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Abstract. The Self-Organizing Map (SOM) is a popular unsupervised
neural network able to provide effective clustering and data visualization
for multidimensional input spaces. In this paper we present an applica-
tion of the simulated annealing procedure to the SOM learning algorithm,
called fast learning SOM (FLSOM). The goal of the procedure is to ob-
tain a fast learning and a better performance in terms of QE without
change the simplicity of the basic algorithm that is one of the strongest
point of SOM. The proposed approach is compared to the original SOM
and with some of its modification and speed-up techniques with good
results. Moreover we show that FLSOM also improves the quality of the
map by providing better clustering quality and topology preservation of
input multi-dimensional data. Several tests have been carried out on dif-
ferent multidimensional datasets, which demonstrate the superiority of
the algorithm in comparison with the original SOM.

Key words: SOM, Simulated Annealing, Clustering

1 Introduction

The Self-Organizing Map (SOM) algorithm is used to build a mapping from an
high dimensional data space to a low-dimensional representation space. A spe-
cific characteristic, distinguishing SOM from other data mining techniques, is
the neighborhood preservation of lattice map. Nowadays, datasets used in data
mining become larger time after time and a fast analysis is required. Typically,
techniques used for speeding up SOM algorithm, work in two different ways:
modifying the characteristic of neurons to adjust influence of input in the lat-
tice map [1] [2] or modifying the standard algorithm to address the variation of
learning parameters [3] [4]. The first approach acts on lower abstraction layer
than second ones, because they redefine the neurons, the basic elements of SOM
network; otherwise in second one changes only the learning rule depending on
network evolution. This work deals with the realization of an application for
unsupervised clustering of high dimensional datasets using a technique aiming
not to alter simplicity and functionality of classic SOM algorithm: in this point
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of view, the proposed approach works at the higher abstraction level. Our solu-
tion, during training phase, introduces an optimization technique, the simulated
annealing (SA), to drive the system toward the global minimum.

Then we have carried out studies both on the shapes and on the ideal values
that learning rate factor α could perform during the training phase. However the
variation of learning rate factor can not satisfy previous goal, thus an optimiza-
tion technique, driving the system to final optimal solution, is been used. Notice
that this technique also must both speed up the learning and work in unsuper-
vised environment. The simulated annealing [5] [19] could be an attempt to find
global optimum with respect to above-mentioned constraints. This technique is
particularly flexible, indeed it is exploited to solve several applications in many
fields. SA has been also adopted in SOM to improve the detection of winning
neurons [6] or to select a representative pattern for each update during training
phase [7]. In [6] the SA, replaced by a deterministic implementation (Determin-
istic Annealing), does not lead to an improvement in terms of computational
complexity but just with regard to quality of learning; that happens because the
selection of winning neurons, solved by Kohonen in simplest way, here is steered
by a minimization of a cost function where the SA is strongly used. Instead,
in [7], learning process requires nearly the same execution time than standard
SOM and, moreover, the evolution of training should avoid local minima even
though the learning could advantage a few patterns.

In this work we introduce an algorithm that preserves classic SOM imple-
mentation in term of simplicity and functionality, adding SA as evaluation and
directional criterion for the map evolution. For this reason the basic ideas of SA
has been used. The proposed algorithm, called Fast Learning SOM (FLSOM)
is faster than the regular SOM and is compared with SOM, PLSOM, HabSOM
and ConsSOM.

In addition, we demostrate that the FLSOM algorithm is able to perform also
a good clustering. We evaluate and compare the algorithm with a standard SOM
over a number of artificial and real datasets. The experimental analysis shows
that FLSOM provides better results in terms of both topology preservation and
clustering criteria.

The paper has the following structure: the next section describes some related
works aiming to speed up learning of SOM; the section 3 reports the basic SOM
algorithm and some details of the other algorithms used for comparison; the
section 4 shows the advantage of using proposed algorithm for clustering process;
the section 5 reports both the evaluation criteria and the experimental results
for introduced algorithm. the section 6 reports the experimental results for the
clustering application. Finally some conclusions are reported in section 7.

