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Abstract

Decision Support Systems and Workflow Management Systems have
become essential tools for some business and scientific field. This
thesis propose a new hybrid architecture for problem solving exper-
tise and decision-making process, that aims to support high-quality
research in the field of bioinformatics and system biology.

The first part of the dissertation introduces the project to which be-
long this thesis work, i.e. the “Bioinformatics Organized Resources -
an Intelligent System” (BORIS ) project of the ICAR-CNR; the main
goal of BORIS is to provide an helpful and effective support to re-
searchers or experimentalist, that have no familiarity with tools and
techniques to solve computational problems in bioinformatics and sys-
tem biology.

In the second part of this paper, the proposed hybrid architecture
is described in detail; it introduces a three-dimensional space for the
BORIS system, where the viewpoints of declarative, procedural and
process approaches are considered. Using the proposed architecture,
the system is able to help the experimentalist choosing, for a given
problem, the right tool at the right moment, to generate a navigable
Workflow at different abstraction layers, extending current workflow
management systems and to free the user from implementation details,
assisting him in the correct configuration of algorithms/services.

Two case studies are presented respectively about reverse engineering
gene regulatory network and extraction of protein complexes from
protein-protein interaction networks, in order to show how the system
faces a problem and how it interacts with the user.
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Introduction

In the late 70s, Computer Science algorithms and statistics have begun to be
applied for the analysis and the study of problems related to molecular biology.
With the first attempts of DNA sequencing and especially with the beginning, in
1990, of the Human Genome Project (HGP) (1), this type of in silico approach,
rather than in vivo or in vitro, grew in importance. A new discipline, called
Bionformatics, was born with the aim of highlighting the raising need of merg-
ing Computer Science methodologies and techniques with the management and
analysis of biological data.

It is not simple to provide a synthetic definition of Bioinformatics. According
to the National Center for Biotechnology Information (NCBI) (2) “Bioinformat-
ics is the field of science in which biology, computer science, and information
technology merge to form a single discipline. The ultimate goal of the field is
to enable the discovery of new biological insights as well as to create a global
perspective from which unifying principles in biology can be discerned”.

The type of biological data typically considered are DNA and protein se-
quences, protein structures, gene expressions, protein expressions, protein com-
plexes, protein-protein interactions (PPI).

In this scenario, researchers have begun to develop computational techniques
in order to analyse these data, applying well established Artificial Intelligence
approaches, such as Pattern Matching, Data Mining and Machine Learning algo-
rithms, and adapting them to the biological evidences.

Bioinformatics has provided its major efforts in various application domains,
including among the others: sequence alignment, gene identification, drug dis-
covery and design, protein structure alignment, protein structure prediction, pre-
diction of protein-protein interactions, inference of metabolic and regulatory net-
works.

1



1.1 Motivation and Goals

1.1 Motivation and Goals

In the past few decades the continuous growing amount of biological data, thanks
to the developing of high throughput technologies, has also given a boost to the
number of both bionformatics tools and algorithms and both to the availability
of web services and biological databases.

Nowadays, in fact, researchers facing biological problems are overwhelmed by
the huge set of computational techniques and enormous amount of data available:
for any problem, there are many possible models and algorithms, each of them
with their own characteristics, giving different results. Given a biological issue,
there are potentially plenty of different tools that could be used, none of them
providing the best possible results. Just to make a quick example, for the predic-
tion of the tridimensional structure of a protein from its amminoacid sequence,
also known as primary sequence, there exist more than 70 software (36), called
structure predictors, that offer different performances on the basis of the intrin-
sic properties of the analysed protein. It means there is not just one predictor
that always gives the best result, but each software has its own strengths and
weaknesses.

This situation has led to an increasing need for a computational system that
can respond to the afore mentioned issues.

In this work it will be presented an intelligent system, named BORIS, whose
main goals can be summarized as follows:

1. to collect the most common and used bionformatics tools and services and
to give them a coherent and flexible structure;

2. to offer support to the bionformatics researcher about the decision-making
process in the choice of the best suited algorithm and service. This decision-
making activity is built on a set of heuristics and strategies representing the
expertise about the application domain;

3. to help the bionformatics researcher in the proper configuration and running
of the selected tools;

4. to build a path, or workflow, where both the decision phases and the exe-
cution phases can be tracked down;

All of these directives will be formalized in the guidelines of BORIS project,
presented in the next Chapter. BORIS is the main research project where this
work is born and carried on.

In a very general way, it is possible to say that the basic idea of BORIS system
is, then, to provide to the researcher, or experimentalist, not only the tools able
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1.2 Background

to resolve a problem, but also the knowledge used in order to justify the choice
of those specific tools and strategies. In the generated workflow representing the
execution of an experiment, then it will be shown not only a simple succession
of tasks, but also what is the conceptual scheme at the basis of that workflow.
From this point of view, BORIS system can be seen as a novel intelligent system
that represent an innovative crossover between classical decision support systems
(DSS) and the most recent workflow management systems (WFMS).

1.2 Background

The system proposed in this work, aims to improves classical concept of DSS in
many ways. First of all, during the execution of an experiment, it traces its evo-
lution by using a workflow of the decisions, enabling this way the possibility for
the user to do backtracking in order to change previous decisions. Furthermore it
is possible to save the whole workflow and results for sharing and reusing them.
When the system suggests a list of suitable strategies or algorithms, it presents,
for each of them, a brief description, a series of pros and cons and bibliographic
references. Moreover our system not only offers support giving advices and rec-
ommendations, but it helps the user in the proper configuration and running of
the strategies or algorithms selected during the decision making process. This
last features moves our systems towards modern Workflow Management Systems
(WFMS) (26) which provide a simple way to build and run a custom experiment
using the most common bioinformatics resources, like online databases, software
and algorithms. WFMS, however, do not interact with the user, do not have a
knowledge base, nor makes decision like KDSS: for this reason our system repre-
sents an ideal merging point between classical DSS and emerging WFMS.

1.2.1 Decision Support Systems

Decision Support Systems (DSS) have been created and investigated more than 35
years ago; the developments of DSS begun with building model-oriented DSS in
the late 1960s, where the computing systems to help in decision-making process
were known as management decision systems (MDS), continuing with theory
developments in the 1970s and the implementation of financial planning systems
in the early and mid 80s. The implementation of the web-based DSS started in the
mid-1990s, with the specification of HTML 2.0, the expansion of the World Wide
Web in companies, and the introduction of hand held computing. Today, the Web
2.0 technologies, mobile-integrated communication and computing devices, and
improved software development tools have revolutionized DSS user interfaces.

Due to its different application areas, there are several definitions of DDS,

3



1.2 Background

one of the earlier was introduced by Gorry and Scott-Morton (4), that claim a
DDS, “an interacting computer-based system that helps the decision maker in
the use of data and models in the solution of unstructured problems”. Of course,
the DSS will collect and analyse the data and then present it in a way that
can be interpreted ny humans. Some DSS come very close to acting as artificial
intelligent agents. DSS applications are not single information resources, but the
combination of integrated resources working together (9).

Some of the main features of a DSS are:

• to incorporates both data and models;

• to learn through the composition of models;

• to improve the effectiveness of decisions, not the efficiency with which de-
cisions are being;

• to assist decision-makers in decision processes in unstructured or semi-
structured environments;

• to support and do not replace user judgment;

• to provides a fast response to unexpected situations, caused by changed
conditions, by means of the ability to try several different strategies under
different configurations;

Although the user interface (UI) is not in the previous list, it holds a crucial
aspect of DSSs. Systems with user interfaces that are cumbersome or unclear
or that require unusual skills to be understood, are rarely useful and accepted
in practice and could lead the user to a wrong interpretation of results. On the
contrary, UI should play a tutoring role, teaching to users how the DSS reasons
about domain model, improving their own thinking. A good user interface to
DSSs have to support model construction and model analysis, reasoning about
the problem structure in addition to numerical calculations and both choice and
optimization of decision variables.

Generally there are two main approaches (10) to supporting decision making
in DSS, according to the quality of human intuitive reasoning strategies, imple-
menting the expertise of DSSs. The first aims at building support procedures
or systems that imitate human experts. This category contains expert systems,
that are computer programs based on rules elicited from human domain experts.
These systems can supporting decision making in the same way human experts
can do. They are based on intuitive human reasoning and lack soundness and
formal guarantees with respect to the theoretical reliability of their results. The
cons of the expert system approach is that along with imitating human thinking
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1.2 Background

and its efficient heuristic principles, they also imitate its undesirable aws (11).
The second approach is oriented to the application of formal methods; in fact, it
is based on the assumption that the most reliable method of dealing with complex
decisions is through a small set of normatively sound principles of how decisions
should be made. This point of view makes these systems philosophically distinct
from those based on ad hoc heuristic artificial intelligence methods, such as rule-
based systems. According to the second approach, the goal of a DSS is to support
unaided human intuition, just as the goal of using a calculator is to aid human’s
limited capacity for mental arithmetic.

In the following a category of DSSs based on expert system is reported.
Knowledge-driven DSS (KDSS) are person-computer systems with specialized

problem-solving expertise (15). KDSS are composed by three components (16):

• the knowledge (stored as rules, frames, or probabilities) of relations among
problems and indicators related to a particular topic or domain,

• the “Skill” or methods for solving some of the problems

• the capability of give the reasoning behind a conclusion it has reached.

In general, a knowledge-driven DSS suggests or recommends actions to targeted
users. This type of DSS has specialized problem-solving expertise relevant to a
specific narrow task.

KDSS have been most applied in diagnosis in various clinical domains. The so
called Clinical DSS (CDSS) (17), typically integrates a medical knowledge base,
patient data and an inference engine in order to provide medical recommendations
about specific cases. CDSSs form a significant part of the field of clinical knowl-
edge management technologies, since they can support the clinical process and
use of knowledge from diagnosis and investigation keeping patients on research
and chemotherapy protocols, tracking orders, referrals follow-up, and preventive
care. Moreover they are responsible of medical treatment plan processes, pro-
moting use of best practices, condition-specific guidelines, and population-based
management (12).

MYCIN (18) was a rule-based expert system designed to diagnose and recom-
mend treatment for certain blood infections (antimicrobial selection for patients
with bacteremia or meningitis). It was later extended to handle other infectious
diseases. Clinical knowledge in MYCIN is represented as a set of IF-THEN rules
with certainty factors attached to diagnoses, that use a basic backward chaining
reasoning strategy. MYCIN was developed in the mid-1970s by Ted Shortliffe
and colleagues at Stanford University. It is probably the most famous early ex-
pert system, described as ”the first convincing demonstration of the power of the
rule-based approach in the development of robust clinical decision-support sys-
tems” (13). An extended version of this DSS, EMYCIN (Essential MYCIN), was

5
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developed at Stanford in 1980 and was used to build diagnostic rule-based expert
systems such as PUFF, a system designed to interpret pulmonary function tests
for patients with lung disease.

A rule-based medical expert system for oncology protocol management, called
ONCOCIN (20), was developed at Stanford University. It was designed in order to
assist physicians with the treatment of cancer patients receiving chemotherapy.
ONCOCIN was one of the first DSS which attempted to model decisions and
sequencing actions over time, exploiting a customized flowchart language, in fact
it used an application area where the history of past events and the duration of
actions are important.

Another CSS was developed in Italy, as a joint effort among companies, uni-
versity and regional government agencies. This project, known as Kon3 (21), is
oriented to the development of technologies for a sharable knowledge based on
Clinical Practice Guidelines at a reasonable cost and effort, and in a form that can
be integrated gracefully and supportively into the clinicians workflow via func-
tions of the local clinical information system. the knowledge base of KON3 is
composed by guideline and semantic information representation, whose ontology
is based on Knowledge representation about patients data, oncology taxonomy
(Breast Cancer) and guidelines model.

Other currently used CDSS are: ATHENA (22), implementing guidelines for
hypertension using Stanford Medical Informatics EON architecture (23); LISA
(24) that is a clinical information system for supporting collaborative care in the
management of children with Acute Lymphoblastic Leukaemia (ALL); Thera-
pyEdge (25) that is a web-enabled decision support system for the treatment of
HIV.

1.2.2 Workflow Management Systems

Workflow Management Systems (WFMS) are computer systems that allow orga-
nizations to define and control the various activities associated with a business
process. Most WFMSs allow the opportunity to measure and analyze the exe-
cution of the process so that continuous improvements can be made, either in
short-term (e.g., the reallocation of tasks to balance the workload at any point
in time) or long-term (e.g., redefining portions of the workflow process to avoid
bottlenecks in the future).

In this way, they can define a proper workflow for for each type of jobs or
processes, according to user needs. WFMSs also integrate with other systems
in order to provide a process structure which employs a number of independent
systems, organizing resources and documents from diverse sources like document
management systems, production applications, etc. That all can be integrated
because Workflow Management Systems manage the dependencies required for
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the completion of each task.
The most of Workflow Management Systems, including the one presented in

this work, have some typical features (14):

• A tool for the process definition: it is a graphical or textual tool for defining
the business process, according to user needs and computer application.

• The Simulation/Prototyping/Piloting process: it is possible to simulate or
create prototype and/or pilot versions of a particular workflow, in order to
try and test a process.

• Initiation and Control of tasks: the business process is initiated and each re-
source is scheduled and/or engaged to complete each activity as the process
progresses.

• Invocation of applications able to view and manipulate data: all the doc-
uments, including temporary outputs can be invoked to allow workers to
create, update, and view processed data in real time.

• Print a Worklists: WFMSs can allow each user to identify their current
tasks, anticipating or estimating the workload, that can be visualized as
well.

• Automation of task: Computerized tasks can be automatically invoked.
This might include such things as letter writing, email notices, or execution
of production applications. Task automation often requires customization
of the basic workflow product.

• Tracking and Logging of Activities: all the Information about each task can
be logged, in order to let user able to later analyze the process and check
the results of certain tasks.

For these reasons, WFMS benefits including the opportunity to improve both
the underlying business process and the existing organizational structure, since all
the activity steps, roles, and rules are built into the system and less intervention
needed to manage the business process. In addiction, they allow for the separation
of information technology from workflow management, integrating the business
process directly under the control of the system users.

The most used and famous WFMS for bioinformatics is Taverna (27), an ap-
plication tool that has been created by the myGrid team and funded through the
OMII-UK, an open-source organization that empowers the UK research commu-
nity. Taverna is able to automatically integrate tools an databases available both
locally and on the web in order to build workflows of complex tasks; to run the
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workflows and to show results in different formats. It allows for the automation
of experimental methods through the use of a number of different (local or re-
mote) services from a very diverse set of domains (from biology, chemistry and
medicine to music, meteorology and social sciences), managing more than 3500
services such as remote resources and analysis tools, Web and grid services. The
system works by means of a GUI that integrate a graphical workflow designer with
drag and drop workflow components, that is available as a desktop Workbench,
Server, through a portal or on a cloud.

A WFMS created for bioinformatics, known as Bioinformatics Workflow En-
actment Portal (BioWEP) (28), was developed by Italian National Institute for
Cancer Research Genoa (IST). This portal is a web-based client application that
allows the user to search and run a predefined set of workflows, already tested,
validated and annotated. It is oriented to the simplify access for all researchers,
supporting the selection and execution of predefined workflows, obtained by an
exhaustive set of biomedical databases.

Another web-based system for bionformatics built upon an agent oriented
middleware architecture is BioWMS (29); application domain features are em-
bedded inside the agents knowledge and proactiveness and mobility inside the
agent behaviour. Since agents are workflow executors, the resulting workflow
engine is a multi-agent system typically open, flexible, and adaptive.
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2

Bioinformatics Organized

Resources - an Intelligent System

BORIS main features and guidelines will be presented, focusing the attention on
its hybrid architecture and development paradigms.

