 1st
Int. Joint Conference on Autonomous Agents and MultiAgent Systems
(AAMAS’02). Bologna, Italy

[29] Kendall E. A. and Jiang C. 1997. Multiagent system design based on
object oriented patterns. In the Journal of Object Oriented
Programming, 10(3), pp 41-47

[30] Kendall, E. A., and Malkoun, M. T. 1996. The Layered Agent Patterns.
Pattern Languages of Programs, PLoP'96.

[31] Kiczales, G. 1996. Aspect-oriented programming. ACM Comput. Surv.
28, 4es (Dec. 1996)

[32] Kolp M., Tung Do T., Faulkner S. and Hang Hoang T.T. 2003.
Architectural Styles and Patterns for Multi-Agent Systems. In Learning,
communication and Coordination in Multi Agent Systems: Theory and
Application edited by L. Jain, World Scientific

[33] Lind J. 2001. Iterative Software Engineering for Multiagent Systems -
The MASSIVE Method, LNCS 1994, Springer-Verlag

[34] Lind J. 2002. Patterns in agent-oriented software engineering. online
paper. ”http://www.agentlab.de/agent patterns.html”.

[35] Luck M., and d’Inverno M. 2001. A Conceptual Framework for Agent
Definition and Development, In The Computer Journal, 44(1), pp. 1-20

[36] Malyankar R. 1999. A pattern template for intelligent agent systems. In
Workshop in Agent-Based Decision Support for Managing the Internet-
Enabled Supply Chain, Seattle, WA

[37] Maturana F. P. and Norrie D. H. 1996. Multi-agent Mediator architecture
for distributed manufacturing, In Journal of Intelligent Manufacturing,
7(4), pp. 257 - 270

[38] Meira N., e Silva I. C., and da Silva A. R. 2000. An agent pattern
language for a more expressive approach. In Proceedings of EuroPLOP

[39] Mouratidis H., Weiss M. and Giorgini P. Modelling Secure Systems
Using an Agent-Oriented Approach and Security Patterns, International
Journal of Software Engineering and Knowledge Engineering, World
Scientific (accepted for publication - in press)

[40] Odell, J. 2000. Agent Technology - Green Paper, OMG - Agent Platform
Special Interest Group. http://www.objs.com/agent/index.html

[41] OMG Model Driven Architecture - [Available on Internet]
http://www.omg.org/mda/

[42] OMG UML Specification - Object Management Group, 1999 -
[Available on Internet] http://www.omg.org/uml/

[43] Omicini A. 2001. SODA: Societies and Infrastructures in the Analysis
and Design of Agent-Based Systems, In Agent-Oriented Software
Engineering edited by P. Ciancarini and M. Wooldridge, Springer-
Verlag, pp. 185-194.

[44] Pandgham L and Winikoff M. 2002. Prometheus: A Methodology for
Developing Intelligent Agents in proceedings of the Third International
Workshop on Agent-Oriented Software Engineering, at AAMAS’02.

[45] Pavón J., and Gómez-Sanz J. 2003. Agent-Oriented Software
Engineering with INGENIAS, In Multi-Agent Systems and Applications
III, (CEEMAS 2003) edited by V. Marík, J. Müller and M. Pechoucek,
Springer-Verlag, LNCS 2691, pp 394-403

[46] Prechelt L., Unger B., Philippsen M. and Tichy W. 2002. Two
Controlled Experiments Assessing the Usefulness of Design Pattern
Documentation in Program Maintenance. IEEE Trans. Softw. Eng. 28(6),
pp. 595-606.