2 Related Work

Many different mechanisms have been proposed in the literature for improving
SOM performances. The key issue is to determine which parameters need to be
considered, in order to obtain a SOM that both achieves a clustering in a short
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time and creates a data projection strongly related to the distribution of data
in the input space. One such attempt was done in auto-SOM [4], introducing a
complex algorithm, based on Kalman filters coupled with a recursive parameter
estimation method depending on [8] [9], to guide the weight vectors toward the
center of their respective Voronoi cells in input spaces. Using this algorithm, it is
possible to automatically estimate the learning parameters during the training
of SOMs. Indeed the introduction of Kalman filters leads the network to a good
training, but it is more computationally expensive than the classic SOM. Notice
that in [4] authors confirm that the incremental learning SOM algorithm is faster
than the auto-SOM, because the former needs fewer learning steps than the lat-
ter during training process. Moreover, they also assert that standard techniques
often get stuck in local minima. A recent improvement to the SOM original
algorithm is the parameterless SOM (PLSOM) [3] [10]: this technique is based
on the standard SOM algorithm and removes both classic learning rate func-
tion and neighborhood size function. Usually these functions are decreased over
time and do not take into account the evolution of the network during learning
process. PLSOM evaluates the adaptation of input stimuli and calculates the
learning factor and neighborhood size depending on the local quadratic fitting
error of the map to the input space. Unfortunately only the local error is used
during the evolution of the map; this means that both the first data inputs and
the initialization of the map, play a key role in map evolution and, moreover,
the selection of the learning rate is modified without evaluating weights in most
of neurons. An adaptation of habituation mechanism in SOMs was proposed in
[1] and results was compared to conscience algorithm [2]. These algorithms are
based mainly on the identification of neurons that win too frequently and then
on the introduction of an handicap for these neurons. This way, each neuron
is selected with almost the same probability of the other ones. In this context,
the habituation mechanism is more flexible than conscience-learning because it
can be used to manage the learning processing a fine grain way. Otherwise, the
conscience mechanism speed up learning process using an a priori knowledge
to estimate a value of probability in order to catch winning neuron. The [1],
compared to standard SOM implementation, is not more computationally ex-
pensive, although the algorithm adds an habituation parameter. This parameter
is a function of a local error so that the habituation is increased when the net-
work is not ordered. The introduction of the habituation causes the deceleration
of the training during the refinement phase of the learning. In the present work
we introduce a variation of the standard SOM that does not reduce speed in the
last epochs of learning, according to clustering requirements; moreover we use
a global quantization error rather than a local quadratic fitting error to calcu-
late an adaptive learning rate depending both on time and on organization of
neurons in the map.
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3 SOM Adaptive Learning Rate Algorithm

In this section the learning algorithm of the FLSOM is introduced. Although the
SOM learning procedure is well known it is necessary to briefly highlight some
points of the original algorithm to better understand the proposed one.

3.1 Self-Organizing Map basic algorithm

Self-Organizing Maps [11] are neural structures capable of building maps of
the input data, which preserve neighborhood relationships. Although the SOM
algorithm is well known, it is necessary to report some formulas in order to
better understand the modified algorithms. The incremental learning algorithm
[12] trained for epochs is used; this version of the learning algorithm is reported
in table 1.

The main formulas of the standard SOM are reported below. In (step 3.(a).ii)
of Table 1 the winner unit, called best matching unit (bmu) is selected according
to:

bmu = arg

(

min
i∈N

‖x − wi‖

)

. (1)

In (step 3.(a).iii) neural weights are updated using the following rule:

wi(t + 1) = wi(t) + α(t)hci(t) [x − wi(t)] , (2)

where hci is the neighborhood kernel around the best matching unit. One of the
most common shapes of the kernel is the gaussian shape:

hci(t) = exp

(

d (rbmu, ri)

2σ2(t)

)

, (3)

where the term d (rbmu, ri) stands for the distance between the bmu unit and
the generic unit i on the SOM lattice.

The learning parameter α(t) and the neighborhood radius σ(t) are decreasing
functions of time of the same kind and follow the same law.

α(t) = αMAX

(

αMIN

αMAX

)( t
tmax

)

, (4)

σ(t) = σMAX

(

σMIN

σMAX

)( t
tmax

)

. (5)
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3.2 Some modified Self Organizing Map algorithms

The parameterless SOM (PLSOM) [3] replaces learning rate function (eq. 4)
with a scaling variable, ǫ(t), depending on local error, defined by:

ǫ(t) =
‖x(t) − wc(t)‖

r(t)
, (6)

where wc(x) is the closest weight vector to input vector x at time t and r(t)
is given by:

r(t) = max(‖x(t) − wc(t)‖ , r(t − 1)). (7)

The PLSOM also modifies classic neighborhood size function (eq. 5) with an
expression depending on ǫ(t), defined by:

σ(t) = (σMAX − σMIN ) · ǫ(t) + σMIN . (8)

The habitation SOM (HabSOM) introduces a new parameter, the habituation
ai, in neurons; a reversible decrement of the neural response to a repetitive
stimulus. The amount of the increment of the habituation variable is a function
of the activation s of the neuron i, defined in:

si = exp

(

‖x − wi‖

τ

)

, (9)

The τ parameter decreases the activation value when the input is far from
the bmu. The value of the habituation variable for the neuron i over the time is
given by:

ai(si, t) = ai(t − 1) + a0 · si. (10)

This new variable changes rule of bmu selection, so that if the habituation is
below a threshold tr, then the neuron catches the input pattern according to eq.
1 and learns; otherwise if the habituation is above a threshold tr, then the input
is not connected to the neuron or, in other words, neuron can not compete to
bmu selection.

