
Consiglio Nazionale delle Ricerche
Istituto di Calcolo e Reti ad Alte
Prestazioni

Metamodeling: Representing and
Modeling System

Knowledge in Design Processes

Rapporto Tecnico N.:
RT-ICAR-PA-11-02 settembre 2011

Consiglio Nazionale delle Ricerche, Istituto di Calcolo e Reti ad Alte Prestazioni (ICAR)
– Sede di Cosenza, Via P. Bucci 41C, 87036 Rende, Italy, URL: www.icar.cnr.it
– Sede di Napoli, Via P. Castellino 111, 80131 Napoli, URL: www.na.icar.cnr.it
– Sede di Palermo, Viale delle Scienze, 90128 Palermo, URL: www.pa.icar.cnr.it

Consiglio Nazionale delle Ricerche
Istituto di Calcolo e Reti ad Alte
Prestazioni

Metamodeling: Representing and
Modeling System

Knowledge in Design Processes

M. Cossentino1,V. Seidita12

Rapporto Tecnico N.:
RT-ICAR-PA-11-02

Data:
settembre 2011

1 Istituto di Calcolo e Reti ad Alte Prestazioni, ICAR-CNR, Sede di Palermo, Viale
delle Scienze edificio 11, 90128 Palermo.

2 Università degli Studi di Palermo, Dipartimento di Ingegneria Chimica Gestionale
Informatica e Meccanica, Viale delle Scienze, 90128 Palermo.

I rapporti tecnici dell’ICAR-CNR sono pubblicati dall’Istituto di Calcolo e Reti ad Alte
Prestazioni del Consiglio Nazionale delle Ricerche. Tali rapporti, approntati sotto l’esclusiva
responsabilità scientifica degli autori, descrivono attività di ricerca del personale e dei
collaboratori dell’ICAR, in alcuni casi in un formato preliminare prima della pubblicazione
definitiva in altra sede.

Metamodeling: Representing and Modeling System
Knowledge in Design Processes

ABSTRACT
This paper reports the results of the experiences made in the
representation and documentation of design processes with
the aim of exploring and establishing ways for managing the
knowledge about the system solution developed within the
processes itself. The work principally grounds on the con-
cept of metamodel following the conviction that raising the
abstraction level in modeling languages during the devel-
opment of software systems enables to tackle the problems
complexity in a more efficient way. In this paper we pro-
pose a metamodeling layered architecture for representing
software system metamodels and the rules for instantiating
each layer starting from the top level one (MOF) downwards
the bottom one (the software system). Besides the rules for
relating the system metamodel constructs with the design
process artifacts are also discussed in order to enable a de-
tailed description of the knowledge the designer produces
and manages about the new software system.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.10 [Software Engineering]: Design—Methodologies,
Representation

General Terms
Metamodel, Design Process, Domain Specific Language

Keywords
Metamodel, Metamodeling Rules, Domain Specific Model-
ing, Design Process, Situational Method Engineering, Stan-
dard

1. INTRODUCTION AND MOTIVATION
Traditionally, in software engineering, the idea, or the con-

cept, of “model” addresses an artifact describing a software
system. A model can be a set of diagram types or a single

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’12 March 25-29, 2012, Riva del Garda, Italy.
Copyright 2011 ACM 978-1-4503-0857-1/12/03 ...$10.00.

Figure 1: Instantiation Process for System Model

one. Each diagram can be drawn using specific modeling
language, for instance UML or others.

To date it is recognized that models may be used in place
of the software systems (from now on we will refer to system
or to software as synonyms of software system) they repre-
sent. Models are less costly to develop than the whole sys-
tem and they give the same answer the system would give.
It is furthermore recognized and accepted that constructing
a model requires abstractions.

Let us, now, look at Figure 1 and consider the right hand
part of it; it represents a portion of the model of a system
that can be described through one use case diagram and
one class diagram. Each element in the two diagrams is
an instance of one element represented in the metamodel of
the system shown in the left hand part of the figure. For
instance the Requirement, in the metamodel, is realized by
Course Subscritpion use case and the Class by the Subscrip-
tion CTRL class. Besides elements of the use case diagram
identified during, for instance, the analysis phase of the hy-
pothetical design process used for developing the system,
can be transformed in classes of the class diagram resulting
from the design phase. The transition from one phase to
another in the design process, and the related relationships
among elements in different diagrams, is indicated by the
relationship among elements in the metamodel.