2.1 BORIS Project

This work has been carried out inside one of the active project of High Per-
formance Computing and Networking Institute of National Research Council of
Palermo, Italy (ICAR-CNR), entitled: “B.O.R.I.S, Bioinformatics Organized Re-
source - an Intelligent System”, under the supervision of project manager Dr.
Alfonso Urso, belonging to research group “Analisi Intelligente di Dati per la
Bioinformatica”.

BORIS project was born from a threefold need:

1. to give a solid and coherent structure both to bioinformatics issue and the
plenty of tools and services that operate on bioinformatics domain;

2. to offer support to a bioinformatics researcher during the decision-making
process of an experiment;

3. to help the user in the building and execution of pipeline of software and
services.

2.2 BORIS Guidelines

Following the three global requisites written in the previous Section, a set of
guidelines and functional requirements have been outlined.
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Main guidelines of Boris project are the design and implementation of a De-
cision Support System (DSS) that can help bioinformatics researchers to deal
with the plenty of tools and services currently available. The system should col-
lect and organize the most common and used bioinformatics resources, such as
bioinformatics tools, web services and biological databases in order to make them
accessible to a bioinformatics researcher.

The system should deal with the unstructured knowledge typical of a human
expert of the domain that turns into the formalization of heuristics and strategies.
BORIS should give to the User support in terms of decision-making activity and
execution phase. The former requirement means BORIS should suggest to the
User what is the proper methodology to follow in order to resolve a problem and,
once the strategy has been set, it should suggest the best tool in order to fulfil
it. The latter requirement makes BORIS closer to actual Workflow Management
Systems (WFMS), since it is also responsible for the configuration and running
of all external tools specified during the planning phase.

Moreover BORIS should provide a flexible and modular framework in order
to maintain its constituents parts in an independent way and it should offer a
developing platform that can be easily updated and enhanced with new function-
alities and new kind of application domains. BORIS should define a standard
protocol so that developers community can add his own knowledge and expertise
to the system.
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3

Architecture of Decision Support

System

The new hybrid architecture has been designed in order to include some features
of three different approaches: the procedural, the declarative and the process one.
This way the proposed system takes advantages of both decision support systems
and workflow management systems.

3.1 Hybrid Architecture

There are two main approaches for making the architecture of a decision support
system, in fact they can be represented procedurally or declaratively.

Architectures with declarative representations have knowledge in a format
that may be manipulated decomposed and analyzed by its reasoners, i.e the
knowledge about a domain is intricate with the control of reasoning process, and
thus is implicitly represented. Architectures with procedural representations en-
code how to achieve a particular result, i.e. the knowledge is explicitly represented
and separated from the reasoning procedures.

In artificial intelligence, the procedural knowledge is often represented as
finite-state machine or computer program, whereas an AI system based on declar-
ative knowledge is typically based on a domain-independent planning algorithm
that indicate how to use the system skills to reach a goals.
Examples of procedural processes in AI are:

• The Subsumption Architecture by (39) that is a reactive robot architecture
arranged in order to decompose complicated intelligent behaviour into many
simple behaviour modules that implement a particular goal of the agent.
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3.1 Hybrid Architecture

• The Procedural Reasoning System (PRS) (40), that is a framework for
constructing real-time reasoning systems that can perform complex tasks
in dynamic environments using the Belief-Desire-Intention software model.

• Some programming languages as C, Java, Perl and JavaScript, that declare
the control flow.

• Some procedural programs as the Linux Kernel or the Apache Server.

Examples of declarative processes in AI are:

• Dynamic Control Architecture by (41), where the agent acts in a complex
dynamic environment, having only an unstructurated and broken knowledge
about this environment.

• Homer by (42) implements a robot submarine that is designed to act, reason
and reflect on its experience: it can plan how to achieve its instructions,
modifying its plans as required during execution.

• Some programming languages as SQL, YACC and markup languages such
as HTML, that contain the logic of a computation without describing its
control flow.

• Some functional languages as Prolog and Lisp.

In the table 3.1 some characteristics of declarative vs procedural approach are re-
ported. This table clearly shows some advantages/disadvantages of these knowl-
edge representation techniques.

The proposed system aims at integrate both points of view, in order to merge
their advantages, offering to the user an exploration of the space of the problem,
as exhaustive as possible. Sometimes, whether represented knowledge is viewed
as declarative or procedural is not an intrinsic property of the knowledge base,
but is a function of what is allowed to read from it (37). For example, if produc-
tion systems may view themselves, then they are declarative, otherwise they are
procedural.

According to the coexistence between these two knowledge representation re-
lated to the user point of view, the proposed architecture use both declarative
and procedural approaches at different times, taking advantage of their different
advantages.

In the past, a similar approach was adopted by (38), on the design of the
ATLANTIS architecture for mobile robots. Based on the observation that an
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Table 3.1: Comparison between Declarative and Procedural approaches in artifi-
cial intelligence and programming.

DECLARATIVE PROCEDURAL

APPROACH APPROACH

The representation of knowledge
about objects, events and their
relationships and states is static.

All the control information neces-
sary to use the knowledge is em-
bedded in the knowledge itself.

It defines the rules about “what

to do” with knowledge and not
how to do it.

It encodes “how to achieve” a
specific result, requiring an inter-
preter to follow instructions spec-
ified in knowledge.

It is slow, because the system re-
quires code interpretation.

It is fast to use, because all the
processes have a direct execution.

The system transparency is im-
proved, easing system gover-
nance.

It works as a black box and could
be hard to debug.

The system is data-oriented. The system is process-oriented.

Turn out to be easy to update
the system representation, facili-
tating system maintenance;

It is easy to write, because the
knowledge is defined step by step
in an explicit way.

environment can be investigate at different levels, that require some proper mech-
anisms for dealing with them. For example the planning could be important in
a level, whereas a quick reaction might be critical for the life of the robot in the
other levels. For this reason author defined two different layer for its robot: the
control layer, that uses a procedural knowledge, and the deliberative layer, that
uses a declarative knowledge.

The hybrid architecture for the decision support system developed in this
work, according to the software architecture of the BORIS project (see section
4.1), not only aims to exploit both declarative and procedural approaches, but
integrate also another approach from workflow management systems, i.e. the
process approach.

The term “process approach” is inherited by business process management,
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3.1 Hybrid Architecture

that is a collection of structured activities (or tasks) that produce a specific service
or product (or a goal) for a particular typology of customers. Usually, it can be
visualized with a flowchart as a sequence of activities or a workflow of tasks.

Therefore, the process approach is a management strategy where managers
supervise the interaction between these processes, and the inputs and outputs
that glue these processes together. Each process is an integrated set of activities
that uses resources to transform inputs into outputs or, in other words, a sys-
tem exists whenever several processes are interconnected using such input-output
relationships.

This point of view is used by several WFMS platforms (47), where the process
model describes the behavioral aspect of a workflow specification, such as the pro-
cess evolution from its initial state to one of its final states. The elementary unit
of the workflow created with the proposed system is the task, that is interrelated
via connectors, such as join and split elements. Then there are subprocesses that
allow the modularization of each generated workflow in terms of self-contained
activity fragments, according to strategies/heuristics taken into account.

3.1.1 DSS space

As stated in the previous section, the hybrid system introduced in this work
collects at the same time three different knowledge representation: declarative,
procedural and process approaches.

The coexistence of these different approaches to the same architecture is guar-
anteed by assuming a working space that is arranged in a three dimensions space,
where each axis represents one of the previously cited approaches. When the sys-
tem runs, a point inside the DSS space will identify the state of the system,
whereas the projection of this point over each axis, will indicate the contribution
of each approach.

As depicted in the figure 3.1, the axes of hybrid architecture are respectively:
Abstraction Layer, Decision Making Level and Workflow Timeline.

In the following some characteristics of each axis:
Abstraction Layer Axis (based on Procedural Approach):

• It shows “how to achieve” a specific result for an input problem at different
abstraction layer .

• It builds a workflow of operations, dealing with the direct execution of each
task and sub-task.

• It runs all the algorithms and services, taking care of the management and
organization of issues related to inputs-outputs interface.
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3.2 Decision Making Activity

Decision Making Level Axis (based on Declarative Approach):

• It decides about “what to do” with the DSS knowledge, according to rule-
based engine.

• It works with unstructured data.

• It uses strategies and heuristics in the knowledge base to generate some
consistent models, for the problem solving process.

• It manages all decision making steps.

Workflow Timeline Axis (based on Process Approach):

• It allows reconfiguration of each selected tool or service, with back-tracking
feature.

• It allows to select alternative paths or restart the workflow from a process
selected by the user.

• It collects all the intermediate results, saving the process representation of
the problem.

• It traces, step by step, the workflow evolution of the system.

All these axes represent discrete values; in facts, a problem can be represented
at the highest abstraction layer, at the lowest abstraction layer or at some in-
termediate abstraction layers. In the same way, a workflow is done by means of
some discrete steps, according to tools executions. As will be explained later,
also the Decision Making Axis represents discrete value, because it depicts the
successions of each transitions of decision making steps of the system; in other
words, for each decision step the system reach a new state.

3.2 Decision Making Activity

The development of reasoning systems is an important area of research in Ar-
tificial Intelligence. This work uses a procedural reasoning system that have to
operate with BORIS software architecture described in section 4.1. The decision-
making capabilities of the system indicated how the system integrates both a
directed reasoning according to user request, and the ability to takes account of
available resources and knowledge.

As defined by (43), “Decision making is the study of identifying and choosing
alternatives based on the values and preferences of the decision maker. Making a
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3.2 Decision Making Activity

Figure 3.1: Space of Decision Support System. The hybrid architecture intro-
duces tree point of view for the problem, i.e. abstraction layers ((based on Pro-
cedural Approach), decision making levels (based on Declarative Approach) and
workflow timeline (based on Process Approach).

decision implies that there are alternative choices to be considered, and in such
a case we want not only to identify as many of these alternatives as possible but
to choose the one that best fits with our goals, objectives, desires, values, and so
on.”.

According to the guideline suggested by (44), the decision making process
used in this work is composed by the following steps, reported in the figure 3.2:

1. Problem identification:

When the system receives the user request, it has to first identify the root
causes and then produce a problem statement (also in case of complex
decision problems) that describes both the initial conditions and the desired
conditions.

2. Requirement setting:

The system has to analyse all the constraints describing the set of the
admissible solutions to the problem detected in step 1, i.e. for any possible
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solution it has to decide unambiguously whether a strategy is acceptable or
not.

3. Alternatives identification:

Alternatives strategies or heuristics offering different approaches for finding
a solution have to be evaluated by the system, in order to better match
with the user desired goal and the boundary conditions.

4. Attributes definition:

It is necessary to define discriminating criteria to measure how well each al-
ternative achieves the goal or almost a sub-goal. According to (44), criteria
should be able to discriminate among the alternatives and to support the
comparison of the performance of the alternatives, complete, operational
and meaningful.

5. Decision-making tool selection:

Although it could exist several tools for solving a decision problem, the se-
lection of the appropriate tool depends on the concrete decision problem, as
well as some characteristics of a tool (requirement of additional resources,
computational complexity) or computing power. The selected tool is pro-
posed to user with a list of pros and cons.

6. Alternative tools evaluation:

Since more than a tool can satisfy discriminating criteria, the system must
show to the user a set of the most promising alternative tools/services, once
again with a list of pros and cons for each tool/service. In complex prob-
lems, the proposed alternatives may also call the attention of the user, that
could add further goals or requirements to the decision model.

The decision-making activity of the system is organized in functional modules;
a representation of these module is depicted in figure 3.3. Each module has its
own knowledge and skills, takes care of a specific part of the reasoning process
and is responsible for making decisions about a well defined task. Typically, this
knowledge is unstructured or semi-structured, because information retrieved by
different sources is often ambiguous or incomplete. Also included in each module
are strategies and/or heuristics, as well as all the rules that are required by the
rule-based engine for developing reasoning on the specific task.

In addiction, there are some modules containing also a subset of rules that are
able to launch tools and services responsible for the implementation of a specific
methodology. Directives contained in these rules are able to suggest to the user
the most suitable tool, among a collection of similar tools.
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Figure 3.2: Decision Making Activity. The closed loop runs during all the decision
making activity, in order to solve tasks and sub-tasks.

3.2.1 Meta Reasoning Tree

Since several problems are very wide, the management of these problems could
be hard and, consequently, some large decision modules are needed. For this
reason, it is convenient to split problems into sub-problems, building a hierarchy
of modules and sub-modules, containing tasks that are able to model only simple
issues. The data structure used to link tasks (modules) is the hierarchal tree.
The tree allows to represent relationship among problem and sub-problem in a
suitable way, with respect to the logical organization adopted in decision making
process. In particular, the depth of a node with respect to the root node in the
tree is arranged according to the meta levels adopted by the system during the
reasoning activity.

By means of the decision making axis of the DSS tree-dimensional space, the
user can navigate through the hierarchy of the entire reasoning tree for exploring
sub-modules in different meta-levels; this way, user can see in a glass-box the rules
behind the reasoning of the system. User can also interact with the system in
order to learn about strategies and heuristics leading the decision making activity
in figure 3.2. As a meta-meta-level can control a meta-level in a process of rea-
soning about reasoning itself, in the same way a module can operate a reasoning
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Figure 3.3: Decision-Making Modules. Each module contains all the strategies
and/or heuristics for a well defined task. In addiction some modules are also
responsible for the management of directives related to tools and services.

over a child module (that lie in a deeper position on the tree), demanding some
operation to him.

A representation of the decision making tree is reported in figure 3.4; it con-
tains three meta-reasoning levels, arranged according to the previous cited idea.

Of course, each child is able to solve a specific task that its parent can only pro-
pose to solve, without having the knowledge about it. Communication between
decision modules is managed from parent to child, in facts the parent module
A can give focus to child module A.1 in order to request the solution about a
specific sub-problem and, in turn, the module A.1 can give focus to its child A.1.1
to solve a sub-sub-problem.

All the modules lying at lowest meta-reasoning level (i.e. modules at Meta-
Level X.Y.Z in the figure 3.4) contains rules that are responsible for management
of tools and services, because they are “nearest” to the execution layer of workflow
process; this way the system can suggest what are the most suitable algorithms,
assisting the user in their proper configuration.

Of course, also the other modules could contain some directives for tool/service
execution; for example, it can happen when the system request an input data
analysis, that is necessary to make a decision at highest MRL.

3.2.2 From Meta Reasoning Tree to DSS Space

This subsection aims to project the representation of meta-reasoning levels from
the hierarchical tree to a new dynamic treemap, reported in the following. The in-
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Figure 3.4: Meta reasoning tree. Decision making modules are distributed into
some different meta-reasoning levels, according to problem/sub-problem hierarchy.

troduced representation allows to integrate all the MRLs into the tree-dimensional
space of hybrid architecture proposed in this work.

3.2.2.1 Dynamic Treemap Representation

Treemap was first designed by Shneiderman (46) during the 1990s, in order to
producing a compact visualization of directory tree structures in hard disks. It
is a two-dimensional space-filling approach to the visualization of hierarchical
information structures, obtained by means of a set of boxes representing nodes
of tree: individual nodes within their bounding boxes determines the content
information statically presented in a treemap. It is very effective in showing
attributes of leaf nodes using size and color coding, providing an overall view of
the entire hierarchy and making the navigation of large hierarchies much easier. In
general, treemap enables users to compare nodes and sub-trees even at varying
depth in the tree, and help them to detect mutually related properties among
nodes.

