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Abstract 

In this paper a numerical method avoiding mesh generation is 

proposed. The method performs an integral representation in modelling 

the solution by means of a smoothing kernel function. Appreciable 

numerical results are gained if suitable conditions are imposed on the 

smoothing kernel function. In the discrete formulation the method 

involves domain particles and sometimes the kernel conditions are 

loosen. A fundamental task in a meshless framework is the kernel 

conditions restoring, usually named consistency. In this paper the 

meshless SPH method is used and studies on consistency restoring are 

carried out. Various tests are performed approximating 1D, 2D and 3D 

trigonometric functions with even and uneven data set achieving good 

numerical results. 

 

Key words: meshless particle method, Smoothed Particle 

Hydrodynamics method, consistency restoring, function approximation 

1. Introduction 

The meshless methods are a valid computational alternative to grid methods in the 

simulation of a wide problems variety. They share common features such as the 

avoidance of the use of grids, but are different in functions approximation and 

computational processes ([4]). 

Smoothed Particle Hydrodynamics (SPH) ([9], [12], [15], [16], [17]) is a meshless 

method and its attractiveness and popularity is due to the evaluation of unknown field 

functions and relative differential operators by means of an integral representation based 

on a suitable interpolating function ([10]). The integral representation is discretized by 

using a set of particles scattered in the problem domain, making the methods 

intrinsically adaptive. 

In simulating physical phenomena, it is often necessary to control regions with high 

localized field gradient or to better reproduce irregular geometries of the problem 

domain. In these cases an uneven particles distribution has to be considered into the 

problem domain. This occurrence can lead to a lack of consistency of the method so that 

modified formulations have to be adopted to improve the result. Different corrective 

strategies can be performed: corrections can be provided through suitable 

transformations or on approximating functions, and consequently on their derivatives, 

or directly on derivatives of approximations without restoring the consistency of the 

approximating functions ([1], [2], [3], [5], [6], [11], [13]). 

In this paper, the particle inconsistency problem is investigated and the approach 

proposed in [13] is applied to restore the particle consistency in approximating 

functions. In order to show the capability of the proposed methodology, simulations 

with even and uneven particles distributions are performed. 

The paper is organized as follows: in section 2 the background of SPH method is 

presented and an analysis of the fundamental issues related to the consistency restoring 

techniques is reported; in section 3 numerical experiments are carried out on 1D, 2D 

and 3D trigonometric functions. Finally section 4 closes the paper by proposing future 

works. 

2. Smoothed Particle Hydrodynamics Method Fundamentals 

In order to approximate a function )(xf  in a domain Rd
 a meshless method, as the 

SPH method, works initially involving a function W employed to define the kernel 

approximation of f: 
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yyxyx dhWff h ),()()( .       (1) 

 

The function W is called the smoothing kernel function depending on the spatial 

variables and on the smoothing length parameter h: 

 

)(),( RKhW dyx ,        (2) 

 

where hR /yx  and d  is a dimension-dependent normalization constant. Many 

kinds of smoothing kernel functions have shown in SPH literature, the most popular are 

the bell-shaped functions ([8], [9], [12], [14], [15], [17]). The smoothing kernel function 

should satisfy the following conditions: 

 

a) delta Dirac function condition: )(),(lim
0

shsW
h

 where )(s  is the Dirac delta function 

and Rhs ; 

b) compactness condition: 0),( hW yx  on a subdomain of  and 0),( hW yx  

outside the subdomain; 

c) normalization condition: 1),( yyx dhW ; 

d) monotonic condition: ),( hsW is a monotonically decreasing function; 

e) symmetric condition: W is an even function .0),()( yyxyx dhW  

By introducing a number of points (or particles) arbitrarily distributed to cover the 

problem domain, the kernel approximation can be discretized. The compactness 

condition (b) means that only a finite number of particles referred as nearest 

neighboring particles (NNP) have to be considered for a satisfactory approximation. 