Indeed the system metamodel presents all the elements
that have to be managed during the design process used for
developing systems. In other words, such a metamodel de-
scribes the knowledge about the system the designer needs
for performing her/his design work. The artefacts compos-
ing the model (or the models) of the system are drawn by
using a specific modeling language (or notation) and they are
the result of the work done by one (or more) stakeholder(s)
during a portion, phase or activity, of a design process. It
is worth noting that starting from the same metamodel of
the system, the artifacts can be drawn in different notations

but the representation the model offers of the system is the
same and it represents one instance of the metamodel.

“Metamodel is a model of models”

We base our work on this definition (by OMG [9]) and, for
now, we leave apart all the problems and debates concern-
ing multi-level metamodeling architecture like replication of
concepts [1] or the difference among ontological and linguis-
tic metamodel [3][8][6], and for a good understanding of our
hypothesis we only consider what is called the loose meta-
modeling cited by [2]. Loose metamodeling implies that ev-
ery model is an instance of another model in the same way
the traditional modeling infrastructure proposed by OMG
does.

Figure 1 sketches a small example on the portion of meta-
model adopted in a generic object oriented design process
but any design process one wants to use he can count on
a metamodel containing elements to be managed, and for
which design actions can be identified, during the different
phases/activities for producing the artefacts composing the
model.

We believe that the metamodel of the system relates the
kind of systems to be modeled with the adopted design pro-
cess and we agree with Rolland et al. [15] on the situatedness
of design processes in specific domains.

The presented work deals with developing a meta-modeling
layered architecture for representing system metamodels within
design processes. The proposed architecture is complemented
by the definition of the relationships among the different lay-
ers, the definition of the constructs needed to properly rep-
resent a system metamodel, the rules for representing the
different situations that may occur, and a specific diagram
completed by a proper notation.

To date a lot of work has been done in the context of meta-
modeling and several problems and still open issues have
been identified. UML [16] itself suffers of problems like for
instance “ambiguous classification” and “replication of con-
cepts” well discussed in [1], and still a lot has to be done
for identifying and fixing complete modeling techniques and
rules useful in whatever domain context.

We claim the system metamodel is one of the most im-
portant elements of the design process and its description
should receive a corresponding attention in the documenta-
tion of the design process itself. Moreover, because of the
tight relationships of the system metamodel with the other
design process elements (activity, role and work product [12]
[5]), it constitutes a valid mean for aiding the designer in ap-
plying the design process. Besides, such a metamodel is a
valid mean for reasoning about Method Engineering [4][14]
implications on developing techniques for creating design
process matching specific design contexts [citation omit-
ted][citation omitted].

More in details, the contribution presented in this work
consists in establishing a metamodeling layered architecture
suggested for representing the system metamodel, together
with all the instance-of relationships of its constructs with
the MOF metamodel that we assume as a basis in accor-
dance with OMG’s prescriptions. In order to support our
large number of applications of this approach to the rep-
resentation of several existing processes and related system
metamodels1, we developed (and here we report) a set of

1See http://www.pa.icar.cnr.it/passi/FragmentRepository/

rules useful for managing all the possible instance of rela-
tionships among layers and for creating the diagram rep-
resenting the composition of every design artifact in terms
of the system metamodel constructs managed while drawn
it; such a diagram also reports the particular design actions
performed by the designer when introducing the metamodel
construct in the artifact.

The paper is organized as follows: the next section in-
troduces some definitions about metamodeling and layers
according to the approach standardized by OMG; section
three reports and extends with novel details some concepts
(design actions and workproduct content diagram) useful for
representing system metamodels; section four presents the
proposed metamodeling layered architecture, the instance of
relationships and the way for creating the diagram that re-
lates artifact with system metamodel constructs and finally
section five provides concluding remarks and some future
works.

2. BASIC CONCEPTS AND TERMINOLOGY
Before going on in describing the proposed system meta-

model layered architecture and in order to avoid confusion
about the used terminology, it may be useful to briefly intro-
duce some premises on metamodeling layering in the OMG
fashion and which is the definition, or the concept, we use
for design process.