The conscience SOM (ConsSOM) is mainly focused on avoiding dead-units
and, to achieve this goal, its algorithm modifies the equation 2 to select winning
neuron. New equation is given by:

‖x − wbmu‖
2
− bbmu ≤ ‖x − wi‖

2
− bi ∀i = 1, 2, .., N (11)

where the term bi is defined as:

bi = C

[

1

N
− pi

]

(12)

In this equation, C is the bias factor that controls the “amount” of conscience
of the neuron. The term pi represents the fraction of times the unit i wins the
competition; it is modified during the learning phase according to the formula
pi = pi + B(yi − pi) where yi is 1 if i is the winning neuron and 0 otherwise.
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Table 1. SOM incremental learning algorithm.

1. Initialize the N neurons with random weights.
2. Set step counter t = 1, epoch counter p = 1, maximum number of epochs MaxP.
3. While the stop condition (p ≥ MaxP ) is not verified

(a) Define RndDataset as a list where input patterns are randomly ordered.
(b) While RndDataset is not empty

i. Get a pattern x(t) from RndDataset.
ii. Find the best matching unit bmu(x(t)) = arg (mini∈N ‖x(t) − wi‖).
iii. Update weights of bmu and its neighborhood with:

wi(t + 1) = wi(t) + α(t)hbmu,i(t) [x − wi(t)],
where hbmu,i is the neighborhood gaussian function, kernel around the
bmu.

iv. Remove x(t) from RndDataset.
v. t = t + 1.
vi. Update the value of learning rate α(t) and of neighbourhood radius σ(t),

used in the neighbourhood gaussian function hbmu.

(c) p = p + 1, t = 1.

4. End of learning after MaxP epochs.

3.3 The Fast Learning SOM algorithm (FLSOM)

In this section, we present the FLSOM algorithm with the training function
depending both on simulated annealing optimization and on global evolution of
the neural network.

Simulated annealing (SA) is an optimization method typically used for large
scale problems, especially the ones where a global minimum is hidden by many
local minima. In the present work, we use this heuristic to improve the quality
of learning process of the SOM, preserving its unsupervised characteristic. The
adopted approach provides an adaptive learning rate factor α(t, QE), steered by
the simulated annealing heuristic over the current resolution of the map. Using
a SOM trained for epochs, at the end of each learning epoch, the Quantization
Error (QE) can be identified with the parameter “temperature” T and the evo-
lution of the network can be identified with a perturbation of the system. Notice
that the algorithm parameter that control temperature schedule is automatically
adjusted according to algorithm progress; an analogous criterion, the adaptive
simulated annealing, was widely analysed and developed on [13] [14]. The QE of
a SOM is defined as the euclidean distance between a data vector and its best
matching unit according to:

QE = ‖x − mc(x)‖ , (13)

where x is the data vector input and mc(x) is the bmu. The system evolution
can be delineated by the QE progression because, if the QE at the end of each
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learning epoch is smaller than the QE computed in previous epoch, then the
projection of the samples on the SOM map is closer to the original positions in
the input space.

Thus we obtain a linear cooling schedule as QEnew = QEold − ∆QE, where
∆QE is the variation of the total energy of the system.

The pseudocode of the algorithm is given in table 2. In this algorithm the
term Training(SOM) refers to a learning epoch showed in table 1; the result
of the training is a candidate SOM that is tested using QE. At the beginning
all parameters, including the range of the learning rate, are initialized and the
first epoch of the algorithm is executed (steps 1,2). At the end of each learning
epoch the QE is calculated and if the difference between the QE calculated at
the end of current epoch and the QE calculated at the end of previous epoch is
under a threshold δ then the learning process stops (steps 5,5.(d)). Each learning
epoch generates a perturbation of the status of neurons in the map. If this
perturbation satisfies low-energy criteria according to the simulated annealing
(step 5.(f)), then the current configuration is accepted and a new perturbation
is calculated. Otherwise, if the perturbation does not satisfy low-energy criteria,
then the first perturbation will be used for the next epoch (step 5.(g).i). If the
previous configuration is better than the current one, then the previous one is
restored (step 5.(g).ii). The size of perturbations depends on the evolution of
network resolution or, in other words, by the ratio of the current QE and the
maximum QE (step 5.(f).2). The values of the learning rate factor are adapted
according to these equations (steps 5.(f).iii, 5.(f).iv).