Treemap is able to depict both the organization of information associated with
the hierarchy, and the content information associated with each box.

Use of treemap representation fixes some disadvantages related to the pre-
vious used representation; the main disadvantages of using the hierarchical tree
representation is the lack of content information. In facts, each node has only
a simple text label. Additional information, such as the duration of a decision
making module with respect to the time line of a workflow, can not be depicted
into the decision making tree. In the same manner, no information about which
abstraction layers are used when a module is running can be shown using the
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hierarchical tree representation.
The treemap visualization technique adopted in this work makes use of the

system 3D-space, in order to map the full hierarchy onto a rectangular region in
a space-filling manner. For the proposed hybrid architecture, a 3D treemap for
MRL browsing that can show overlapping between modules has been introduced.
In addiction some functionalities related to time line execution have been inte-
grated. In facts, a sort of Dynamic Treemap has been introduced, where each box
representing a module has a width related to its duration inside the execution of
working process and an height related to the number of different abstraction lay-
ers it take in account during the task processing. The representation of decision
making modules inside the Dynamic Treemap, follows the workflow generation
step-by-step and it is time-dependent (from which the term “dynamic”).

An example of the dynamic treemap representation is shown in the bottom
of the figure 3.5. The meaning of this figure is described in the following.

3.2.2.2 Communication among Decision Making Modules

Decision modules are represented into the introduced 3D space by means of the
previously cited dynamic treemap. This solution integrates all the information
about the interaction among modules as well as the relationship among meta-
reasoning level. In addiction, this representation assures an appropriate user
interaction, providing all the features available for the exploration of the hybrid
architecture space.

Figure 3.5 shows an example of the communication among modules during
the decision-making process, through different meta-levels. The top of the figure
reports a tree where each node represents a module, where parent-child relations
are oriented from the highest MRL to the lowest MRL. The root of the tree is
the reasoner having the main directives for the resolution of a selected problem.

Each module can have n children: therefore each module in meta-reasoning
level A can make a decision according to its own proper knowledge about the
problem and, moreover, it can assign a task to another child module at lower
meta-level reasoner, that has further and more specific information about the task
solving the sub-problem: the “give focus” line between modules is highlighted in
the figure with an oriented arrow. Accoring to the reasoning process, all the
arrows pointing to modules lying at lower MRL (parent to child) correspond to
assignment of a sub-task, whereas all the arrows pointing to modules lying at
higher MRL (child to parent) represent a return of focus that confirm the child
module has solved the sub-task. The number near to the arrow represents the
order of focus transactions: the entire example in the figure is composed by four
sequential steps. During this process, each parent module stays awake until all
of its children are running, because it has to supervise and process the stack of
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Figure 3.5: From meta reasoning tree to hybrid architecture space. Decision
making modules are represented by means of a dynamic treemap.

results.
The bottom of the figure 3.5 reports the dynamic treemap representation of

the reasoning process, created inside the 3D space of DSS. This figure join the
treemap representation with the workflow timeline: in this manner the user can
take into account, at every moment of the workflow evolution, the active decision
making modules. The dynamic tree is built step-by-step from the right to the
left (according to workflow timeline axis orientation); boxes representing modules
used during the experiment appear when these are active and they are bounded
when the module give focus back to the parent. A parent will grow up under all
its children boxes, because it will manage their results; for example, the module
Ain the figure, will wait for the conclusion of the task solved by the module
A.2.1. Bounding boxes representing modules at different meta-reasoning levels
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Figure 3.6: Representation of a simple sequence of algorithms. The workflow is
projected into the 3D space; no information about abstraction layer is reported,
because only the object layer of the system is considered.

are overlapped according to the decision making axis, that takes into account
the depth of meta levels, from highest MRL to the lowest MRL. The projection
of the dynamic tree over the abstraction layer axis will be discussed in the next
subsection. In order to solve a specific request, the module A at meta-reasoning
level X is enabled: At step 1 it call module A.1 to solve a sub-task. At step 2
the module A.1 has completed its reasoning and give focus back to the parent
module. At step 3 the module A call the module A.2 to solve another sub-task.
At step 4 the module A.2 have not enough knowledge about the sub-task and
send a sub-request to the module A.2.1 at MRL X.Y.Z to resolve a sub-sub-task.

3.3 Workflow Generation

Workflow generation starts from the results of the decision making process pro-
duced by the rule-based engine, where main goal, sub-tasks, business processes
and internal/external tools are specified. They are responsible both to define all
the aspects of a process that are relevant to controlling and coordinating the exe-
cution of the tasks have been executed and to provide all the information needed
for design and implement the final process.

In general, the obtained workflow is a collection of tasks organized to accom-
plish some business process. A task is performed by one or more softwares (e.g.
preprocessing tools), or by means the human interaction (e.g., providing input
commands), or a combination of these. In addition the workflow defines the order
of task invocation, task synchronization, and information flow (dataflow).

In figure 3.6 a simple workflow inside the system space is shown. For the sake
of simplicity, the abstraction layer axis is not depicted in this figure: only the
object layer is reported. The proposed hybrid architecture supports the evolution,
replacement, and addition of workflow applications, as well as the re-engineering
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Figure 3.7: An overview of the DSS 3D space. There is a workflow for each
abstraction layer, according to the user’s point of view.

of system components and processes; in facts, users can interact with the system
modifying the sequence of tools, changing algorithms and/or parameters and
exploring decision making modules responsible for suggestion of strategies.

The figure also shows that, in order to resolve a required task, more than
an algorithm could be managed by the same decision module; for example, tree
algorithms (here called Algo 1, Algo 2 and Algo 3) have been executed under
the supervision of the module A.1, before this one can resolve its sub-task and,
then, give focus back to parent module A.

3.4 Abstraction Layer

The proposed DSS faces each user query at different abstraction layers, according
to its complexity. In facts, it shows several views of a problem: from the top
abstraction layer (i.e. the problem itself) to the bottom abstraction layer, the
object layer (i.e. the workflow of tool/service instances).

Figure 3.7 shows how meta-reasoning levels, abstraction layers and workflow
timeline interacts each other during the building of a generic workflow. Rea-
soning starts with the reasoning of module A at highest abstraction layer that
manages the different tasks needed to fulfill the users request, identified as the
“Global Task”. The set of tasks is arranged according to the hierarchy of prob-
lems and sub-problems of minor complexity, and at the lowest abstraction layer
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there are the specific algorithms and/or services that will be run in order to
solve a general complex problem. At each intermediate abstraction layer, it is
possible to see the same problem faced at the higher abstraction layer split in
operational tasks, that have been detected by the reasoning process as candidate
for solving a sub-problem; in other words, decision making modules suggest some
strategies/heuristics for problem solving, proposing a sequence of tasks that are
visualized at one or more abstraction layers. At the lowest abstraction layer, the
system shows all the suggested algorithms and services to run, assisting the user
in their proper configuration.

The module A at the highest MRL is the main module, responsible for the
supervision of the entire process. Following the time axis, it gives the focus to
meta level A.1, which proposes, through its facts and rules, to launch Task A.1

and Task A.2 done by means of Algo 1 and Algo 2 (for Task A.1), and Algo 3

(for Task A.2). After that, the focus goes back to module A that pass it to
module A.2 and so on. This type of multi-layer workflow representation is the
actual output of our system.
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4

BORIS Software Architecture

In this Chapter, the software architecture of the Rule-Based expert system de-
veloped for the BORIS global framework is presented.

First of all the whole architecture will be described and then its most im-
portant parts will be described in detail, stressing on the organization of the
Knowledge Base of the system through an ontology and introducing the concept
of Decision-Making module, that are responsible for the reasoning activity of the
system.

Finally we will see how the software architecture integrates with the rest of
BORIS hybrid structure, following its main requisites and guidelines.

4.1 Three-layer Architecture

Boris software architecture has been developed as a three layers structure. The
layered architecture of the proposed system, shown in Fig. 4.1, is inspired by its
main goal: to separate the researcher from the tools in order to let him focus on
the problem.

The user interacts with the system through a Graphical User Interface (GUI)
and the wrapper component that are in the interface layer. The wrapper is the
module that manages the communication between the executor in the Controller
layer and and the GUI. The GUI sends user’s commands to to the wrapper; it
formats this messages in the form of queries to the Reasoner. Wrapper module,
moreover, allows to to easily change the GUI without interferences to the other
parts of the system. The main components and their meaningful features of the
GUI will be described in Chapter 5.

The Controller Layer includes a knowledge-based expert system (15). Knowledge-
Base (KB) contains and codes the expertise of the system about the application
domain. KB can be populated with information provided by human experts of
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4.1 Three-layer Architecture

Figure 4.1: Software Architecture. Three main layers interact each other to make
the system work. The Interface layer is responsible for the interaction between
the User and the system. It implements a GUI that manages the input/output
operation. The Controller layer holds a Knowledge-Based expert system: it is able
to make inferences on the application domain by consulting the skill coded into
the Knowledge-Base. KB is organized and maintained through an ontology. The
decisions taken by the Reasoner (inference engine) are passed to the Executor that
will schedule and put them in action. The Object layer represents all the tool
and services the system can gain access, both locally and on the Internet. Every
time a new web service or software is available, the upper layer just needs a simple
interface in order to use them.

the domain or extracted by research papers found in literature: so far we used
for our KB almost 50 scientific papers. Knowledge Base is composed of facts and
rules: facts represent single pieces of information; rules, having the typical form
IF <precondition on fact is TRUE> THEN <do action>, are used in order
to make the system able to do inferences about the domain. The rules, acting
on facts, have to be considered single steps of reasoning used for the coding for
heuristics, guidelines and strategies adopted by an expert of the domain. The KB
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Figure 4.2: Knowledge-Base three main components: Facts are the instances of
the concepts defined into the Ontology; the Rules work on facts in order to give
semantic and the possibility to make inferences over the facts.

is built upon an ontology, in order to provide a fixed and expandable structure
to the KB itself. Facts, then, represent instances of the concepts defined in the
ontology. The relationships between ontology, facts and rules are shown in Fig.
4.2

The design and the main features of our ontology will be described in the next
subsection.

The Reasoner is the inference engine. It, by consulting the knowledge base
and according to user’s query and input data received from the upper layer, has
to decide and suggest what are the suited strategies and tools useful in order to
solve user’s request. All the decision taken by the Reason are sent to the Execu-
tor. It has an internal agenda, in order to schedule the action to perform, and
moreover has access to the Object Layer which contains all the tools and soft-
ware available to the system. The Executor can update the KB with intermediate
results obtained during the execution of an experiment.

The Object layer represents all the low level parts that will be run by the
executor, according to the decision taken by the reasoner. The Object layer can be
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considered as a big container, made up of different compartments, corresponding
to different class of software and tools. In this layer we considered algorithms
and tools and the access to the most common web services and online databases
for bioinformatics. All the components of Object layer are developed by third
parties and are not subject of our study.

4.2 Ontology Design

In order to build a complete and exhaustive Knowledge Base, three basic com-
ponents are needed: facts, rules and an ontology of the domain.

In Computer Science, an ontology is a formal representation of the knowledge
about a specific domain. It provides a conceptual schema for all facts to be
represented. The main reasons for developing an ontology are:

• to share the structure of information among other people or software agents;

• to allow the reuse of domain knowledge;

• to give a well structured, robust and consistent conceptual schema for all
facts to be represented

• to enable the chance of easily update and extend the KB with new concepts.

Ontology is composed of classes (concepts) organized in a hierarchical struc-
ture. Classes are characterized by properties, also called attributes, that describe
various features of the concept itself; and relationships with other classes of the
domain. Given this definition, facts of the KB represent instances of concepts
defined into the ontology.

In Fig. 4.3 it is shown a very simple scheme of an ontology, describing the
motor vehicle domain. There we have the concept Automobile and its super
concept Motor vehicle, with the set of attributes indicated in yellow. A child
concept inherits all the properties from its parent concept. “Ford Mondeo LX”
is an instance of Automobile class: in general an instance has all its attributes
with a specific value. Moreover, this instance has a mutual relationships of the
type manufacturer/producer with another instance of the domain, “Ford Motor
Co.”. The latter element is an instance of “Auto mfr” class that is a subclass of
“Corporation” concept.

In practical terms, developing an ontology includes:

1. identifying and defining classes in the ontology,

2. organizing the classes in a taxonomic (subclasssuperclass) hierarchy,
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Figure 4.3: An example of ontology in the vehicle domain. The rounded rectan-
gles are the classes characterized by properties or attributes (the yellow boxes); the
other rectangles are instances of the classes: in the instances each attribute has a
value. Finally there are the relationships between the instances, indicated through
the black arrows. Each relationship is given a label representing the type of bind.

3. defining slots (attributes) and describing allowed values for these slots,

4. filling in the values for slots for instances, this way obtaining facts for the
KB.

In the development of the ontology at the basis of our KB, we decided to focus
on and model three main sub-domains:

1. the set of tasks we can do on bioinformatics domain;

2. the tools, software and algorithms currently used in bioinformatics;

3. the type of biological data we have as input and that we have to analyse
(we call it generically “Domain”).

These three sub-domains are shown in Fig. 4.4, where we can also see the
kind of relationships among them: Tasks operate on a specific biological data,
following the idea “what we can do according to the available type of data”; on
the other hand Tasks use Tools, in the sense: “in order to do something, what
are the suited tools?”.

All three main branches of our ontology are modelled according to an hierar-
chy of classes and subclasses. Each concept is then characterized with a set of
attributes and relationships with other concepts: sub-classes, representing more
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Figure 4.4: Three main ontology sub-domains: Tasks model the set of operations
it is possible to do on the bioinformatics domain; Tools model the set of algorithms
and services that implements the Task instances; Domain models the biological
data to analyse. The generic relationships among the three subdomains are shown:
Tasks “operate on” Domain’s instances and “uses” Tools’ instances.

specialized concepts, have all the attributes of their own super-classes plus other
specific properties.

The Tasks part of the ontology describes what are the most common bioin-
formatics operations we can do on biological data. Here, at the moment, we
identified three main areas of our interest: Protein Analysis; Protein-Protein In-
teraction; Gene Regulatory Network. The hierarchical structure of Tasks ontology
is shown in Fig. 4.5

Protein Analysis is one of the biggest challenge in bioinformatics: it is a
very hard issue to understand how proteins work in biological processes. In
facts, the proteome of a specific organism differs even from cell to cell, this is
because a single gene can code for over 1,000 proteins and each protein can
express several functionality, according to other interacting proteins. According
to bioinformatics topics classification in (30), protein analysis is divided into four
classes of problems: protein structure prediction, protein annotation, protein
function prediction, and protein localization prediction.

• Structure Prediction: the structure of a protein represents a key feature in
its functionality (31). Unfortunately, the prediction of 2D and 3D struc-
tures is an NP hard problem in general, because most of the proteins are
composed by thousands of atoms and bounds and the number of poten-
tial structures is very large. For this reason, in order to approximate the
real structure of a protein, several optimization techniques based on ma-
chine learning approaches have been implemented and a competition (CASP
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Figure 4.5: Hierarchy of classes and subclasses for the Task part of the proposed
ontology.

(36)), aiming at improving prediction techniques in the years, has been in-
stituted;

• Function Prediction: another challenge is to determine protein function at
the proteomics scale. In fact, although in a model organism many individual
proteins have a known sequence and structure, their functions are currently
unknown. In particular, a single protein can express different function ac-
cording to some environmental parameters, therefore it is not enough to
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identify which proteins are responsible for diseases or are advised for med-
ical treatments, if the specific functions are unknowns. Approaches to the
function prediction are based on different techniques (34): some of these
are related to protein sequence and structure, the other ones use protein-
protein interaction patterns and correlations between occurrences of related
proteins in different organisms.