2.1 Metamodel Definition and Structure
What does it mean“metamodel”? A lot of definitions have

been provided, from the simplest “metamodel is a model of
models” to the more complex and completed one [1][3][6][11]
also including concepts like ontological metamodeling vs lin-
guistic metamodeling and so on. What is important for us
is the word meta before the word model, meaning that we
have to apply twice the rules used for modeling. There-
fore, like the model, the metamodel is composed of elements
and relationships both sometimes addressed as constructs.
Metamodel elements and relationships provide rules for cre-
ating the model of the system in the same way elements
and relationships of the model do for systems thus estab-
lishing an instance of layering structure that will be better
illustrated in the following.

2.2 Metamodeling Layers
Figure 4 shows the traditional Object Management Group

metamodeling infrastructure. It is made by four layers each
of which, except the top one, is related by an instance of
relationship with the above one.

The bottom level is the level M0, it contains the user data
and is called the instance model. This represents the system
solving a specific problem that runs on a specific platform.
Therefore M0 represents all the elements that exist as the
system runs on the real-world platform and manages the
user data. The user data are instance of the user concepts
(level M1), so the level M1 represents the model of the sys-
tem/software as Figure 1 shows in its right hand part; in the
same way M2 contains information for instantiating the M1
concepts and for this purpose it is called metamodel layer
as the left hand side of Figure 1. M2 is here called UML

fragmentsIndex.html for a repository of process frag-
ments, see http://www.pa.icar.cnr.it/cossentino/fipa-dpdf-
wg/docs.htm for the documents describing entire design pro-
cesses

Meta-Object Facility

UML Concepts

User Concepts

User Data

instance_of

instance_of

instance_of

M3

M2

M1

M0

Figure 2: The OMG Modeling Architecture

concepts for the reason that Figure 4 deals with OMG meta-
modeling layers. Finally the level M3 contains information
for creating metamodels; hence the meta-metamodels that
is usually reported as the Meta-Object Facility (MOF) [10].
MOF is a very diffused language for describing metamodels.

The same layered architecture may be used for represent-
ing development processes, it is worth noting that with this
term we mean both the design process and its result. In so
doing the M0 and M1 layers respectively contain the system
model and the system metamodel elements seen in Figure
1. Layer M3 is the MOF level and what we need is to define
the M2 layer by instantiating it from MOF in order to create
the system meta-metamodel.

By using a multi-level modeling structure in the same
OMG way we can exploit all the advantages of the MOF
standard and the MDD technologies and theories. Above
all it is very important the fact that by instantiating M2
from MOF there is the possibility of using/developing MOF
based tools in order to manage new modeling infrastructures
and/or standards. Besides we can use the same instance of
rules for creating domain specific system metamodels.

2.3 Design Process Definiton
Almost all the work done by the authors in the latest

years in the field of agent oriented software engineering is
centered on the following definition, by Fuggetta in [5], of
the software development design process

”the coherent set of policies, organizational
structures, technologies, procedures, and artifacts
that are needed to conceive, develop, deploy and
mantain (evolve) a software product”

This definition was also addressed during the work done
within the IEEE FIPA standardization committee2 that re-
sulted in the standard definition [7] where it is argued that

2IEEE FIPA is a standardization committee of the IEEE
Standards Society. See http://www.fipa.org

the main composing concepts of design process are: activity,
process role and work product hence enacting a design pro-
cess implies a set of activities performed by process roles (the
designer) for obtaining work products (artefact); moreover
an important extension has been introduced by considering
the metamodel as the fourth main composing element of
design process.

It is our belief that the development of software following
one specific design process means that during each activity
one (or more) process role refer to the metamodel in order
to produce work products where instances of a set of meta-
model elements are managed (in order to understand this
discussion keep in mind the example provided in Figure 1).

Depending on the activity the process role is performing
he manages the metamodel in different ways, namely while
he is drawing a work product normally he instantiates sys-
tem metamodel elements and in doing this he should need
to consider or analyze another element as input that then
he could report in the work product or not. All the possible
actions a process role can do on a metamodel element are
detailed in the following section.

3. MANAGING AND REPRESENTING SYS-
TEM METAMODEL

In this section we highlight how we manage the knowl-
edge about the system metamodel constructs in the process
description by means of the design actions to be done for
producing the process work product. For representing that,
a novel kind of diagram has been created, the Workproduct
content (WP content) diagram, an initial version of it has
been already presented in [omitted citation] and it is not
refined.