Therefore, kernel approximation is discretized by summing the contribution over all the 

NNP ([9], [12], [15], [16]) obtaining the so called particle approximation. Thus, the 

particle approximation of a function f is obtained by averaging function values )( jf x  

involving all NNP of x: 

 

j

N

j

jj

h VhWff
1

),()()( xxxx ,       (3) 

 

where jV  is the measure of the support domain surrounding the particle jx . The 

smoothing length h and the number of particles determine the resolution of the 

approximation, so, a crucial task before performing any computation using the SPH 

method is the NNP spotting which is of primary importance by working with meshless 

methods. 

The particle approximation of a function f can be affected by some numerical problems 

([12]) such as the particle inconsistency ([3], [18]) which can lead to low approximation 

accuracy. In effect, the consistency conditions of the kernel approximation c) and e) 

could not ensure the consistency conditions in the discrete formulation, i.e.: 
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The consistency conditions for SPH approximation can be expressed as its ability to 

exactly reproduce a polynomial up to the k-th order so that the approximation is said to 

have the k-th order of consistency ([3], [12], [14]). The particle inconsistency originates 

from the discrepancy between the SPH kernel and particle approximations: boundary 

particles, irregular distributed particles and variable smoothing length can usually 

produce inconsistency in the particle approximation process ([12]). In simulating many 

classes of problems, it is often necessary to better reproduce irregular geometries of the 

problem domain or to control regions with high localized field gradient, large 

deformations and moving discontinuities. Attempts to insert and/or remove particles, 

where it is necessary, inevitably lead to an uneven spacing, making this issue extremely 

critical. An uneven particle spacing usually yields to a lack of consistency, so that 

different strategies have to be developed to restore the particle consistency. Consistency 

can be restored through corrective transformations and different modified SPH 

formulations can be performed ([1], [2], [3], [5], [6], [11], [13]). Many approaches in 

consistency restoring work by modifying kernel shape ([7]). The corresponding particle 

approximations often suffer to be not equal in consistency on all problem domain. 

An interesting approach to restore the particle consistency, based on Taylor series 

expansion of )(xf  around jx , can be adopted to overcome this occurrence and by 

working with k-th order of particle consistency for both interior and boundary regions 

([13]); moreover this technique is almost insensitive with respect to the particles 

distribution. The methodology approximates f  in Rd
 as follows: 
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where  ,,,,, isrx  is the α-component of x, )()( x
y

x
f

f ,  ,,,, isr , 

)()( x
yyy

x
isrirs

fff
f  ; next, both the terms of (5) are multiplied for 

,1,0),( k,hWk yx , and integrated on Rd
: 
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with disr ,,1,,,,   and ,1,0k . The equations (6) can be discretized and 

expressed as a system A b=c (7) where: 
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with dis r,hWW j

kk ,,1,,,,),( xx  and ,1,0k . By solving the linear 

system (7), function values and its derivatives are obtained with the k-th order of 

consistency kept on all over problem domain and no modifications on the smoothing 

kernel function are required. It’s straightforward that to ensure a k-th order of 

consistency, k-th order derivatives have to be retained in Taylor series expansion. 

3. Numerical Investigations 

In this section the consistency restoring approach outlined above is used to numerically 

approximate a trigonometric function in 1D, 2D and 3D domains by ensuring a 1-st 

order consistency; this can be accomplished retaining only the 1-st order derivatives in 

the Taylor series expansion. 

Computational results obtained are compared with the analytic functions profiles, the 

SPH approximations (without consistency restoring) and the approximations obtained 

by imposing the 0-th order consistency ([19]). 

The well-known Gaussian function is chosen as smoothing kernel function: 

 

)exp(),( 2RhW dyx ,        (8)
 

 

where d  equals 
32/322/1 1 ,1 ,1 hhh  respectively in one, two and three 

dimensions. 