• Location Prediction: the prediction of protein localization aims at deter-
mining localization sites of unknown proteins in a cell. By means of this
study, it is possible to cope with problems like genome annotation, protein
function prediction, and drug discovery. The location of protein into the
cell can be calculated through experimental approaches (35), but they are
time and cost consuming, thus a computational technique able to screen
possible candidates for further analyses, appears a desirable solution.

• Protein Annotation: available databases and technical information on pro-
teins form the raw material of the proteomics. A correct organization of
these input data prevents a misleading interpretation of elements. A critical
phase in this process is a correct annotation of properties and main features
of proteins. This step is based on the classification of scientific texts and the
information extraction in the biological domain (33), and it copes with the
identification problems. In the biological field the nomenclature is highly
variable and ambiguous, especially for protein name identification, where
both the use of phenotypical descriptions and the gene homonym/alias man-
agement have influenced the nomenclature.

A central role in biological mechanism of a cellular process is covered by the anal-
ysis of protein-protein interaction (PPI). Nowadays a large amounts of PPI data
have been identified with many technologies, but only a few of them are account
as real interaction with an emerging function. Moreover, at biological pathway
level, the functionality is not linked to a simple pair of proteins, but arises with
protein complex, that is a collection of PPIs. Analysis of protein-protein interac-
tion, as well as identification and extraction of protein complexes, represents an
hard task for machine learning algorithms (32), because uncertain information
about interconnection and functionality of each protein could lead to erroneous
interpretation. Inside Protein-Protein Interaction we distinguished subtasks like
PPI prediction and PPI network analysis. PPI network analysis is composed of
techniques for the extraction of protein complexes and the comparison of protein
complexes.

Finally Complex Extraction class is made of the following subclasses:

• Complex Clustering is the identification of set of protein complexes charac-
terized by common features according to a similarity metric;
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• Complex Identification is the classification of unknown protein complexes
given a training set of known complexes;

• Complex Preprocessing is the set of operations used in order to prepare the
input dataset the complex clustering or complex identification tasks;

• Complex Visualization is a set of techniques that allow the visualization,
using different styles, of the protein complexes.

GRN ontology is made of subtasks concerning preprocessing of data, network
inference and visualization. Inside Preprocessing jobs, we also considered:

• Gene clustering is the individuation of set of genes, called clusters, that
exhibit similar expression values, according to a specific metric (48, 49).
These gene are also defined “coexpressed”. Each gene cluster is given an
expression value equal to the mean value of all its elements or equal to the
value of its most representative gene (cluster centre);

• Gene interpolation consists in the increasing of the number of data points
(expression values) in order to obtain more accurate results (50);

• Gene discretization is a numerical procedure to transform continuous ex-
pression values into discrete values, because some tools need this type of
input values, such as Bayesian Networks (51);

• Gene filtering is a set of procedures that allow to select a subset of input
genes according to some user defined constraints (52, 72).

Instances of Tasks ontology has the following attributes:

• description: a brief explanation;

• entry: the type of biological data needed;

• exit: the type of output data produced;

• precondition: required task to be previously run

• pros: a list of task’s advantages;

• cons: a list of task’s weak points;

• reference: one or more bibliographic references;

• input type (only for GRN instances): the type of input data supported (see
Microarray instance description)
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Figure 4.6: Hierarchy of classes and subclasses for the Tools part of the proposed
ontology.

The Tools component is also structured in an hierarchy: here, at the top level,
we distinguish between algorithms, that are run locally, and services, that run
remotely. At the moment we included filters, algorithms on graphs, graphical
models, machine learning algorithms etc... The complete hierarchy is shown in
Fig. 4.6.

A generic instance of Tools ontology is characterized by the following at-
tributes:
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• description: a brief explanation on its main features;

• input: type of input data (file format);

• output: type of output data;

• parameters: number and type of input parameters, if needed;

• pros: a list of algorithm’s strong points;

• cons: a list of algorithm’s weak points;

• complexity: computational complexity;

• reference: one or more bibliographic references;

In the last main branch of our ontology we modelled the type of biological
data we want to analyse: we considered genomic data, proteomic data and tran-
scriptomic data (see Fig. 4.7). Here we focused especially on the modelling of
microarray data, since this is at the basis of the developed scenario presented in
Chapter 6

Microarray class has the following attributes:

• db: the biological database the dataset belongs to;

• genes: the number of input genes;

• samples: the number of input samples;

• experiment: the kind of experiment: time-series or steady state (see Section
6.2.1)

• species: the type of biological species (if known);

• missing values: the presence or less of missing values.

Apart from an hierarchy of classes and subclasses, an ontology is character-
ized by the relationships among those classes. We are interested above all in the
relationships between Tasks and Domain on one hand, because we want to iden-
tify what is the type of biological data needed to perform a specific operation; on
the other hand we are interested on the relationships between Tasks and Tools,
because we want to know what are the available instruments that actually im-
plements strategies and heuristics coded in the Tasks ontology. For this reason,
At the top level we have defined a mutual relation between Tasks and Tools: an
instance of Tools “resolves” an instance of Tasks, that conversely is “resolved by”
an instance of Tools. We want this way point out that a particular software or
algorithm is suited to be applied to a particular bioinformatics task.
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Figure 4.7: Hierarchy of classes and subclasses for the Domain part of the pro-
posed ontology.

4.2.1 Mapping between the ontology and decision-making

modules

In order to make the system more efficient and structured, facts and rules of the
KB are organized into a set of decision-making modules, as seen in Section 3.2.

From this point of view, a decision-making module, from now on simply mod-
ule, is a collection of specific facts and rules with common features. We can
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assign to each module a well defined scope and purpose, a specific slice of the
decision-making process.

For example, we can have modules suited for taking decisions about prepro-
cessing operations, visualization, clustering and so on that can be used in different
application domain.

The mechanism of modules activation, also called focusing, is managed by
special rules: when the preconditions of these rules, the IF part, are satisfied,
their action, the THEN part, is to give the focus to a child module. A parent
module activates a child module when it needs specialized knowledge, i.e. more
specific facts and rules, in order to complete its decision-making activity.

Modules organization and its features has been designed in order to fully inte-
grate the expert system architecture into the Boris hybrid architecture described
in Section 3.1. With regard to the 3-axes reference space of Fig. 3.1, in fact,
decision-making modules stand into the decision axis, because they represent the
reasoning activity of the system. Then if the abstraction axis is considered, it
is possible to map it with the hierarchy of tasks and sub-tasks defined into the
ontology: at the lowest level of abstraction there are the instances of the Tools
component of the proposed ontology. Finally if the timeline axis, that is re-
sponsible for tracking the executed strategies and tools into a workflow, is also
considered, it is possible to obtain the scheme of Fig. 3.7.
In this type of workflow representation, the decision making modules, in their
treemap organization, are in the central part. The horizontal and vertical axis
are respectively the abstraction axis, with the above mentioned features, and the
timeline axis. The rectangles that intersects the decision-making modules at the
various abstraction layers are the executed tools and services, if they are at the
bottom layer, or the strategies and heuristics that use them, if they are at higher
abstraction layers. The highest abstraction layer is the main goal of the running
experiment.
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System Overview

In this Chapter a brief explanation of the main features and components of the
Graphical User Interface (GUI) of the proposed system is given. The GUI has
been designed according to one of the main aim of Boris project, i.e. integrating
the functionalities of a Decision Support System with the ease and usability
requirements of a Workflow Management System.

5.1 Boris’ Graphical User Interface

In Figure 5.1 we show a typical caption of the GUI of our system during the
execution of an experiment. Here we can see four main components, that will be
presented in detail in the following subsections:

• Profile Panel

• Workflow Panel

• Strategy Panel

• System Log

5.1.1 Profile Panel

The Profile Panel, standing in the top part of Fig. 5.1, allows the User to select a
profile that will be considered in the choice of strategies and tools for the selected
problem. The available profiles are:

• Quick Analysis: the User prefers tools with low computational time;
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Figure 5.1: A caption of the Graphical User Interface (GUI) of BORIS system
during a typical experimental session.

• Deep Analysis: the User prefers the most accurate tools, without time or
resources constraints;

• Low resources: the User prefers tool that needs low computational re-
sources:

• Only local services: the User prefers the execution of local tools and soft-
ware.

The User can change the selected profile anytime during the experiment, so that
he can combine different models according to his preferences.

5.1.2 Workflow Panel

Workflow Panel, that we can see in Fig. 5.2, shows the building of the workflow.
It visualizes the hierarchy of tasks and subtasks used to solve the problem orga-
nized in different abstraction layers according to their complexity level: at the
top level we have the main problem to resolve and at the bottom level we have
the actual algorithms and tools run by the system. The intermediate levels rep-
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Figure 5.2: Workflow Panel component of BORIS system. It shows the active
decision-making modules (pink boxes on the background), the adopted heuristics
and strategies (blue rectangles), and the run algorithms and services (yellow rect-
angles).

resents strategies and heuristics used to decompose and to resolve the main goal.
Strategies and corresponding algorithms are shown in rectangular boxes.

Active decision-making modules, representing the reasoning activity of the
expert system, are depicted using bounding boxes on the background. The work-
flow is interactive: right clicking on the different part, a context-sensitive pop-up
menu allows the User to do different actions: for example if he selects an algo-
rithm block he can change input parameters and re-run it; if he selects a strategy
block it is possible to select an alternative tool; while if a box representing a
module is selected it is possible to start over the whole part of the workflow for
which it is responsible, in terms of decision-making activity, that module, in order
to explore alternative paths, if any.

5.1.3 Strategy Panel

Strategy Panel, shown in detail in Fig. 5.3, describes available strategies and
algorithms for a particular task. For each of them it is provided a general de-
scription, a list of pros, cons and bibliographic references. The suggested strategy
or tool is highlighted with red text. All of these information is provided by the
Knowledge Base.
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Figure 5.3: Strategy Panel showing the available strategies, heuristics and tools
for the given task. The red element is the suggested one.

5.1.4 System Log

System log allows to the User to know every single operation done by the sys-
tem during the execution of an experiment. It shows the reasoning behind each
proposed strategy/tool, writing the motivation of each activated rule; the result
of each executed process; the pathway of the workflow, if there are some possi-
ble forks, and the final results of the experiment. The User can scroll the log
in order to read the history of the running experiment. The different kinds of
communication have different text coloration.

Figure 5.4: System Log of Boris system. Activated rules and their motivation,
intermediate and final results, available forks in the workflow and progression of
the experiment are shown.
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6

Case Study: Reverse Engineering

Gene Regulatory Network

In this Chapter an application of the proposed system to an actual case study
in Bioinformatics will be presented. The scenario is the inference of a Gene
Regulatory Network from an input dataset of gene expression values. First of all
I will present what is the biological issue; then I will give a brief explanation of
the most common bioinformatics approaches and tools and finally it will be seen
how our system can offer support in the choice, configuration and run of those
tools. During the system demonstration, we will also show the “back-end” of the
system, that is how the system works with regards to BORIS hybrid architecture
(see Chapter 2) and its software implementation (see Chapter 4)

6.1 Biological Problem

Gene regulation is the cellular control governing the rates at which genes are
transcribed into mRNA: this biological phenomenon is called gene expression.
Gene expression depends on physical signals from the environment or within
an organism cell. When one of these signals reaches cell nucleus, a protein,
called Transcription Factor (TF) is activated. TF, then, binds to the promoter
region, that is a specific upstream region, of a target gene and triggers the RNA
polymerase enzyme to transcribe DNA to RNA. TFs can be seen as controller of
the on-off switch mechanism of gene expression: repression (down-regulation) or
induction (up-regulation) of output. The molecular readout of a gene are then
mRNA, which is transcribed from DNA, and protein, which is translated from
RNA. In Fig. 6.1 it is shown a schematic representation of gene regulation.
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Figure 6.1: A synthetic representation of gene regulation biological phenomenon.
This picture is taken from U.S. Department of Energy Genome Programs,
http://genomics.energy.gov

6.2 Bioinformatics Approach

Gene regulation is a very complex biological phenomenon and it is not full under-
stood yet (54). In Bioinformatics and System Biology this mechanism is studied
and modelled by means of Gene Regulatory Networks (GRN): a GRN is a di-
rected graph where nodes represent genes and other regulatory elements, such as
transcription factors (TF), protein complexes and so on, and edges are regulatory
relationships among them. Basic input for inferring a GRN is a dataset of gene
expression values obtained through microarray technology. An example of GRN
is shown in Fig. 6.2.

From a computational point of view, modelling a GRN is a reverse engineering
problem, since from the output of gene regulation, that is gene expression, we
want to infer the network, with its topology and parameters, that provided those
outputs.
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Figure 6.2: Sample gene regulatory network (directed graph)

6.2.1 Microarray Technology

Gene Expression is measured by means of microarray technology (55). Microarray
chips are devices that enable the scientist to simultaneously measure the tran-
scription level of every gene within a cell. Microarrays are commercially available
from a number of companies, like for instance Affymetrix, Invitrogen and Sigma-
Genosys. The chip is usually constructed by amplifying all the genes within the
selected genome, yeast, for example, using polymerase chain reaction (PCR) (56)
methodology. The PCR products would then be “spotted” onto the chips by a
robot, as single-stranded DNA that is linked by covalent bonds to the glass slide.
The spots would be positioned in an array on a grid pattern, where each spot
contains many identical copies of an individual gene. A discussion of the chem-
istry involved in creating a microarray can be found on the technology page of
the Affymetrix website. The position of the genes are recorded by spot location,
so that the appropriate gene can be identified any time a probe hybridizes with,
or binds to, its complementary DNA strand on the chip.

Microarray chips measure transcriptomes, which are the entire collection of
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Figure 6.3: Example of microarray image

RNA transcripts within a cell under the given conditions. To use the chip to
measure an experimental transcriptome against a reference transcriptome requires
cells grown under two different conditions, the experimental conditions and the
reference conditions. The mRNA from the two different conditions are harvested
separately, and reverse transcriptase (57) is used to transcribe the mRNA into
cDNA. The nucleotides used to synthesize the cDNA will be labelled with either
a green or red dye, one colour for the reference conditions and the other for
the experimental conditions. The microarray chip is then incubated overnight
with both populations of cDNAs, and a given cDNA will hybridize with the
complementary strand from its gene that is covalently bound to a grid spot on
the chip. The chips are washed to remove any unbound cDNAs and then two
computerized images are produced by scanning first to detect the grid spots
containing cDNAs labelled with green dye, and second to detect the spots contain
red-labelled cDNAs. The computer also produces a merged image, like the one
shown in Fig. 6.3, that will show a yellow spot for grid spots that contain both
red- and green-labelled cDNAs, indicating transcripts that are expressed under
both sets of conditions.

In addition to producing a qualitative image that is easy visualize, a microar-
ray experiment yields quantitative data for each spot, consisting of the measured
fluorescence intensity of the red signal, the fluorescence intensity of the green sig-
nal, and the ratio of red signal to green signal. It is in storing and analysing the
quantitative data that bioinformatics really comes into play in microarray tech-
nology. These datasets are incredibly large. For instance, a typical mammalian
cell is estimated to have between 10,000 to 20,000 different species of mRNA
expressed at a given time.

There exists two different types of microarray datasets: static, or steady-state,
and dynamic, or time-series. In static data, an experiment with well-defined
conditions is carried out and the observation of gene expression values is done at
the presumed steady state of the biological system. Static data, then, captures
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the effects that the perturbations on initial conditions have ion the final state
of the system. This type of data, however, can miss some dynamic events that
may be critical in the description of the biological phenomenon described by the
GRN.