Figure 1 shows a general flow diagram of the algorithm. The gray area repre-
sents the adaptation of SA heuristic to the configuration of neural weights. The
algorithm evaluates the configuration of Kohonen map generated by standard
SOM, according to low-energy criteria introduced by [19]. The output of gray
area is the configuration of neural network and the values of αMAX and αMIN .

4 SOMs for Clustering

Self Organizing maps are useful for 2-D visualization of high dimensional data;
the data projection highlights the pattern clusters that can be visually detected,
for example, using a U-Matrix representation [20]. For this reason, SOMs can
be used for simultaneous clustering and visualization, or even for clustering via
visualization.

Moreover, if we compare SOMs with both traditional vector quantization and
projection methods (such as MDS [21]), we notice that SOMs present a relevant
advantage: they provide a topology approximation. Neighbouring elements in the
original space are projected to neighbouring grid points. As a consequence SOMs
can be used to obtain topographic maps of the multidimensional data space[22,
23]. Secondly they permit to introduce additional data into treatment during
the course of computation [22].
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Table 2. FLSOM algorithm.

1. Initialize the SOMcurrent with random weights, the SOM parameters:
αMAX , αMIN , and the epoch counter p = 1

2. Start with first learning epoch: SOM(p) = Training(SOMcurrent)
3. Set QEMAX = QE(p)
4. Initialize ∆QE(p) = QEMAX

5. While ∆QE(p) ≥ δ

(a) p = p + 1
(b) Run a new learning epoch:

SOM(p) = Training(SOMcurrent)
(c) Calculate QE(p)
(d) Calculate ∆QE(p) = QE(p)− QE(p − 1)
(e) Get a random value 0 < rand < 1

(f) if the configuration satisfies low-energy criteria (i.e. e
−

∆QE
QE < rand ), or the

configuration is better than the one of previous epoch (∆QE(p−1) > ∆QE(p))

i. use current state i.e. set SOMcurrent = SOM(p)

ii. Calculate αinc(QE) = ∆α ∗
∣

∣

∣
1 − QE(p)

QEMAX

∣

∣

∣

iii. Set αMAX = αMAX + αinc(QE)
iv. Set αMIN = αMIN + αinc(QE)

(g) Else

i. if (e
−

∆QE
QE > rand) ) i.e. configuration does not satisfy low-energy cri-

teria

Use the initial vales of αMAX and αMIN in eq. 4
ii. if ( ∆QE(p− 1) < ∆QE(p) ) i.e. previous configuration is better than

the current configuration

Set SOMcurrent = SOM(p − 1)

6. End of learning after p epochs

In this work, we use SOMs for data clustering via visualization. In fact it
is possible to obtain a cluster algorithm that neither needs a priori knowledge
about the number of clusters as an input (as for example K-means).

Our methodology uses a trained SOM and the U-Matrix [24] representation:
this way it is possible to look at the resulting map as an image where grayscale
contours allow the identification of clusters. Then, using an automatic segmenta-
tion process derived from Seeded Region Growing, our framework can highlights,
via boundaries recognition, the obtained clusters. The clustering result is evalu-
ated using the techniques described in section 5.

4.1 Advantage of using FLSOM for clustering

Our experimental analysis shows that the SA heuristic offers good chances of
finding a configuration with lower internal energy than the initial one. During
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Fig. 1. FLSOM flow chart.

the training phase, the SA heuristic assures the speed-up of the learning process
through the increasing of the α(t) value. That implies neuron weights can reach
a final configuration where similar patterns are collected faster than with the
standard learning algorithm. At the end of the training process, each pattern
fits in its related neuron better than in the standard SOM. As a conseguence
the algorithm provides a better compactness of similar patterns in specific areas,
while preserving topologic relationships. Moreover, this property allows the gen-
eration of a lattice where distances among groups of homogeneous patterns are
greater than the same distances calculated in a map trained with the standard
learning algorithm.

Increasing of both inter-clusters dissimilarity and intra-clusters similarity en-
courages the adoption of FLSOM algorithm for clustering.

5 Evaluation Criteria

The proposed FLSOM is evaluated against the standard SOM and most of vari-
ations analysed in section 3.2: PLSOM , HabSOM and ConsSOM . In order to
compare the five different mechanisms, five data set have been tested and the
quality of the approximation, the ”smoothness” of the lattice and the entropy
are used for comparision.