3.1 Design Actions
While composing a work product three different kinds of

action can be made on each metamodel construct. Let us
refer again to Figure 1 and suppose that process roles are
using a design process composing of only two activities re-
spectively aiming at producing one UML use case diagram
and one UML class diagram.

During the first activity the Requirement element of the
metamodel (the left part) is instantiated in the use case
Course Subscription hence the designer, by analyzing the
problem context, is able to define this specific requirement
and to draw it in the form of a use case in the diagram.
Suppose that a list of actors has been already provided, then
the designer is able to report on the diagram the actor stu-
dent by simply quoting this element coming from another
workproduct and finally he may define a communication be-
tween the two, hence he defines a relationship between two
instances of two metamodel elements.

During the second activity, in order to produce the class
diagram, the designer uses, as an input for his reasoning,
the Course Subscription use case and (s)he defines the Sub-
scription Form entity class that is an an instance of the Class
metamodel element then (s)he defines the control class and
the relationship between the two classes. Besides, after hav-
ing defined the classes, the designer can also refine them by
adding attributes and operation; this action results in the
definition of the attribute and operation as a special kind of
element.

Therefore the possible actions the designer may operate

on metamodel contructs are:

1. instantiate an element so (s)he defines that element,

2. instantiate a relationship so (s)he relates two elements,

3. use an already defined construct so he quotes an ele-
ment, a relationship, an attribute or an operation,

4. instantiate an attribute or an operation so he refines
an already defined element or relationship obviously
refining an element includes also the quotation of that
element.

3.2 The Workproduct Content Diagram
Among the others, an important use of the metamodel

is with the Workproduct Content Diagram. We created it
because it is our belief that it is an important part of the
design process description and serves for representing the
relationships between each work product produced during
the design process and all the elements of the metamodel
that are here drawn.

An example is given in Figure 3; the notation of this di-
agram implies classes for representing metamodel elements,
arrowed lines for representing relationships among elements
and labels for representing the kinds of action made on each
element. Moreover packages with an icon on the left upper-
most corner points out the work product and its kind (see
[citation omitted] for the complete list and an explanation
on work product kinds).

The aim of this diagram is to collect all the metamodel
elements that are managed during the design process en-
actment and are also reported in the work product (as said
before there can be elements of the metamodel that are not
reported in the work product but used only as inputs for the
work to be done).

Labels are: D for indicating the defined actions, R for
defining a relationship, Q, QR, QA and QO for quoting re-
spectively elements, relationships, attributes and operations.

From the Figure it can be seen that the work product
represented by this content diagram aims at defining, the
Actor, the Functional Requirements and the Non Functional
Requirements that are related through one relationship.

This representation is useful for having an immediate pa-
noramic on the actions to be done (and on system meta-
model constructs) and it is a valid complement of the tex-
tual guidelines for producing the work product. Besides if
needed it can be easily processed by a tool.

4. THE PROPOSED SYSTEM METAMODEL
LAYERED ARCHITECTURE

In this section we illustrate the M2 level we defined to-
gether with all the possible constructs there can be and how
each of them is an instance of MOF.

Some definition may help in the comprneisnon of our ap-
proach: in the domain of design processes, we consider Sys-
tem Metamodel the set of constructs (and their defini-
tions) used by designers for creating system models. During
our experience in metamodeling and process definition we
identified four kinds of construct: elements, relationships,
attributes and operations.

• A System Metamodel Element (SMME) is the con-
struct of the metamodel that can be instantiated into

Domain
Requirements

Description

c

Actor

D

Functional
Requirements

D

Non Functional
Requirements

D

R

R

3xR

Keys

MMM Element
Structural
WPKind

Behavioral
WPKind

Structured
WPKind

Free
WPKind

a

Composite WPKind

c

D=Define, R=Relate, Q=Quote, QR=Quote Relationship,
RF=Refine, RFR=Refine Relationship

Figure 3: An Example of the Workproduct Content
Diagram

elements of the system model. Refer to the example
given by Figure 1.

• A System Metamodel Relationship (SMMR) is the
construct used for representing the existence of a rela-
tionship between two (or more) instances of SMMEs.
For instance, the aggregation relationship among two
instances of the SMME class is an instance of the
SMMR association.