Dynamic data, in turn, are obtained from time-series experiment, when the
gene expression values, also called samples, are taken at precise intervals, or
time-points, after a perturbation. Dynamic datasets have the advantage that
can capture some fundamental dynamics of the biological system but, on the
other hand, may contain redundant information that could penalize the network
inference process. Furthermore in this type of experiments it is difficult to find
a compromise between the duration of the observation and the interval between
two consecutive measurements, since the number of time-points influences the
performance of the GRN inference methodologies.

6.3 Bioinformatics tools

Inferring a GRN is an ideal application scenario for our system: looking at the
state-of-the-art, in fact, a wide set of algorithms and methods are used for this
purpose (58, 59, 60). All of these techniques present pros and cons, and dif-
fer each other according to the type of input data (microarray, gene sequences,
protein-protein interactions), the applied algorithm, the desired output, the need
of specific data format, the accuracy level of the inferred model, the computa-
tional time and resources. Moreover the process of modelling a GRN often needs
preprocessing steps, like filtering and clustering, and/or postprocessing steps, like
simulation and visualization.

Among the most used methodologies there are static and Dynamic Bayesian
Networks (61, 62), Factor Graph (63), Boolean Networks (64), correlation meth-
ods (65), Ordinary Differential Equations (ODE) (66, 67).

To be more precise, at the moment Bayesian Network (68), Graphical Gaus-
sian Models (69), and correlation methods using ARACNE (65) and Context
Likelihood of Relatedness (CLR) (70) algorithms, are supported. Moreover, Boris
can also offer support for preprocessing of input data, using algorithms for Gene
Clustering (48, 49), Gene Filtering (52) and Gene Interpolation (50); and for
visualization of networks, using Graphviz software (78) and Cytoscape (79).

6.3.1 Correlation Methods

Generally speaking, correlation methods are based on Information Theory Mod-
els. This kind of approach compares expression profiles from a microarray dataset
computing, for each pair of genes, a pairwise correlation coefficient called Mutual
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Information (MI). Given the gene i and the gene j, their mutual information MIij
is computed as:

MIij = Hi +Hj −Hij (6.1)

where H represents the entropy and it is defined as:

Hi = −
n

∑

k=1

p(xk) log(p(xk)) (6.2)

Then gene i and gene j are considered connected by an edge if their MI is higher
than a specific threshold. The higher the threshold, the sparser is the inferred
network. Using an algorithm based on correlation measures, an undirected graph
is inferred because it is found only a possible correlation between two genes,
without any information about the direction of that relationship.

The computation of the MI requires that each experiment in the microar-
ray dataset be statistically independent each other. That means information-
theoretic approaches works both on steady-state gene expression dataset and
with time-series experiments only if the sampling time is long enough to consider
statistically independent one time point from the other ones.

The inferred relationships among genes, representing the edges of the gene
network, computed by means of this type of approach indicate a statistical de-
pendence among gene expression profiles. Information-theoretic models, in fact,
does not represent direct casual interaction between two genes.

Correlation-based methods are best suited to infer large-scale networks be-
cause of their low computational cost and low data requirement. A major draw-
back is that they can not model the dynamics of gene regulation and do not
consider that multiple genes can influence the regulation.

6.3.1.1 ARACNE

Algorithm for the Reconstruction of Accurate Cellular Networks (ARACNE) is an
information-theoretic algorithm for the reverse engineering of gene regulatory net-
works. It uses a Gaussian kernel estimator (80) for the estimation of the MI (6.1)
and moreover it implements a pruning phase of the inferred network with the aim
of reducing the number of false-positive interactions, i.e. inferred relationships
that do not correspond to actual biological interactions. The pruning is done ac-
cording to the Data Processing Inequality (DPI) principle (81), which states that
if gene i and gene k interacts only through gene j, then MIik ≤ min(Mij,Mjk).
DPI principle represents a necessary but not sufficient condition, that means some
direct interaction could be eliminated during the pruning phase.
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The main purpose of ARACNE is, in fact, to infer a subset of all the regulatory
interactions with a high confidence level. It has a low computational cost, it does
not need any prior assumption about the network to compute and it does not
require the discretization of input gene expression values.

6.3.1.2 CLR

Context Likelihood of Relatedness (CLR) is an unsupervised network inference
method that, given a dataset of gene expression profiles, finds transcriptional
regulatory relationships among genes. CLR is an improvement over the relevance
network algorithm (82), which considers Mutual Information between each pair
of genes in order to estimate the similarity between them according to a certain
threshold. CLR algorithm gives an estimate of the relevance of the MI value
between each pair of input genes by comparing it with a background distribution
of MI values. Given the gene i and the gene j, their background distribution
is computed considering the set of MI values of gene i with all other genes,
MIi, and the set of MI values of gene j with all other genes, MIj. Then the
background MI is approximated as a joint normal distribution assuming MIi and
MIj as independent variables. The key idea at the basis of CLR algorithm is that
the mutual information score of the most probable interacting genes should be
significantly higher than the background distribution of the MI scores.

CLR algorithm is characterized by a low computational cost, since it is based
on an information-theoretic model, and it is suited for the analysis of large-scale
gene expression datasets. Moreover, if a list of known transcription factors is
available, it can provide a directed acyclic graph, limiting the possible interactions
from transcription factors to non-transcription factor genes.

6.3.1.3 Graphical Gaussian Models

Graphical Gaussian Models (GGM) are undirected probabilistic graphical models
that are able to find the conditional independence relations among the nodes of a
network, considering the prior hypothesis of a multivariate Gaussian distribution
of the data. GGM uses partial correlation in order to calculate the conditional
independence between each pair of genes in the network. Given the generic gene
i and gene j, their partial correlation coefficient pij is computed by measuring
the correlation between them after the effects of all the other genes have been
discarded. The estimation of the covariance matrix of the Gaussian distribution
of the data allows the computation of GGM because partial correlation ρij is
related to covariance matrix C, and its inverse C−1, by the following formula:
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ρij =
C−1

ij
√

C−1
ii C−1

jj

(6.3)

Partial correlation is able to distinguish direct interactions among genes, that are
the ones of interest for the construction of a regulatory network, from indirect
interactions. In order to infer a GRN using a Graphical Gaussian Model partial
correlation among the elements belonging to the input dataset is computed by
means of Eq. (6.3). Then the distribution of |ρij | is analysed and the edges (i, j)
with a small value of |ρij | are discarded from the graph. So the key element of
this method is the estimation of the covariance matrix and its inverse.

GGM produces undirected graphs, therefore it is able to model network with
feedback loops. In (71) an improvement over GGM has been done in order to
obtain a partially causal network, i.e. a directed graph, in which some edges are
given a direction.

One of the major drawbacks of GGMs is the dealing with high dimensional
data.

6.3.2 Bayesian Networks

Bayesian Networks (BN) are directed graphical models that allow to identify prob-
abilistic relationships among a set of interacting elements, or random variables.
These relationships are represented through a directed acyclic graph (DAG) whose
nodes are the random variables and the edges are the conditional relationships
among them. In this case study, random variables are input gene expression levels
and their regulatory relationships are described by a joint probability distribu-
tion P (X1, . . . , Xn) where Xi is the i-th gene. The joint probability distribution
(JPD) can be decomposed into the product of conditional probabilities if each
variable (gene) Xi is independent from its non-descendants, given its parents in
the graph:

P (Xi, . . . , Xn) =

n
∏

i=1

P (Xi = xi ‖Xj = xj , . . . , Xj+p = xj+p ) (6.4)

The p+ 1 genes, on which the probability is conditioned, are the parents of gene
i in the graph and represent its regulators. Equation (6.4) is obtained using the
Bayes Theorem:

P (A,B) = P (B ‖A) ∗ P (A) = P (A ‖B ) ∗ P (B) (6.5)

from which we can derive the so-called Bayes rule:
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P (B ‖A) =
P (A ‖B ) ∗ P (B)

P (A)
. (6.6)

Bayesian Networks reflect the stochastic nature of gene regulation. They are used
to infer a gene network by finding the best DAG, according to a metric, describing
the gene expression dataset. The most common metric, computed using the Bayes
Rule (6.6) are the Bayesian Information Criteria (BIC) and Bayesian Dirichlet
equivalence (BDe). Learning a BN is an iterative procedure consisting of three
main steps: model selection, parameters fitting and network scoring.

During model selection, a candidate DAG is found. Then, given this graph, the
best conditional probabilities of each node is computed thanks to the experimental
data provided. Finally each candidate graph is scored, by means of one of the
above cited metrics, and the model with the highest score is the winner network,
since that means it best fit to the data.

The most expensive computational phase is model selection, because the
brute-force approach, i.e. enumerating all the possible graph configuration, is
a NP-Hard problem. Therefore for this learning phase it is often used an heuris-
tic search method considering techniques such as greedy-hill-climbing, simulating
annealing, etc...

In reverse engineering GRN Bayesian Networks represent a very flexible frame-
work because it is possible to combine many type of input data, like for instance
TF-DNA interaction data, and also, when available, prior knowledge about the
structure of the searched network. Moreover they can use a network template, ob-
tained for example by other inference techniques like information-theoretic meth-
ods (see Section 6.3.1), in order to restrict the space of possible models and to
speed up the entire computation. Moreover, as stated in (60), BNs avoid over-
fitting issues and can deal with incomplete and noisy data.

Classic Bayesian Networks have a very strong limitation in their application to
the inference of gene networks because they can not model networks containing a
feedback loop, that is a direct cycle. In a gene network, a feedback loop represents
a feature that can cause homeostasis. The result of this limitation is that BNs
can not work with input dataset containing time-series experiments. In order to
overcome this drawback, Dynamic Bayesian Networks (68) have been introduced.

6.3.2.1 Dynamic Bayesian Networks

Dynamic Bayesian Networks (DBN) are an extension of traditional (static) Bayesian
Networks that can deal with time-series input data. Here gene-expression values
are modelled by means of random variables Xi[t] representing the gene expres-
sion level of gene i at time t. DBNs are used under the assumption that the
modelled process is stationary, i.e. the relationships between two nodes in the
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graph do not change over time. DBNs can be specified by a directed acyclic
graph (DAG) where its vertices belongs to two separate sets of random variables:
X1[t], X2[t], . . . , Xn[t] and X1[t + 1], X2[t + 1], . . . , Xn[t + 1]. Moreover there are
only directed edges from the nodes of the first set to the nodes belonging to the
second one. One last consideration is that if we represents the genes as nodes
independent of time, we obtain a direct cyclic graph that is not allowed using
static BNs.

6.4 Experimental Dataset

The dataset used in this system demonstration is extracted from the genome of
Saccharomyces cerevisiae (yeast) (83) and consists of 3000 genes. This dataset
is obtained from a dynamic (time-series) experiment, it has 17 samples (time-
points) and it contains some missing values. Saccharomyces cerevisiae is one of
the most studied organism in the field of system biology and gene networks issues.
This dataset has been chosen because it has some interesting features, such as
the presence of missing values, the high number of input genes and the relatively
low number of time-points, that can exploit several important characteristics and
suggestions of the proposed system.

6.5 System Running

In this Section, a typical experimental session with BORIS will be shown. The
aim of the experiment is to infer a gene regulatory network from the input dataset
of gene expression values described in the previous Section. Boris system will give
decision support in the choice of the proper strategies and tools and will help the
User both in the configuration and running of selected instruments. Moreover,
during the description of the experiment, it will be shown the status of the system
according to the the 3-axes architecture presented in Section 3.1.1.

When the User starts a new session, he can choose the type of the experiment
from a list, organized as a tree, of the supported scenarios (Fig. 6.4). This
list of supported bionformatics problems is obtained through the Task ontology
presented in Section 4.2. Once selected a problem, the User he will be asked
to insert an input file, depending on the type of the experiment, so that the
system can begin its work. Here he choose “Gene Expression Modeling” as for
the bioinformatics problem and insert the input dataset presented in Section 6.4
in csv format. Selected User Profile is Quick Analysis.
After selecting the problem and inserting input dataset, decision-making activity
starts. In Fig. 6.5 we can see what are the decision-making modules responsible
for the current experiment:
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Figure 6.4: Available bioinformatics problems supported by BORIS system.

Figure 6.5: Decision-Making modules responsible for the reasoning activity re-
lated to the reverse engineering GRN scenario.

• GRN Modeling : the supervisor module that manages all the session and
that can activate children modules in order to deal with more specific tasks;

• GRN Preprocessing : the module responsible for the reasoning part with
regard to the preprocessing phase of input data

• Gene Expression: the module in charge of the decision-making activity
regarding the inference of the gene network.
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At the beginning of the experiment, GRN Modeling module is active (the blue
filled circle): the job of this module is to analyse input dataset in order to extract
all the meaningful information that can be used to trigger the rules.

In Fig. 6.6 it is shown what is the current status in the 3-axes reference
system: there we can see what are the values of abstraction, decision-making
level and workflow timeline. Abstraction axis, characterized by discrete values,
has an high value because at the beginning of the experiment the user’s request
represents the final goal and then it is seen as a complex problem at the top
abstraction level. An increment of the value in the decision-making axis means a
new decision-making module has been activated. Finally, in the workflow timeline
axis, we will see a progression according to the generation of the workflow: the
workflow is built every time a tool or service is actually run.

Figure 6.6: The initial state of the system with regard to the 3-dimensional
system reference space defined in Section 3.1.1

According to the attributes of Microarray template described in Section 4.2,
the number of genes, the number of samples (or time-points), the name of the
species, if available, and the type of experiment (steady-state or time-series) are
extracted. The latter property is expressly asked to the user, because the system
can not infer it by itself.

As stated in Section 6.4, input file has some missing values: that property
triggers a rule, whose action is shift the focus to the GRN Preprocessing module:
it will be responsible to suggest to the user a possible strategy to deal with this
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issue (Fig. 6.7).

Figure 6.7: Available techniques for dealing with missing values.

The supported strategies are:

• Missing Filtering: the genes with a certain percentage of missing values are
pruned;

• WK NN interpolation: missing values are interpolated using Weighted K-
Nearest Neighbour algorithm (85);

• K NN interpolation: missing values are interpolated using K-Nearest Neigh-
bour algorithm (84);

• Linear interpolation: missing values are interpolated by means of linear
interpolation (50).

At this point, if we look at the 3-axes reference system, the abstraction axis
has a low value because the proposed strategies are immediately executable rep-
resenting the lowest level of abstraction. (Fig. 6.8), while the decision-making
axis has incremented because a new module has been activated.

The User selects Missing Filtering with a threshold of 25%: the resulting
dataset has now 2951 genes, and the first part of the workflow is built (Fig. 6.9).

Once again input dataset has still missing values (the threshold was not
enough), this way the system suggests to the user to continue with preprocessing
and, after the affirmative selection of the User, it presents the possible prepro-
cessing strategies, suggesting the Missing Values strategy. This time, among the
available tools, Linear Interpolation is the suggested one because it satisfies the
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Figure 6.8: State of the system in the 3-axes reference space (left) and corre-
sponding activation status of decision-making modules (right) during preprocessing
operations.

Figure 6.9: Workflow of the current experiment after the first algorithm (Thresh-
old filtering) has been run. It is possible to notice the decision-making modules on
the background, the strategy name at middle abstraction layer and the main goal
at the top abstraction layer.

requirement on User’s Profile (Quick Analysis) since it is the less expensive algo-
rithm. After the linear interpolation has been done, then the workflow is updated
(Fig. 6.10).
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Figure 6.10: Workflow of the current experiment after Linear interpolation.