[47] Rao A. S. and Georgeff M. P. 1991. Modeling rational agents within a
BDI-architecture, In Readings in Agents, edited by M. N. Huhns and M.
P. Singh, Morgan Kaufmann Publishers, San Francisco, CA, pp. 317-
328

[48] Rao A. S. and Georgeff M. P. 1995. BDI Agents: from Theory to
Practice, In Proceedings of the First International Conference on Multi-
Agent Systems (ICMAS‘95), pp. 312-319

[49] Russell S. and Norvig P. 1995. Artificial Intelligence; A Modern
Approach, Englewood Cliffs, NJ: Prentice Hall

[50] Schmidt D. and Stephenson P. 1995. Experience Using Design Patterns
to Evolve Communication Software Across Diverse OS Platforms, In
proceedings of the 9th European Conference on Object-Oriented
Programming, LNCS 952, pp. 399 - 423

[51] Searle, JR, 1969, Speech Acts. Cambridge: Cambridge University Press.
[52] Serrano J. M. and Ossowski S. 2004. On the Impact of Agent

Communication Languages on the Implementation of Agent Systems, In
proceedings of the Eighth International Workshop on Cooperative
Information Agent (CIA 2004), LNCS 3191, pp. 92 - 106

[53] Shen W. and Norrie D.H. 1999. Agent-Based Systems for Intelligent
Manufacturing: A State-of-the-Art Survey. In Knowledge and
Information Systems, an International Journal, 1(2), pp. 129-156

[54] Shu S. and Norrie D. 1999. Patterns for adaptive multi-agent systems in
intelligent manufacturing, In Proceedings of the 2nd International
Workshop on Intelligent Manufacturing Systems, Leuven, Belgium, pp.
67–74

[55] Singh M. P., Rao A. S., and Georgeff M. P. 1999. Formal methods in
DAI: logic-based representation and reasoning. In Multiagent Systems: A
Modern Approach To Distributed Artificial intelligence, G. Weiss, Ed.
MIT Press, Cambridge, MA, 331-376.

[56] Smullyan R. M. 1968. First-Order Logic, Courier Dover Publications
[57] The World Wide Web Consortium (W3C) - [Available on Internet],

http://www.w3.org/
[58] Wasserman A. I. 1990. Tool integration in software engineering

environments. In proceedings of the international Workshop on
Environments on Software Engineering Environments (Chinon, France),
edited by F. Long, Springer-Verlag New York, New York, NY, pp. 137-
149.

[59] Weiss M. 2003. Pattern-Driven Design of Agent Systems: Approach and
Case Study, Lecture Notes in Computer Science, 2681, pp. 711 - 723

[60] Wooldridge M. 1997. Agent-based software engineering, IEE Proc
Software Engineering 144, pp. 26-37.

[61] Wooldridge M. 2000. Reasoning about Agents, The MIT Press,
Cambridge, MA

[62] Wooldridge M. and Jennings N. R. 1994. Agent theories, architectures,
and languages: A survey. In proceedings of The Workshop on Agent
theories, Architectures, and Languages on intelligent Agents
(Amsterdam, The Netherlands). Edited by M. J. Wooldridge and N. R.
Jennings, Springer-Verlag New York, New York, NY, pp. 1-39

[63] Wooldridge M. and Jennings N. R. 1995. Intelligent agents: theory and
practice. In The Knowledge Engineering Review 10(2), pp. 115-152

[64] Wooldridge M., Fisher M., Huget M. P. and Parsons S. 2002. Model
Checking Multi-agent Systems with MABLE, In proceedings of the 1st
Int. Joint Conference on Autonomous Agents and MultiAgent Systems
(AAMAS’02), Bologna, Italy, pp. 952 - 959

[65] Wooldridge M., Jennings N. R., and Kinny, D. 2000. The Gaia
Methodology for Agent-Oriented Analysis and Design, Journal of
Autonomous Agents and Multi-Agent Systems, 3(3), pp. 285-312

[66] Zambonelli F., Jennings N. and Wooldridge M. 2003. Developing
Multiagent Systems: the Gaia Methodology, In ACM Transactions on
Software Engineering and Methodology, 12(3), pp. 417-47

	I. INTRODUCTION
	II. The Agent Paradigm
	A. PASSI
	B. A Case Study

	III. Design Patterns and Agents
	IV. The Three-Levels Proposed Architecture
	A. Patterns and Meta Patterns: an MDA based approach
	B. Agent Factory: a tool for patterns reuse

	V. Pattern Repository and Reuse
	A. Pattern Identification from PASSI models

	Experimental Results
	VII. Conclusions and Future Works