Two evaluation criteria are used to compare the SOM and FLSOM algo-
rithms in terms of topology preservation and clustering distribution: the former
is computed at the end of the learning processes of each method; the latter is
evaluated over clusters retrieved from the two trained maps by means of the
same detection technique described in 4.
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5.1 Learning process Evaluation

Three evaluation criteria are used to measure the quality of the map and to
compare the results of the algorithms: quantization error (QE) already defined,
regularity degree [15] (RD) and maximization of entropy (EN). The first one
measures the resolution of the map, the second one the local distortion and
the last one the frequency of input distribution over the map. The RD can
be calculated at the end of each learning epoch and it is useful for evaluating
the topological organization of the lattice during the training. This parameter
is easily calculated as the position of neurons with respect to their neighbors.
According to this criterion, an ideal value of the regularity degree should be close
to zero (true for a quite flat map). In real applications configurations with low
values of degree of regularity are better. The EN ensures us that the quantization
intervals are used with the same frequency during the quantization of the input
signal. If we have N neural units, we obtain a input manifold divided into Vi

intervals where i = 0, 1, ..., N . After the training, the input pattern v should fall
in interval Vi with a probability:

p(Vi) =
1

N
. (14)

So that information-theoretic entropy will be maximized:

H = −

N
∑

i=1

p(Vi) ∗ log(p(Vi)) = logN. (15)

5.2 Topology Evaluation

The clustering, obtained by a self-organizing map algorithm, can be considered
appropriate when two conditionos are satisfied. First, the dataset must be parti-
tioned in the correct number of clusters. And, secondly, each element lies in the
correct cluster in a consistent way, with respect to the distribution of elements in
the original space. This property is called topology preservation. Several meth-
ods have been proposed to measure the topology violation of a trained SOM;
the two most popular techniques are the Topographic Product (TP ) [26] and
the Topographic Function (TF ) [27].

For our purpose, TF is not suitable for two reasons [28]. First, it may give
misleading results because it does not differentiate between the adjacency of
receptive fields in areas where the sample vectors are dense and in areas where
they are sparse. Secondly, the comparison between the topographic functions of
two different maps is very difficult.

In order to evaluate the topology preservation we use the Directional Product
(DP ) [29], which is an improved and computationally less expensive implemen-
tation of TP .

The maximum value of DP is 1.0 and higher values correspond to better
topologies.
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5.3 Clustering Evaluation

The results of the FLSOM clustering are compared with the results of the SOM
standard algorithms, using a set of validity indexes. There are three approaches
to evaluate cluster validity: internal criteria, external criteria and relative criteria
[25]. Both external and relative criteria will not be taken in account, because
they are based respectively on some user intuition over a specific structure (e.g.
class labels), and on the evaluation among several results in terms of the same
algorithm but with a different setting of parameters [30]. Internal criteria are
easier to use because they can be obtained using the distribution of the output
data.

More specifically, internal criteria are based on the minimization of intra-
cluster similarity and the maximization of inter-cluster dissimilarity. These meth-
ods provide a measure of how close the elements are to their own cluster center
(compactness) and how far the clusters are from each other (separation).

In order to evaluate clustering we use two indices: the Overall Cluster Qual-

ity index (Ocq(ξ)) proposed in [30] and the Scatter-Distance index (SD(ρ))
developed in [31]. These two indices are built using the following tree quantities:
Compactness, Proximity and Distance.

The Compactness of a cluster is defined as:

Compactness =
1

C

C
∑

i=1

var(ci)

var(X)
, (16)

The Proximity [30] is a function of the distance of the cluster centers and is
defined as:

Proximity =
1

C(C − 1)

C
∑

i=1

C
∑

j=1,j 6=i

exp
(

−
∥

∥xci
− xcj

∥

∥

)

, (17)

where C is the number of clusters generated on the data set X , var(ci) is the
variance of the cluster ci, var(X) is the variance of the data set X and xci

and
xcj

are two cluster centers.
The Distance [31] is another function of the positions of the cluster centers:

Distance =
Dmax

Dmin

C
∑

k=1

(

C
∑

z=1

‖xck
− xcz

‖

)−1

, (18)

where Dmax = max
(
∥

∥xci
− xcj

∥

∥

)

∀i, j ∈ {1, 2, ..., C} is the maximum distance

between cluster centers. The Dmin = min
(∥

∥xci
− xcj

∥

∥

)

∀i, j ∈ {1, 2, ..., C} is the
minimum distance between cluster centers.