Input dataset has no more missing values, but the system keeps on suggesting
the preprocessing phase because of the activation of the rule that proposes to
do preprocessing if input dataset has many genes (more than 1000). Once again
the system presents the supported preprocessing operations, and the suggested
strategy is Gene clustering, because with dataset with many genes (almost 3000)
and few sample (17) is the most recommended technique. The remaining strategy,
Gene Filtering, offers support in the selection of only a subset of input genes. The
available gene filtering algorithms in the system are:

• Threshold filtering: input gene with an expression value lower than a user
defined threshold are not considered;

• Genecycle: an algorithm that is able to identify periodically expressed
genes, supposed to hold meaningful information content, in a time-series
gene-expression dataset (72);

• Robust Genecycle: an enhanced version of simple Genecycle algorithms,
characterized by more accurate results but higher computational time (73,
74).

The supported clustering algorithms are (Fig. 6.11):
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Figure 6.11: Supported clustering tools. K-means, in red, is the suggested one.

• K-Means: one of the simplest clustering algorithm, it puts together input
elements into clusters, maximizing intra cluster similarity and inter clusters
diversity (75);

• Self Organizing Map (SOM): an unsupervised clustering algorithm allow-
ing multidimensional elements to be projected into a (typically) 2D space,
providing this way both visualization and clustering information (76);

• fuzzy c Mean: similar to K-Means algorithm, but it produces soft clusters,
i.e. each element is given a score measuring its membership level to each
cluster (77).

K-Means, that is the fastest algorithm among the other ones, is the suggested
algorithm according to the User’s Profile (Quick Analysis). The system then asks
the user what is the final number of clusters: K-Means in fact requires the number
of output clusters as an input parameter.

In this case, the system will assist the User in the proper configuration of
the algorithm emphasizing the effect of the desired number of clusters: the more
the number of clusters, the finer the classification of patterns, but if too many
clusters are chosen, the resulting clustering can miss important correlation among
elements. In this scenario, 200 clusters are selected, K-Means is run and the
workflow is updated (Fig. 6.12).

After the Gene clustering procedure, preprocessing is no longer needed be-
cause there are not missing values and the number of input genes is not very
high, so the system suggests to continue with the rest of the experiment. Since
GRN Preprocessing module has finished its job, it gives back the focus to its
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Figure 6.12: Workflow of the current experiment after K-Means has been run.
The active decision-making module is GRN Preprocessing as well.

parent module, the GRN Modeling module. It is aware, by consulting its KB, the
GRN Preprocessing has ended, so it can activate the Gene Expression module,
containing the needed skill in order to infer a GRN.

At the beginning of this phase, the status in the 3-axes reference system can
be seen in Fig. 6.13: the abstraction axis has a medium value because the system
is reasoning about a sub-problem of the main problem; the timeline axis tracked
the building of the workflow so far; in the decision-making axis there is an other
incremental step corresponding to the activation of Gene expression module.

The system shows what are the possible strategies to infer a gene network:
the suggested ones are the correlation based methods, consisting of the use of
Graphical Gaussian Models (GGM) and CLR algorithm (Fig. 6.14). Here it is
important to point out that both techniques are recommended at the same time
for different motivations: that means the two rules that trigger the suggestion
of these algorithms are both fired by the Reasoner. If two or more rules, whose
effect is to suggest a strategy or a tool, are activated at the same time, they, in
fact, do not represent mutually exclusive options.

GGMs are suited for the analysis of datasets with with a number of genes
greater than the number of samples, more than ten times in the specific case
study; CLR is recommended for the quick analysis of large-scale input dataset,
where with large-scale dataset can be considered dataset with more than 150
elements. In this situation the User decides to run one of the two algorithms,
remembering that the backtracking features of the system allows him to reconsider

59

5/figures/wp3.eps


6.5 System Running

Figure 6.13: State of the system in the 3-axes reference space (left) and corre-
sponding activation status of decision-making modules (right) at the beginning of
actual GRN inference phase.

Figure 6.14: Supported tools implementing Correlation methods. Both algo-
rithms are suggested, for different motivations.

his choice in order to select another possible alternative and, in case, to compare
the two different results. Here the User decides to run CLR algorithm, then
the workflow is updated (Fig. 6.15) and a first gene network is generated. This
network can be saved and/or visualized.

After that, the systems invites the User to continue with the experiment
because the inferred network, obtained with a fast but poor accurate algorithm
(CLR), can be considered as a template input network in order to find a better one
using a Dynamic Bayesian Network (DBN). If the User agrees with the system,
input dataset is first “discretized” since DBN works with discrete values, once
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again the workflow is updated (Fig. 6.16). The final network is then obtained:
in Fig.6.17 a visualization of the inferred GRN obtained through Cytoscape is
shown. The nodes without any connections with other nodes are not plotted.

At the end of the experiment, the User can save the workflow, start a new
session or exit the program.
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Figure 6.15: Workflow of the current experiment after CLR algorithm has been
run. The active decision-making module is Gene Expression.
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Figure 6.16: Final workflow of the current experiment. It can be eventually saved
for sharing or reusing it. 5
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Figure 6.17: GRN inferred from the input dataset. This visualization is obtained
by means of Cytoscape software, supported by BORIS system.
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7

Case Study: Protein Complex

Extraction from Protein-Protein

Interaction Networks.

This Chapter contains a case study about extraction of protein complexes from
protein-protein interaction networks. A complete analysis of the biological issue
is done by means of the BORIS system, in order to show both how the hybrid
architecture faces a problem and how the software implementation interacts with
the user.

7.1 Biological Problem

Proteins represent the working molecules of a cell, but to fully understand cell
machinery, studying the functions of proteins is not enough. The biological activ-
ity of a cell is not defined by the proteins functions per se (89), what it is really
important is the interactions among proteins.

A group of proteins that interact in order to regulate and support each other
for specific biological activities is called a protein complex. Protein complexes
are one of the functional modules of the cell, an example of this protein function
modules are RNA-polymerase and DNA-polymerase.

The concerted action of different functional modules is responsible of major
biological mechanisms of a cellular process such as DNA transcription, transla-
tion, cell cycle control, and so on. Since a protein could have several binding
sites, each protein can belong to more than one complex and exhibit more than
one functionality. The basic element of these modules is the protein-protein inter-
action (PPI ). The figure 7.1 shows the relationship between the protein-protein
interaction network for the bacterium Mycoplasma pneumoniae and a whole-cell
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tomogram. In the network are highlighted five large complexes and the lines that
show where some of these structures can be found in the tomogram. For exam-
ple ATP synthase still need to be located. The tomogram was kindly provided
by A. Frangakis (European Molecular Biology Laboratory (EMBL), Heidelberg,
Germany).

7.2 Bioinformatics Approach

A large amounts of PPI data have been identified for different biological species
by using high throughput proteomic technologies. Of course experimentalists can
take advantage of using different online databases containing a list of PPIs for
each species (DIP (86), MIPS (87), etc..), but unfortunately available datasets
are still incomplete and contain non-specific (false positive) interactions (88), in
fact only a few of interactions have been verified with small scale experiments (in
vitro) as real interaction with an emerging function.

Usually, in bioinformatics a collection of these interactions is modelled as
a directed graph, the protein-protein interaction network (PPIN ), where nodes
represent proteins and edges represent pairwise interactions: it allows us to exploit
graph theory methods and solutions.

The task of exploiting biologically relevant modules in PPINs represent an
active research area in bioinformatics, not only for cell understanding, but also
for new drugs developing; for example, several authors, as (90), are studying
the mechanisms that regulate the evolutionary crossroads of p53 complex, re-
sponsible for different aspects of animal life, in developing human cancer cells.
Then, identifying protein complexes with emerging function turns into extracting
sub-networks with some emerging properties. Because of the importance of isolat-
ing functionally coordinated interactions, a lot of models, algorithms and strate-
gies have been introduced to extract interesting PPI subnetwork (soft-clustering,
greedy heuristics, probabilistic approaches, etc..), but each of them has proper
pros and cons.

Since PPI dataset preprocessing plays a prominent role in PPI Network analy-
sis, several authors aim to increase the reliability of these data. Some preprocess-
ing strategies are aimed to eliminate false positive interactions (FP) from dataset
obtained by online DBs. For example (91) notices that the interactions not part
of dense subnetworks, are more likely to be interactions that are do not exist. To
identify these false positives, he combined two topological metrics named Cluster
Coefficient(92) and Centrality(93). Also (94) uses the same algorithms, but he
adopted a different methodology, integrating individual topological measures into
a combined measure by computing their geometrical mean. A different approach
to improve the quality of PPI datasets is adopted by (95), that attempts to detect
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Figure 7.1: Cell tomogram. This figure shows five large complexes inside the PPI
network and the corresponding location in the cell tomogram. Figure by Aloy et
al. Nature Reviews Molecular Cell Biology 7, 188197 (March 2006).
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those interactions that are missed by large-scale experiments or, in other words,
he points to predict false negative using a topological analysis.

After having analysed some preprocessing techniques, it is possible to focus
on the main goal, that is finding meaningful groups of biological units. A number
of approaches have been proposed to solve the protein complex prediction prob-
lem,and a lot of them are based on clustering. A well know algorithm introduced
by (96), the Molecular Complex Detection Algorithm (MCODE ), makes use of
local graph properties and is aimed at finding densely connected regions in protein
interaction networks. Another algorithm based on local search is the Restricted
Neighbourhood Search Clustering Algorithm (RNSC ) developed by (97). This
algorithm searches for a low-cost clustering by first composing an initial random
clustering, then reducing the clustering cost by a near-optimal strategy. A dif-
ferent strategy is adopted by the Markov Clustering Algorithm (MCL)(98), that
divides the graph by means of flow simulation. In facts, it separates the graph
into different segments, with an iteration of simulated random walks within a
graph.

7.2.1 Graph-based methods for analysing PPI networks

Usually cellular networks can be modelled by mathematical graphs G(V,E), using
nodes v ∈ V to represent cellular components, and edges e ∈ E to represent their
various types of interactions. In particular, protein-protein interaction networks
are conveniently represented as undirected graphs (99), where the nodes are pro-
teins and two nodes are connected by an undirected edge if the corresponding
proteins physically bind.

The representation of complex PPI networks as undirected graphs make it
possible to systematically investigate the topology and function of these networks
using well-understood graph-theoretical methods that can be used to predict the
structural and dynamical properties of the underlying network. Such predictions
can help at lower complexity level (local properties), to understand new biolog-
ical hypotheses regarding both the unexplored PPIs of the network (edges of
the graph) and the function of some proteins that are testable with subsequent
experimentation. Moreover, at higher complexity level (global properties), math-
ematical modelling also enables an iterative process of sub-network reconstruction
and complex detection, where model simulations and predictions are closely cou-
pled with new experiments chosen systematically to maximize their information
content for subsequent model adjustments (100). Thus, the most general level
of network analysis comes from global network measures, used for characterizing
and comparing the configuration of the nodes and their connecting edges. The
most known global property of a PPI network is related to its topology, in fact
the most of biological networks have several nodes with only a few connections
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and few nodes highly connected; this property is called scale-free topology and
it is characterized by a power-law degree distribution that decays slower than
exponential. Others topological measures in proteomics are employed such as the
Degree Distribution (the degree of a node is the number of edges it participates in)
and the Clustering Coefficient (the number of edges connecting the neighbours
of the node divided by the maximum number of such edges), the Betweenness
Centrality (a measure of the centrality of a node and its influence over data flows
in the network), the Closeness Centrality (a measure of the closeness of a node,
on average, to all the other nodes): in fact they can efficiently capture the cellular
network organization.

7.2.2 Algorithms and Tools for Complex Extraction

7.2.2.1 MCODE Algorihtm

The Molecular Complex Detection (MCODE) is a graph theoretic clustering al-
gorithm that detects densely connected regions in large PPI networks, in order to
detect molecular complexes. This algorithm was created in 2003 and thenceforth
it has been setting the benchmark for complex detection in PPI Networks. It is
based on vertex weighting by local neighborhood density and outward traversal
from a locally dense seed protein to isolate the dense regions according to given
parameters. Moreover it allows fine-tuning of clusters of interest without consid-
ering the rest of the network and allows examination of cluster interconnectivity,
which is relevant for protein networks.

The MCODE algorithm operates in three stages: (1) vertex weighting, (2)
complex prediction and (3) optionally postprocessing by means of certain con-
nectivity criteria. For this algorithm, the PPI Network will be modelled as a
undirected graph, where vertices are molecules and edges are molecular interac-
tions; this graph representation allows to apply some graph theoretic methods in
order to aid in analysis and solve biological problems. In facts, MCODE exploits
a vertex-weighting scheme based on the clustering coefficient to find locally dense
regions of a graph and a density measure based on the connectivity level of a
graph.

During the first stage, all vertices are weights with their local network density
according to properties of the vertex neighborhood. The second stage is the
core of the algorithm: it takes as input the previously modified vertex weighted
graph, seeds a complex with the highest weighted vertex and recursively includes
vertices in the complex whose weight is above a given threshold depending on a
given percentage away from the weight of the seed vertex. This process identifies
densest regions of the network; obviously the threshold parameter defines the
density of the resulting complex. The last stage basically deletes complexes that
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do not contain at least a graph of a given minimum degree. Moreover, two
optional filters are included, such as ’fluff’ option (increasing the size of the
complex) and ’haircut’ option (removing the vertices that are singly connected
to the core complex). If both options are specified, fluff is run first, then haircut.

7.2.2.2 RNSC Algorihtm

The Restricted Neighborhood Search Clustering algorithm (RNSC) partitions
the PPI network into clusters based on a cost function that is assigned to each
partitioning.

The algorithm is a cost-based local search algorithm, based loosely on the
tabu search meta-heuristic (Glover, 1989). In this case, the clustering is equiv-
alent to a partitioning of the network into some sets of proteins. The RNSC
efficiently searches the space of partitions and assign a cost of each set of pro-
teins. The algorithm searches using a simple integer-valued cost function as a
preprocessor before it searches using a more expressive real-valued cost function.
Usually, the algorithm is initialized with random values and it searches for a low-
cost clustering by first composing an initial random clustering, then iteratively
moving one protein from one cluster to another in a randomized fashion in order
to improve the clusterings cost and reach a near-optimal amount. To avoid local
minima, the algorithm uses diversification and multiple experiments, that shuffle
the clustering by occasionally dispersing the contents of a cluster at random, pre-
venting any possible cycling back to the previously explored partitioning. Notice
that, since the RNSC is randomized, different runs on the same input data will
result in different clusterings. Three additional criteria are used to achieve high
accuracy in predicting protein complexes, i.e. a maximum P-value for functional
homogeneity, a minimum density and a minimum size.

7.2.2.3 MCL Algorihtm

The Markov Cluster algorithm (MCL) is a fast and scalable unsupervised cluster
algorithm for PPI networks based on simulation of stochastic flow in graphs.

The algorithm simulates a flow process alternating two simple algebraic op-
erations on matrices; the structure of each cluster is bootstrapped via a flow
process that is inherently affected by any cluster structure present and the basic
algorithm does not include some procedural instructions for assembling, joining,
or splitting of protein groups. MCL is composed by two steps: the first step is
the expansion, which coincides with normal matrix multiplication: it models the
spreading out of flow, becoming more homogeneous; the second step is inflation,
which is mathematically speaking a Hadamard power followed by a diagonal scal-
ing, such that the resulting matrix is stochastic again, i.e. the matrix elements on
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each column correspond to probability values. The MCL process causes flow to
spread out within natural clusters and evaporate in different clusters. The only
algorithm parameter is the inflation; it models the contraction of flow, becoming
thicker in regions of higher current and thinner in regions of lower current. By
varying this parameter, clusterings on different scales of granularity can be found.
In the Markov Cluster algorithm, the number of clusters can not be specified in
advance.