First, the described method is applied to approximate 500 values of the 1D 

function )cos()( xxf  in the interval ]2,0[  starting from 50 evenly, non-uniformly 

and randomly distributed particles, respectively. The uneven distribution is obtained in 

such a way that 1.1/ 1jj VV  with Nj ,,2  ([13]). In order to compare the 
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accuracies of the obtained approximations the root-mean-square errors have been 

calculated and presented in Table 1, while Figure 1 shows the obtained approximations. 

In the second case, the 2D function )cos(),( yxyxf  in the interval ]2,0[]2,0[  

has been used approximating 5050  values of ),( yxf  starting from 2020  evenly, 

non-uniformly and randomly distributed particles, respectively. For the uneven 

distribution the same idea outlined above is used. Table 2 presents the obtained root-

mean-square errors and Figure 2 shows the obtained space profiles. 

Finally, in the third case, the 3D function )cos(),,( tyxtyxf  in the interval 

]2,0[]2,0[]2,0[  has been used approximating 404040  values of ),,( tyxf  

starting from 202020  evenly, non-uniformly and randomly distributed particles and 

Table 3 presents the obtained root-mean-square errors, while Figure 3 shows the 

obtained approximations. 

Obtained results show a general improvement of the approximation quality when the 1-

st order consistency is applied with respect to the 0-th order and the SPH without any 

consistency restoring. 

For example, in the 1D test case, when the even and random distributions are used the 

1-st order consistency gains from one to two orders of magnitude with respect to the 

SPH without any consistency restoring, while reduces from 1/4 to 1/10 the error with 

respect to the 0-th order of consistency. Surprisingly, when the uneven distribution is 

used, the obtained improvement is very small; this could be caused by the particular 

particle distribution with respect to the regularity properties of the chosen functions. 

This behavior has to be deeply investigated. Finally, 2D and 3D test cases show 

behaviors similar to the 1D test case, even though the quality improvement is lesser than 

the 1D one. 

4. Conclusions and Future Work 

In this paper a meshless SPH method has been presented and studies on consistency 

restoring have been carried out. Various numerical tests approximating 1D, 2D and 3D 

functions demonstrated the effectiveness of the proposed approach. Future works will 

be devoted to investigate the usage of the SPH framework in the Image Processing 

context. 
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(A) 

(B) 

(C) 

Figure 1: Comparison among the space profiles of the analytic 1D function )cos()( xxf  and SPH 

simulations by using even (A), uneven (B) and random (C) distributions. 

 
Algorithm Even distribution Uneven distribution Random distribution 

No Consistency 0.0610 0.0947 0.7574 

0-th order consistency 0.0085 0.0418 0.0461 

1-st order consistency 0.0021 0.0399 0.0034 

Table 1: root-mean-square errors obtained for the 1D function )cos()( xxf . 
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(A) 

 
(B) 

 
(C) 

 
(D) 

 
(E) 

 
(F) 

Figure 2: Comparison among the space profiles of the analytic 2D function )cos(),( yxyxf  and 

SPH simulations by using even (A, B), uneven (C, D) and random (E, F) distributions. Figures on the left 

side show the sections along the 0yx  plane. 

 
Algorithm Even distribution Uneven distribution Random distribution 

No Consistency 0.0559 0.3961 0.3644 

0-th order consistency 0.0303 0.0737 0.0508 

1-st order consistency 0.0262 0.0409 0.0252 

Table 2: root-mean-square errors obtained for the 2D function )cos(),( yxyxf . 
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(A) 

(B) 

(C) 

Figure 3: Comparison among the sections along the tyx  direction of the space profiles of the 

analytic 3D function )cos(),,( tyxtyxf  and SPH simulations by using even (A), uneven (B) and 

random (C) distributions. 

 
Algorithm Even distribution Uneven distribution Random distribution 

No Consistency 0.1022 0.2995 0.5414 

0-th order consistency 0.0631 0.1291 0.2608 

1-st order consistency 0.0568 0.1167 0.2213 

Table 3: root-mean-square errors obtained for the 3D function )cos(),,( tyxtyxf . 