Using these three quantities it is possible to build the Ocq(ξ) as:

Ocq(ξ) = 1 − [ξ × Compactness + (1 − ξ) × Proximity], (19)

where ξ ∈ [0, 1] is the weight that balances cluster compactness and cluster
proximity.
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SD(ρ) is defined as:

SD(ρ) = ρ × Compactness + Distance, (20)

where ρ is a weighting factor, introduced because the value of compactness could
be in a different range than the value of distance.

Both indices use the compactness to evaluate the variance of clusters and
dataset, whereas to evaluate the separation of clusters they use, respectively, the
Proximity and the Distance. Values of the Ocq(ξ) index are in the range [0, 1]
and greater values indicate a better result. Whereas low values of the SD(ρ)
index indicate a better quality of the clustering.

5.4 Evaluation of the proposed Algorithm

The approach is evaluated using the five SOMs algorithms cited. To allow com-
parision among SOM implementations, the algorithm shown in table 2 has been
modified in step 5, where the stop condition depending on δ has been replaced
by a stop condition depending on maximum number of learning epochs. To
choose this number, several tries have been run over all used datasets. The
number selected, 18epochs, was sufficient to approximate a nearly complete evo-
lution, for all SOMs implementations and for all datasets, according to algo-
rithm shown in table 2 with a very little δ = 0.05. The weights of all SOM
networks are initialized with random values over the input space and all maps
have a 80 × 80 square lattice. The training phase for each epoch is done with
αMAX = 0.75, αMIN = 0.15, σMAX = 7, σMIN = 2. In the FLSOM algorithm
the values of the learning parameters are dynamically increased up to αMAX = 1
and αMIN = 0.75; the HabSOM has β = 0.99, abMAX = 1.0 and tr =3.0E-5;
the ConsSOM has B =1.0E-4 and C = 5.0. These parameter values are those
that give the best results for the datasets used.

5.5 Validation of the proposed framework

The validation of the FLSOM has been carried out using three artificial datasets
and two datasets from real world. In detail the first one, here called Ring, and
the second one, here called Two − C, are artificial datasets in two-dimensional
space and provide two thousand input signals; the third one Blobs − 3D is an
artificial dataset that draws eight blobs in three-dimensional space and provide
two thousand and four hundred input signals; the fourth one, the well know Iris,
is a real dataset in four-dimensional space and provide one hundred fifty instances
and there are three clusters, each has 50 instances; the last dataset [16] is a real
dataset reduced according to [17] in twenty-dimensional space and provide three
hundred twenty-five input signals. The reported figures are averaged over 100
runs of the algorithms. For each epoch of each SOM implementation, the means
of QE and EN have been calculated.

Figure 2 shows the average evolution of quantization error during the training
process of Ring dataset for all SOMs. The chart clearly shows the effectiveness
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Fig. 2. Quantization error versus number of epochs in Ring dataset. The FLSOM
algorithm reaches the stop condition with the smallest value of QE.

of the FLSOM algorithm: it reaches a lower QE value in a smaller number of
epochs. Results of QE for all datasets are given in table 3. In this table are
shown, for all SOMs, the number of epochs ( ≤ 18 ) necessary to reach the QE
value scored by the worst of all SOMs implementations. The best values for each
dataset are emphasized with bold type. These results state that the FLSOM is
better than the other implementations with regard to resolution of the map. In
other words, the FLSOM is faster than the other algorithms.

Results of RD for all datasets are given in table 4. In this table are shown, for
all SOMs, the number of epochs ( ≤ 18 ) necessary to reach the RD value scored
by the worst of all SOMs implementations. The best values for each dataset are
emphasized with bold type. Once again, with real datasets, the FLSOM works
better than the other maps. With artificial datasets, instead, FLSOM appears
to performing worse than the others SOMs, because it needs the highest number
of epochs to reach the same value of RD. Actually, this result is not as bad as
it seems: analyzing values of RD scored by all implementations after 18 epochs,
we can see the difference is about −4 orders of magnitude, that is a very little
distance.

The average entropies calculated after 18 epochs, for all SOMs, are shown in
table 5. The best values for each dataset are emphasized with bold type. Even
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though values of entropy are closer for all implementations, the FLSOM scores
always one of highest results.

Table 3. For all SOMs, the number of epochs necessary to reach required QE value

Ring Two-C Blobs-3D Iris NCI-325

QE 9.50 8.60 15.80 6.10 8.10

SOM 16 17 17 17 17

FLSOM 9 10 3 5 5

PLSOM 18+ 13 18+ 8 18+

HabSOM 16 18 15 17 16

ConsSOM 18 18+ 18+ 17 18+

Table 4. For all SOMs, the number of epochs necessary to reach required RD value

Ring Two-C Blobs-3D Iris NCI-325

RD 0.00045 0.00043 0.00046 0.120 0.075

SOM 10 8 8 18 18

FLSOM 16 14 13 10 9

PLSOM 7 8 9 18+ 18+

HabSOM 10 9 7 18 17

ConsSOM 10 9 18 18 18

6 Experimental Results for Clustering Quality and

Topology Preservation

In order to compare the proposed algorithm against the standard SOM, four-
teen data set have been used to test the quality of clustering and the topologic
preservation of the obtained maps.