7.2.2.4 Cytoscape Tool

Cytoscape is an open source bioinformatics software platform for the visualization
and analysis of biological network data. Cytoscape core distribution provides a
basic set of features for automated graph layout, integrating network data with
other data such as expression data and functional annotations, and setting visual
attributes according to node or edge attributes, establishing a powerful visual
mappings across these data. This tool is widely used in PPI Network analysis,
because it can visualize the topological relationship among the protein clusters
(or complexes) in the model of global interaction network, revealing which of the
clusters is highly connected to other clusters.

7.3 Experimental Dataset

In our experiments, among different available on-line databases of PPIs network,
we use the Database of Interacting Proteins (DIP). The input dataset used in
this scenario is a subset of Saccharomyces cerevisiae PPI-Network composed by
34 proteins and 90 interactions, as shown in Table 7.3. This table reports a
list of 90 PPIs: for each PPI is shown the uniprotKB ID of the first protein, the
uniprotKB ID of the second protein and the PID ID of the interaction between the
previous pair of proteins. We chose this very simple dataset because it has been
well studied by (104, 105) with small scale experiments (in vitro) at biological
interaction level. DIP also provides a subset of PPIs curated manually by experts,
that are called core PPIs.

7.4 System Running

The experiment related to this scenario begins when the user asks the system to
extract protein complexes from a PPI-Network and inserts the chosen dataset:
from now on, for each decision step the system reach a new state.

At this moment, the experiment is projected into the BORIS 3D space, as
depicted in figure 7.2. The transitions from start position (when the system
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Figure 7.2: Projection of the system state over the hybrid architecture space at
the first step of the protein complex extraction scenario.

state is at the point 0,0,0) to the current system state are highlighted in the
figure 7.2 with black arrows. The three axes representing the projection of the
experiment on the hybrid system, are configured as following: the projection
of the current state to the abstraction layer axis reaches the highest level of
abstraction, because the system get an overview to the “main goal”, i.e. the
protein complex extraction; the projection of the current state to the workflow
timeline axis is in resting position, because no process was developed and no task
was carried out; the projection of the current state to the decision making axis
reach the highest meta-reasoning level, according to the decision making tree in
figure 7.3.

This figure shows decision making modules responsible for the specific prob-
lem; the sub-tree obtained by the entire BORIS knowledge base is arranged in
two meta-reasoning level, meta-reasoning level A (MRL A in the figure) and
meta-reasoning level A.1 (MRL A.1 in the figure) and it contain the following
modules:

• Complex Extraction, the parent module that gives directives to two chil-
dren modules at the bottom, that could be activate in order to deal with
more specific tasks;

• Complex Preprocessing, the child module that contains the reasoning
about strategies and tools able to face the PPI Network preprocessing phase;
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• Complex Clustering, the child module in charge of the decision-making
activity regarding clustering strategies and tools.

In the figure are reported also some of activation rules (in the form of ”Object,
Attribute, Value”) belonging to the Complex Extraction module that are respon-
sible for giving focus to children module, i.e. these rules aim at shifting the
reasoning process to a lower meta-reasoning level.

In the bottom of the figure 7.3 is reported the related treemap representation,
where it is possible to see how the parent module includes its children modules,
as well as the reasoning at higher level contains the reasoning at lower level;
the system exploits these rules to suggest user which strategy could be adopted.
Finally, some guidelines have been extracted from papers cited in section 7.2,
translated into rules and placed into the appropriate module.

At the beginning of the experiment, Complex Extraction module is active:
the job of this module is to analyse input data, in order to get the properties
and parameters necessary to activate the proper rules; in this simple scenario, we
take into account only a few of input features.

First of all, the system compare the PPIs of dataset with a list of core inter-
actions, provided by DIP for the Saccharomyces cerevisiae species. In this case
67 of 90 interactions are reliable, because they are manually curated. Then the
system creates the undirected graph, the PPIN, and checks if resulting network
is scale-free, that is if its degree distribution follows a power law, at least asymp-
totically. In this scenario the PPIN is not scale-free. Since several authors(106)
demonstrate that most networks within the cell approximate a scale-free topol-
ogy, then some of our PPIs (edges of the network) could be false positives or
new PPIs could be not revealed (false negatives) when DIP dataset was created.
For this reason, a rule that propose PPIN preprocessing, in order to change the
geometry of the network, is activated.

When the user follows the system advice, according to previous rule, the PPI
Complex Extraction module gives focus to the child module Complex Preprocess-
ing at lower meta-reasoning level, in order to deal with preprocessing task.

According to the analysis phase, the system knows the PPIN contains about
74% of core-interactions. Since has been estimated that approximately half the
interactions obtained from high-throughput proteomic techniques may be false
positives (107, 108, 109), the rule suggesting to find and delete false positive
PPIs is not activated; in fact, cutting edges of PPIN could implicate some core-
interactions are deleted and moving core-interactions is lethal for biological net-
works. For this reason, the rule suggesting to add new PPIs is activated.

When the user agrees to the advice, the system looking for tools implementing
this strategy. In this simple scenario, the knowledge-base contains only a tool
that can find and add some false negatives in PPIN: the Detect Defective Cliques
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Figure 7.3: Decision making modules responsible for the protein complex problem
and related treemap representation. Some transitions for the activation of child
modules are reported.

algorithm, created by (95). When the user accepts to run the proposed algorithm,
then the system informs that this algorithm requires, as input parameter, the
number of common interactions between two defective cliques, and suggests to
user a considerable value for the experiment.

When the user accepts the proposed value, the system executes the algo-
rithm, that finds a new potential FN interaction between the proteins P60010
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and P33338. At this moment, the PPIN is composed by 34 proteins and 91 in-
teractions; the user could either continuing the experiment or executing another
preprocessing tool (in cascade or restarting the preprocessing phase).

A virtual caption of the system at this moment is shown in figure 7.4. In
the top of this figure it is possible to see the tree-dimensional space of hybrid
system and the decision making module tree. The projection of the system state
on the decision making axis shows that the notch is slided up, with respect to
figure 7.2, to indicates the system will make reasoning at MRL A.1, in particular
the complex preprocessing module is the active one. The red notch that identify
the abstraction level is gone to the lowest layer, i.e. the object layer. Finally
the workflow timeline get a step ahead, because an instance of Detect Defective
Clique tool has been executed. On the top-right of the figure, the active module,
responsible for strategies and tools related to complex preprocessing is highlighted
with blue color.

In the bottom of the figure is reported a part of the BORIS GUI (see Ap-
pendix A) that shows the workflow of the experiment. As explained in section
3, the workflow is projected inside the BORIS 3D-space; the executed process
is developed on tree different abstraction layers: at the highest layer that is the
main goal (Complex Clustering); at the intermediate abstraction layer that is
the complex preprocessing sub-goal (to add False Negatives) and at the lowest
abstraction layer, the object layer that is the instance of executed tool (detect
defective cliques). In this caption, there are also decision making modules used
till now. The Complex Extraction module, the biggest red box, contains the
whole experiment, while the Complex Preprocessing box has been activated only
for the task related to strategies and execution of the network preprocessing.

If the user wants to try another solution before continuing the experiment
and does not want to accept the system advices, he could choose follow the
strategy to find and delete false positive PPIs. In this case, the system saves
results obtained so far and proposes to run one of those algorithms that satisfy
the selected strategy. The user selects the Betweenness Centrality algorithm from
among three different tools available into the knowledge-base, because the system
indicated this is the algorithm with the lowest computational cost. The result of
Betweenness Centrality algorithm is a PPIN with 34 proteins, 88 interactions and
65 core-interactions; then the system advices the user to change strategy and/or
modify parameters because 2 core-interaction has been deleted.

Figure 7.5 shows the workflow the system built so far. In the figure it is
possible to see how PPI Complex Extraction module contains all the workflow
elements; it supervise the main problem at highest abstraction layer, giving the
other directives to Complex Preprocessing module. The latter is responsible of
some strategies for verifying and purifying the network and have knowledge about
tools used for data manipulation. At intermediate abstraction layer, the child
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Figure 7.4: Case study at the preprocessing phase. The projection of the state
of system over the tree axis is reported, the active module is highlighted and the
multi-level workflow representing the system output is shown.

module contains the strategies used in this experiment: in facts the user tried
first to add new PPIs and then to delete false positive PPIs; obviously, both
these strategies have the same PPIN as input, according to the user choices. The
instance of tools used for processing data are shown at lower abstraction layer
and their order in the figure follows the implementation timeline.

Notice that some numbers with a yellow background are highlighted in the
workflow panel. They represent the available paths the workflow management
system integrated in hybrid architecture offers to the user, that agree with the
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Figure 7.5: Selection of the preprocessing tool. After the execution of tree differ-
ent tools, the system proposes to the user the available outputs for data analysis.

tree decision states showed in the BORIS 3D-space. In facts, in this scenario, the
user can choose among three pathway: he could accept the system advice and
continue the workflow elaboration from the output number 2 (defined as “Path 2”
in the BORIS 3D-space); he could refuse the system advise and select the output
number 3 (defined as “Path 2” in the BORIS 3D-space); he could refuse the main
suggestion, i.e. the preprocessing strategy, by-passing the complex preprocessing
module and continuing the workflow elaboration from the the output number 1,
i.e. the input file (defined as “Path 1” in the BORIS 3D-space);

When the user chooses the appropriate output to continue the experiment,
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Table 7.1: Some features of the three protein complex prediction algorithms:
RNSC, MCODE and MCL.

Comparative table among RNSC, MCODE and MCL

RNSC MCODE MCL

Use Local search approach Yes Yes No

Support multiple assignment of protein No Yes No

Support weighted edge No No Yes

Use a fast and scalable algorithm No No Yes

Is suitable for sparse graph Yes Yes No

High sensibility to FP & FN PPIs No Yes Yes

... ... ... ...

the PPI Complex Extraction module knows the data input has been preprocessed
and gives focus to the child Complex Clustering. Also the latter module knows
the preprocessing phase is done, thus it uses this information for suggesting an
appropriate clustering strategy. The authors (94, 110) demonstrated MCODE
is sensitive to noise in the PPIN and the preprocessing phase can increase the
algorithm performance. Other authors (101, 102) notice that MCL and RNSC
work almost in the same manner in terms of precision and recall, whether PPIN
are noisy or purified. Moreover MCODE algorithm has been widely used with
protein-protein interaction networks belonging to the species Saccharomyces cere-
visiae, so that the system can suggests standard parameters for this species. For
these reasons, the system proposes to use the aforementioned algorithm, based
on the local search analysis, for clustering. When the user accepts the advice
and confirm proposed parameters, the system runs the MCODE algorithm. Now
the user can either ending the experiment or executing another clustering tool,
having as input PPIN the output of the preprocessing phase. If the user wants to
try another tool, he can consider descriptions, pros and cons that are available for
each strategy and algorithm contained into the system. In this case, he notices
that MCL algorithm is described as the faster than the other algorithms and,
moreover, it does not appear so bad with dense graphs; then, the user chooses to
run MCL algorithm, based on the flow simulation analysis.

All the information about cited algorithms (i.e. MCODE, RNSC and MCL)
are included in knowledge base and represented as facts; each suggestion is ob-
tained by means of some rules. A comparative schema among the three algorithms
is reported in the table 7.1, in order to highlight some their characteristics.

Features reported in the first column, have been obtained by means of scientific
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Figure 7.6: Workflow of the whole experiment. The system shows in a tree-like
structure all the strategies and algorithms have been used, according to abstraction
layers.

papers and humane expertise and represents some discriminant features that has
been used in order to generate some rules that will be, eventually, selected by
the rule-based engine. Notice that some boundary conditions could imply the
activation of more than one rule that satisfy the user request: in these cases, the
rule-based engine is responsible to compare all the active rules and, then, the one
with higher priority is executed before the other.

The final workflow is shown in Fig. 7.6. At the intermediate abstraction
layer are depicted all the strategies within the boundaries of their respective
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Output 1

DDC preprocessing + MCODE Clustering
Cluster Proteins

1 P33338, Q12446, P32793
2 Q12134, P15891, P53933, P39743, P60010, P32793
3 P48562, Q06648, P19073

Output 2

DDC preprocessing + MCL Clustering
Cluster Proteins

1 P53933, P32944, P38274
2 P60010, P17555, P40450, P41832, Q03048, P38793,

P46680
3 P15891, P48232, Q12270, P32790, Q12134, P33338,

P39743, P32793, P25343, Q12168, P38266, P47129,
P40325, Q06604, P38837

4 P13517, Q06648
5 Q06440, Q03088

Table 7.2: System outputs. The implemented workflow gives 2 outputs: the
former with 3 complexes and the latter with 5 complexes.

decision modules, whereas at the lowest abstraction layer there are all the tools
implemented in this scenario. The above picture shows also the BORIS 3D-space;
once again it is possible to notice that both the red notch of the abstraction axis
is located in the lower position, since the MCL algorithm has been just executed
and the active decision module is the “Complex Clustering” module. For the next
step, the selection of clustering strategy, the behavior of the system is similar to
the preprocessing phase, in fact the user could choose between two clustering
algorithms.

Before concluding the experiment, the system proposes to visualize the out-
puts of MCODE and MCL algorithms with the well know Cytoscape tool (111).
Visualization of clustering results, obtained through Cytoscape, are shown in Fig.
7.7. Finally, the user can choose between two outputs shown in Table 7.2, ac-
cording to its knowledge about the protein complex domain and/or using external
evaluation parameters.
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(a) MCODE Clustering. Parameters: K-Core=2, Degree Cut-Off=2,
Node Score Cut-Off=0.2, Haircut= NO, Fluff= NO, Include Loops= NO

(b) MCL Clustering. Parameter: Inflation (Cluster Granularity)= 2.0

Figure 7.7: Clustering visualization with Cytoscape tool. In the top, the result
of MCODE clustering (3 protein complexes); in the bottom, the result of MCL
clustering (5 protein complexes).
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# Protein A Protein B PPI ID # Protein A Protein B PPI ID

1 P60010 P15891 DIP-10439E 46 Q12168 P39743 DIP-3900E
3 P48562 P15891 DIP-3499E 48 P25343 P39743 DIP-1780E
4 P32790 P15891 DIP-2452E 49 P39743 P39743 DIP-3901E
5 P17555 P15891 DIP-1139E 50 P33338 P39743 DIP-10013E
6 Q12134 P15891 DIP-3500E 51 P38266 P39743 DIP-3902E
7 P60010 P60010 DIP-1145E 52 P40325 P39743 DIP-3903E
8 P41832 P60010 DIP-1155E 53 P47129 P39743 DIP-3904E
9 Q03048 P60010 DIP-1157E 54 Q06604 P39743 DIP-10016E

10 Q12446 P60010 DIP-1158E 55 P32793 P39743 DIP-10017E
11 P07274 P60010 DIP-1143E 56 P53933 P32790 DIP-10020E
12 P33338 P60010 DIP-1175E 57 P39743 P32790 DIP-10011E
13 P60010 P46680 DIP-1140E 58 P17555 P32790 DIP-10018E
14 P17555 P46680 DIP-3502E 59 P40325 P32790 DIP-10019E
15 P38274 P53933 DIP-3683E 60 Q12134 P32790 DIP-11232E
16 P39743 P53933 DIP-3907E 61 Q06604 P32790 DIP-3964E
17 P33338 P53933 DIP-3966E 62 P15891 P33338 DIP-2453E
18 P32793 P53933 DIP-11282E 63 P48562 P33338 DIP-3965E
19 P19073 P41832 DIP-1154E 64 P33338 P33338 DIP-3144E
20 P13517 P28495 DIP-3546E 65 P60010 P17555 DIP-1144E
21 Q06648 P28495 DIP-3547E 66 Q03048 P17555 DIP-11822E
22 P48562 P19073 DIP-2580E 67 P39743 P17555 DIP-3029E
23 Q06648 P19073 DIP-2583E 68 P17555 P17555 DIP-1177E
24 Q06648 P48562 DIP-3639E 69 P38793 P17555 DIP-4014E
25 P46680 Q03048 DIP-1346E 70 Q06440 Q03088 DIP-3603E
26 P53933 Q03048 DIP-14613E 71 P53933 P32944 DIP-4050E
27 Q12446 Q03048 DIP-1161E 72 P40325 P40325 DIP-2272E
28 P53933 Q06440 DIP-3604E 73 P32793 P40325 DIP-2243E
29 Q03048 Q06440 DIP-11816E 74 Q12446 P38837 DIP-3700E
30 Q06440 Q06440 DIP-4127E 75 P47129 P47129 DIP-4186E
31 P38274 P38274 DIP-9812E 76 P32793 P47129 DIP-11280E
32 P32944 P38274 DIP-7787E 77 P39743 P48232 DIP-3906E
33 P13517 Q12446 DIP-1160E 78 P39743 Q12134 DIP-10015E
34 Q12446 Q12446 DIP-11092E 79 P33338 Q12134 DIP-3967E
35 P39743 Q12446 DIP-3699E 80 Q12134 Q12134 DIP-6160E
36 P32790 Q12446 DIP-1162E 81 P32793 Q12134 DIP-11283E
37 P33338 Q12446 DIP-15438E 82 Q12446 Q12270 DIP-3702E
38 P32793 Q12446 DIP-11095E 83 P32790 Q12270 DIP-11231E
39 P41832 P07274 DIP-1164E 84 P28495 Q06604 DIP-9981E
40 P40450 P07274 DIP-1166E 85 P32793 Q06604 DIP-11285E
41 P17555 P07274 DIP-3762E 86 P15891 P32793 DIP-11370E
42 P53933 P25343 DIP-4047E 87 Q12168 P32793 DIP-11277E
43 Q12446 P25343 DIP-4048E 88 P32790 P32793 DIP-2242E
44 P38266 P25343 DIP-1781E 89 P33338 P32793 DIP-3968E
45 P15891 P39743 DIP-1138E 90 Q12270 P32793 DIP-11284E

Table 7.3: There are 90 PPIs among 34 Proteins for the species Saccharomyces
cerevisiae. Each row contains two PPIs. For each PPI is shown the first protein
uniprotKB ID, the second protein uniprotKB ID and the interaction PID ID be-
tween the previous pair of proteins. The complete set of PPIs for this species is
available in Scere20081014.txt file, provided by PID online database(86).
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Materials & methods

In this Chapter the instruments and tools adopted for the development of the
proposed system will be described.

Main features and characteristics of a Rule-Based system will be provided
and the specific properties of Jess, the rule Engine for the Java platform, will be
exploited.

Finally some of the basic concepts of Protege, the tool used for the design of
the ontology, will be highlighted.

8.1 Rule-Based System

A Rule-Based system is an intelligent system that is able to make conclusions,
or inferences, from a set of initial knowledge, called facts, by means of rules,
representing reasoning activity. Rules are usually written in the traditional if-
then statement of programming languages: the if part is called predicate or
premises; the then part is called action or conclusion.

Rule-Based systems are not general purpose: they are designed and employed
for a specific application domain. A domain represents the system’s scope, that
is all the set of information the rules could possibly work with.

Rule-Based systems are also known as Expert system, since they capture the
knowledge of human experts in a particular domain. With this definition, the
rules are intended to code the expertise, the skill and the heuristics typical of
human experts.

The main difference between rule-based systems and common computer pro-
grams is their programming paradigm. Computer programs use a procedural
approach, in the sense the programmer decide “what to do”, “how to do” and in
what order. Rule-based systems, on the other hand, use a declarative approach:
a declarative program only tells the computer “what to do”, but it does not give
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instructions about “how to do”. That means declarative programs need some
kind of runtime system that is able to use those declarative information in order
to make conclusions, or inferences.

A declarative approach is well suited above all for solving problems without a
clear algorithm solution, like for instance classification, prediction, diagnosis that
have some heuristics or guidelines rather than a predefined set of instructions.

8.1.1 Architecture of a Rule-Based System

Main components of a typical Rule-based system are the Knowledge-Base (KB)
and the inference engine.

KB contains both the pieces of information, called facts, and the rules. Facts
can be seen as tables in a relational database, where each element has a set of
attributes and relationships with other elements of the database. Each rule is
in the form IF precondition on facts is true THEN execute action and it is
activated when some constraints on the values of facts’ attributes are satisfied.
The set of all facts is also known as working memory.

The inference engine is made of three elements:

• a pattern matcher;

• an agenda;

• an execution engine.

The pattern matcher in an algorithm that is able to check the KB and realize
what are the rules that can be activated according to the content of working
memory. The pattern matching phase is the most expensive in terms of time and
resources during the inference mechanism, for this reason a lot of research has
been done in this context in order to optimize this issue. It is important to point
out that activated rules are not immediately executed, or “fired”.

All activated rules, in fact, are written into the agenda, that is responsible
for the scheduling of the rules to be fired. The agenda can resolve execution
conflicts, that means it can decide in which order rules activated at the same
time should be fired, using a conflict strategy. Common strategies take into
account the complexity of each rule, its age, that is how much time it is stored
into the agenda, and eventually some special properties like for instance priority
values.

Finally the execution engine, after the agenda has decided the order in which
rules have to be fired, can actually execute the right part of the rules. Firing a
rule can have several effects: it can produce new knowledge, in the sense of new
facts to be added to the KB; it can invoke other programming languages that
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define what happen when that rule fires; it can call external algorithm and tools
whose results can, at last, update the KB.

The whole mechanism of the inference engine is not static, but it works as
a cycle, or reasoning loop, as we can see in Fig. 8.1. The pattern matcher
checks the KB for activated rules and stores them into the agenda; the agenda,
through a conflict resolution strategy, decides the firing scheduling of the rules;
the execution engine runs the right part of rules according to the order provided
by the agenda, obtaining eventually new information that updates KB and that
can trigger the activation of other rules; and then this mechanism can restart.
New facts can be added to the KB also by the user, if he submit new inputs.

Figure 8.1: Reasoning Loop

8.2 Jess: the Rule Engine for the Java Platform

The Rule-Based system of Boris has been implemented using Jess (114), the Rule
Engine for the Java Platform. Jess is written totally in Java and it can be easily
embedded in our framework. Jess inference engine uses RETE algorithm (115) as
pattern matcher: this algorithm will be briefly described in the next Subsection.
The agenda works with two different conflict resolution strategies: depth and
breadth. With depth strategy, the default one, the most recent activated rules
are fired first; with breadth strategy, rules are fired according to their activation
order: this way the most activated rules fire last. In both strategies firing order
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can be modified changing rules priority.
Jess’ working memory can be organized into modules: each module has its

own set of facts and rules. Only one module a time can be active, or in other
words can have the “focus”, and only the rules belonging to the active module
can be fired. By default the MAIN module has got the focus; the other modules
can receive the focus when special rules, whose action is to shift the focus, are
fired. The entire mechanism is managed by a stack, with the active module on
the top and the other modules below, according to the order of the shift of focus.
This way, when a module ends its job, the focus is automatically returned to last
active module.

8.2.1 Rete algorithm

As stated in the above Sections, the main task of the pattern matcher component
of an inference engine is to check the KB in order to find what rules are satisfied
and activated so that they can be fired according to the scheduling of the agenda.
A brute force approach, consisting in the analysis of every rules’ premise against
the KB would be inefficient and difficult to scale for large working memories.

The Rete algorithm represents an efficient way to deal with the pattern match-
ing issue. Over time, it has been enhanced and refined in past rule based system
such as OPS5 (116), ART (117) and CLIPS (118): Jess implements the highest
performance version. Rete algorithm improves simple pattern matching approach
considering only new or deleted facts of working memory to be tested against the
rules at each reasoning step. Moreover it stores past test results across iterations
of the rule loop. Rete, that is the Latin word for net, organizes the pattern
matcher by means of a network of interconnected nodes, so that the few facts
interested in the inference mechanism are tested against a subset of rules could
eventually match.

The performance of Rete algorithm with regards to the simple pattern matcher
algorithm depends on the number of reasoning cycles. During the first reasoning
loop, in fact, since Rete has to analyse all the facts of the working memory
because there are not previous results to compare, the performance between the
two algorithms are basically the same. Rete will, instead, outperform the basic
algorithm for all the reasoning cycles after the first one.

8.3 Protege Ontology Editor

The knowledge base and the underlying ontology have been implemented with
Protege (112, 113), that is one of the largest adopted tool for building an ontology
and populate it with pieces of information that represent the knowledge of the
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system. Protege, through a clear and simple graphical user interface allows to
define classes, to define their properties and relationships, to build hierarchies of
concepts, to create instances. Moreover Protege is supported by a set of third
parties plugins that extend its functionalities, adding for example visualization
capabilities, using Jambalaya (119) or Ontoviz plugins (120), or a simple way to
export instances into Jess facts by means of JessTab plugin (121). Protege is
based on a Java implementation, so that it provides a set of Java APIs in order
to ease its own interoperability with other systems.

8.4 Implementation Details

The computational instruments described in the previous Sections and adopted to
implement the Knowledge-Based expert system belonging to BORIS framework,
interact each other according to the scheme shown in Fig. 8.2. The main control
program of the expert system, also implementing the GUI seen in Chapter 5, is
written in Java. In this way it is possible to gain access both to protege editor,
in order to get the initial knowledge, and both to Jess inference engine, in order
to eventually assert new facts depending on the User’s interaction. Protege and
Jess, being both written in Java, provide a set of interface classes that simplify
the communication with other Java programs. Jess accesses the knowledge base
defined into Protege and, through JessTab plugin, assert the facts into its own
working memory to allow the beginning of the inference process.

8.5 JGraphX Library

JGraphX is the Java Swing library version of mxGraph (122), a product fam-
ily of libraries, written in a variety of technologies, that provide features aimed
at applications that display interactive diagrams and graphs. Development of
JGraphX began as the diploma thesis of Gaudenz Alder at the Swiss Federal
Institute of Technology, Zurich and it became a privately owned company in the
U.K. in 2000 by David Benson.

The core client functionality of JGraphX is a Java compilable library that
describes, displays and interacts with diagrams as part of your larger Java Swing
application. JGraphX is primarily designed for use in a desktop environment,
although Java does have web enabling features making it possible to deploy
JGraphX in web environment.

Among the amount of applications provided by this library, the most impor-
tant for the implementation of BORIS hybrid architecture are the functionality
related to process diagrams, workflow visualization and flowcharts; in facts the
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Figure 8.2: The interaction scheme among the computational tools adopted by
the expert system belonging to BORIS framework-

main scope of JGraphX library is its visualization functionality and the interac-
tion with the graph model through the web application GUI. JGraphX supports
dragging and cloning cells, re-sizing and re-shaping, connecting and disconnect-
ing, drag and dropping from external sources, editing cell labels in-place and so
on.

The figure 8.3 shows an example of JGraphX visualization.

8.6 Eclipse Platform

Eclipse is a multi-platform of software development that is mainly composed by an
integrated development environment (a small run-time kernel) and an extensible
plug-in system (123). The Eclipse Project was originally created by IBM in
November 2001 and in January 2004 was created the Eclipse Foundation, an
independent not-for-profit corporation that permise the foundation of an open
source community, whose projects are focused on building an open development
platform comprised of extensible frameworks, tools and runtimes for building,
deploying and managing software across the life-cycle.

The most of the environment is written in Java and, at the beginning, it
allowed to develop applications in Java, subsequently by means of various plug-
ins, other programming languages have been included. Eclipse integrates the
Eclipse Modeling Framework (EMF), that is a modeling framework and code
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Figure 8.3: JGraphX: an example of the workflow layout. Figure from “JGraphX
User Manual. Copyright (c) David Benson, Gaudenz Alder 2006-2010.”

generation facility for building tools and other applications based on a structured
data model.

The most important thing for this work is there are, among all the available
plug-ins, two environment that integrate the afore mentionate tools, i.e. the Jess
Developer’s Environment (JessDE) and the Protege Frame Editor. By means of
these plug-ins, the BORIS hybrid architecture has been provided by the knowl-
edge base and the decision making modules.
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9

Conclusions and Future Work

In this work, a Knowledge-Based expert system for bioinformatics domain has
been presented. The Knowledge Base, populated thanks to the expertise ex-
tracted from more than 50 scientific papers, is based on an ontology of concepts.
The proposed ontology provides a robust and coherent structure to the knowl-
edge base and moreover it offers a simple way for maintaining and expanding
it with new expertise. The designed ontology models three main global classes,
interacting each other. The Tasks ontology represents what are the operations
it is possible to carry on a specific kind of input biological data; the Tools on-
tology models the algorithms, software and services implementing the instances
defined in the Tasks ontology; the Domain ontology gives the most important
features and properties of the biological data to be analysed. Moreover the KB,
consisting of facts and rules, is organized in a set of decision-making modules,
each of them is responsible for a specific slide of the reasoning activity. The
decision-making modules are arranged into a topological tree, where each level in
the tree defines a meta-reasoning level, since the inference result of a high level
decision-making module is the activation of a lower level module, representing a
specialized reasoning task.

The expert system has been developed inside a research project of National
Research Council of Italy. The name of this project is BORIS (Bioinformatics
Organized Resources: an Intelligent System). BORIS is born with the main goal
of providing to the bioinformatics community a simple and at the same time
powerful instruments that is able to offer decision support during the execution
of a bioinformatics experiment. Given the plenty of services, strategies, tools and
algorithms available, it is often very difficult to discern what are the best suited
methodologies and techniques for a given problem. BORIS proposes an hybrid
architecture, integrating a declarative approach, with regards to its decision-
making activity; a procedural approach, with regard to its capability to run
and configure the selected tools; and a process approach because it generates a
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workflow that traces all the taken decision and executed tools during a typical
session. Focusing on these two main features, i.e. the decision-making process
and the workflow building, BORIS system can be seen is an ideal joint between
classical decision support system and more recent workflow management system.

BORIS system has been tested with an actual case study: the reverse engi-
neering of gene regulatory network. In this work a typical experimental session is
shown, highlighting the original features of the system and how the three different
approaches of its hybrid architecture work together.

In the near future, the whole BORIS framework will be turned into a web
application so that it will be freely accessible by the community.

Looking at the future developing progress, the proposed expert system will
be provided with an editor and formal guidelines that will offer the possibility to
introduce new knowledge and expertise in a very simple way. New application
scenario in bionformatics domain will be added, and at the same time the existing
scenarios will be updated and enhanced when new tools and services will be
available.

The ontology organization into the three-folded main classes (Tasks, Tools,
Domain) provides a very general purpose knowledge arrangement. That means
that the expert system can be adapted with few modifications to other application
domain, like for instance the clinical field. The system, in fact, can be used
in order to combine the characteristics of an electronic clinical workflow with
an Electronic Medical Record (EMR). The former represents a decision support
system that can assist a medic in the diagnosis and prognosis activities. Its
suggestion can be given according to the patient’s EMR, so that its previous
medical history will be taken into account. The EMR will be then updated with
the current medical cures.
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