6.1 Evaluation of the proposed algorithm

Experimental tests have been carried out over the datasets for both SOM im-
plementations and the evaluation criteria have been computed. The results have
been averaged over several runs in order to compare the performances. The sta-
tistical significance of the means has been evaluated using the t-Test.

The weights of all SOM networks are initialized with random values over the
input space and all maps have a 80 × 80 square lattice. The training phase for
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Table 5. For all SOMs, the value of Entropy reached after 18 epochs

Entropy

Ring Two-C Blobs-3D Iris NCI-325

SOM 5.489 5.485 5.805 4.808 5.166

FLSOM 5.489 5.490 5.809 4.807 5.547

PLSOM 5.474 5.477 5.773 4.794 5.012

HabSOM 5.493 5.480 5.810 4.801 5.172

ConsSOM 5.483 5.481 5.772 4.803 5.169

each epoch is done with αMAX = 0.75, αMIN = 0.15, σMAX = 7, σMIN =
2, δ = 0.15. In the FLSOM algorithm the values of the learning parameters are
dynamically increased up to αMAX = 1 and αMIN = 0.75. These parameter
values are those that give the best results for several datasets widely used in
literature.

6.2 Validation of the proposed learning process

The validation of the FLSOM has been carried out using fourteen artificial
datasets, thirteen artificial datasets and one real dataset. The thirteen artifi-
cial datasets are: the Two − C, the Blobs − 3Dl, then we built eleven datasets
in a ℜ8 space assembling from 10 to 80 blobs of points on the vertices of the
unitary hypercube. They provide one hundred input signals for each blobs (i.e.
from 1000 to 8000 patterns). Finally, the real dataset is the well know ”Iris.

All the reported datasets are used for 50 runs of the learning algorithms. For
each epoch of each SOM implementation, the means of Ocq, SD and DP have
been calculated.

All artificial datasets are very simple collections of clusters, which are easily
detected by both SOM implementation. Both algorithms have produced the
correct number of clusters and each element is placed in the appropriate cluster.
However, the analysis aims to show that the FLSOM algorithm does actually
generate a clustering of a better quality. Our evaluation focuses on the intra and
inter-cluster arrangement of elements.

6.3 Results

In table 6 the comparison between SOM and FLSOM in terms of both clustering
and topology preservation is shown and better values, for each index and for
each dataset, an highlighted with bold type. As shown in table 6 the value of
ρ is 1.0, this means both members of equation 20 are weighted in the same
manner; in equation 19 the assignement ξ = 0.5 is done in order to give equal
weights to the two measure. Of course ranges could be different for each clustering
parameter (i.e. Compactness, Proximity and Distance), because each value of
the three clustering parameters depends on its own ranges that, in turn, depends
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Table 6. Comparison between SOM and FLSOM.

Clustering and Topology indices for three datasets
Two-C Blobs-3D Iris

SOM FLSOM SOM FLSOM SOM FLSOM

( Clustering parameters )
Compatness 0.7679 0.7671 0.1501 0.1416 0.5168 0.4820
Distance 0.0561 0.0559 0.1042 0.0917 0.0887 0.0884
Proximity 0.0297 0.0291 0.0502 0.0411 0.0625 0.0580

( Clustering indices )
SD (ρ = 1) 0.9269 0.8338 1.1656 0.8527 1.0979 0.9307
Ocq (ξ = 0.5) 0.5436 0.5937 0.3051 0.4757 0.4410 0.5234

( Topology index )
Directional Product 1.0 1.0 0.9786 0.9818 0.9756 0.9846

Table 7. Gaps between SOM and FLSOM assessed for Blobs-3D dataset.

Clustering and Topology indices for all datasets
Map Size 20x20 30x30 50x50 80x80 100x100

SOM FLSOM SOM FLSOM SOM FLSOM SOM FLSOM SOM FLSOM

SD index 1.0739 0.8582 0.7015 0.4607 1.0916 0.8148 1.1656 0.8527 0.8446 0.4255
Ocq index 0.4329 0.5104 0.4925 0.5863 0.4970 0.6031 0.3051 0.4757 0.4982 0.7134
SD gaps 0.2157 0.2408 0.2768 0.3129 0.4190
Ocq gaps 0.0775 0.0938 0.1062 0.1706 0.2152

on dataset and learning configuration. For this reason, for each dataset and for
each clustering parameter, all obtained results have been normalized on their
own range calculated considering executed runs. Finally, in the bottom of table,
the index of topology preservation, Directional Product, is reported for each
dataset.

Table 7 summaries the value of SD and Ocq indices for dataset Blob-3D

versus number of neurons in Kohonen map. For each map size, better values
are in bold type. As the table shows, not only the FLSOM works better than
standard algorithm, but also gaps between indices, or likewise clustering quality,
increase when maps increase.

Table 8 shows the comparison between SOM and FLSOM in terms of both
Clustering and Topology for 8-dimensional datasets. Each row report results for a
dataset. The first and the second columns show respectively the number of blobs
(or resulting clusters) and the radius in the artificial datasets. The third column
reports in the top the proposed algorithm and in the bottom the standard one.
Next three columns show the values of respectively DP , SD and Ocq indices.
Best results for them are highlighted with bold type. The proposed algorithm
works better than the standard one the most of the time in terms of DP and
SD, and it work better in terms of Ocq all the time. The last three columns
report significance levels of t-Test, i.e. the probability of does not reject the null
hypothesis, for respectively the Compactness, the Distance and the Proximity

parameters. Worst results are underlined. T-Test significance confirms the most
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Table 8. Comparison between SOM and FLSOM for 8-dimensional datasets.

Clustering and Topology indices for all 8-dimensional datasets

Blobs rad Learning DP SD Ocq t-Test significance
Algorithm (ρ = 1) (ξ = 0.5) Comp Dist Prox
FLSOM 0.9853 0.6956 0.6705

10 0.1
SOM 0.9677 0.8223 0.45146

0.0094 0.0033 1.1E−5

FLSOM 0.9889 0.7129 0.7111

10 0.2
SOM 0.9790 0.5488 0.5085

0.0026 0.0506 1.0E−6

FLSOM 0.9885 0.8947 0.6354

10 0.3
SOM 0.9787 0.6903 0.4982

0.0060 0.2160 1.0E−6

FLSOM 0.9828 0.9493 0.5464
15 0.1

SOM 0.9768 0.7211 0.4968
0.0018 0.2267 0.0037

FLSOM 0.9864 0.8676 0.4886
15 0.2

SOM 0.9831 1.3764 0.2920
0.8285 0.0008 3.2E−5

FLSOM 0.9876 1.0267 0.4044
20 0.1

SOM 0.9869 1.0624 0.3857
0.0001 0.0029 0.0399

FLSOM 0.9821 1.0305 0.5318
20 0.2

SOM 0.9816 1.7168 0.4542
0.3436 0.7019 0.1026

FLSOM 0.9824 0.8196 0.4726
30 0.1

SOM 0.9832 0.8541 0.3831
0.0917 0.0165 0.0270

FLSOM 0.9772 0.7058 0.5791
65 0.1

SOM 0.9757 0.9630 0.3374
0.6880 0.0665 0.0354

FLSOM 0.9769 0.5874 0.6135
70 0.1

SOM 0.9765 0.6319 0.6086
0.4819 0.5805 0.7158

FLSOM 0.9727 0.5236 0.7233
80 0.1

SOM 0.9732 0.6735 0.6500
0.4947 0.3392 0.2972

of the results are computed for different distributions. It should be no surprise
that t-Test get worst result for datasets with several clusters (i.e. 70 - 80), in fact
the distribution of the interaction amongs many blobs becomes less distinguished
when a few features have to define several clusters.

7 Conclusions

In this paper FLSOM, a technique that uses the Simulated Annealing as a
method to select a candidate SOM during the training process, has been pro-
posed. The SOM training process modifies the learning rate factor in an adaptive
way. Results of experimental tests, carried out on both artificial and real datasets,
comparing the proposed method with standard and modified SOMs demonstrate
the good performances obtained by FLSOM in terms of convergence time, and
resolution of the maps. On the other hand, the performances obtained by FL-
SOM in terms of local distortion and frequency of input distribution over the
map are comparable with those obtained by standard and modified SOMs, es-
pecially when real world datasets are considered. Then the proposed algorithm
has been tested for clustering. In order to compare the FLSOM against the stan-
dard SOM, a tool for automatic extraction of clusters based on SOM, U-Matrix
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visualization and segmentation techniques, has been implemented. Results of ex-
perimental tests, carried out on both artificial and real datasets, comparing the
proposed method with standard SOM implementation, demonstrate the good
performances obtained by FLSOM in terms of clustering and topology preser-
vation.
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