• A System Metamodel Attribute (SMMA) is a par-
ticular kind of element used for adding properties to
SMMEs. The attribute’s type is a SMME

• An operation (SMMO) is a particular kind of SMME
using for describing the SMME.

They are instance of the more general M2 layer (the Sys-
tem meta-metamodel) constructs, shown in Figure 4, that
we identified together with all the relationships with MOF
elements.

In addition to the four main elements of the previous de-
scription we identified one important construct to be man-
aged during design process enactment, the Association
Class. Association Class is at the same time an element
(SMME) and a relationship association (SMMR Associa-
tion), the presence of this construct comes from analyzing a
lot of design processes and it was realized by extending the
concept of UML association class [16]:

“...an association class. It will be both an as-
sociation, connecting a set of classifiers and a
class, and as such have features and be included
in other associations. The semantics of an as-
sociation class is a combination of the semantics

Diagram Design-Time Instances
(M0-System Model)

Diagram model (M1-System
Metamodel)

<<SMME>>
ImplAgent

SMME

Property

Operation

SMMR

SMMR
Association

Diagram Meta-Meta-model
(M3-MOF)

Diagram Meta-model
(M2-System MetaMetamodel)

Association
Class

<<instanceOf>>

Element

Association

Relationship

Class

Type

NamedElement

<<instanceOf>>

<<instanceOf>>

<<instanceOf>>

SMMA

SMMO

<<instanceOf>>

<<instanceOf>>

<<SMMA>>
ImplAttribute

<<instanceOf>>

<<SMME>>
Type

<<SMME>>
Java Type

<<SMME>>
Concept

<<instanceOf>>

<<SMME>>
ImplTask

<<SMMA>>
ImplTaskAttribute

<<instanceOf>> <<SMMO>>
TaskAction

Course
setup
autentication

agent_type: String
teacher: Professor

Course

logIn
db_Agent: Agent

Autentication

<<instanceOf>>

<<instanceOf>>

TypedElement

<<instanceOf>>

Figure 4: The System Metamodeling Layered Ar-
chitecture

of an ordinary association and of a class. An as-
sociation class is both a kind of association and
kind of a class... ”.

Some examples will be provided in the following subsection
where all the possible instance of relationships will be ex-
plored.

Besides the identification of design actions, defined in the
previous section, led us to the conclusion that three different
kinds of metamodels exist:

• Complete System Metamodel –> it includes all the
system metamodel constructs that are managed by the
designer in using a specific design process. This also
includes all the constructs that are accepted as exter-
nal inputs of the overall process.

• Definable System Metamodel –> it includes all the sys-
tem metamodel constructs that are instantiated in the
design process. This is a subset of the complete system
metamodel.

• Workproduct System Metamodel –> it includes all the
system metamodel constructs that are reported in the
design process work products. It is different from the
Definable system metamodel because the Workprod-
uct system metamodel may also include the quotable
elements (like some inputs of the process)

Each of them supplies a specific view on the design pro-
cess by specifying what and how elements are involved in the
production of the system models, from now on in this paper
we will use and simply refer to the Complete System Meta-
model as the System Metamodel. For instance, referring to
what we said in subsection 3.1, it is worth to note that only
classes are drawn in the diagram whereas the requirement
is not reported, hence the Workproduct System metamodel

of the second activity does not contain the Requirement ele-
ment and in this small case study the Workproduct System
metamodel is equal to the Definable System metamodel. Of
course the Complete System metamodel is larger since it also
includes the input of this activity, the Course Subscription
use case.

Basing on our experience the constructs we identified are
sufficient for defining the model of whatever kind of system
model.

4.1 Instance_of Relationships among Layers
In this subsection we discuss all the possible instance of

relationships between M2 and M1 layers.
The notation used in the M0 level of the examples is the

one defined in [13] but the way in which the system meta-
metamodels has been defined guarantees to use every kind
of notation one wants.

4.1.1 Case 1: one relationship connects two differ-
ent elements

<<SMME>>
Agent

<<SMMR>>
Play

<<SMME>>
Role

0..1 0..*

Diagram Design-Time Instances
(M0-System Model)

Diagram model (M1-System
Metamodel)

Role 1
Info

MyAgent

Role 2
Info

<<instanceOf>>

<<instanceOf>>

<<instanceOf>>

Figure 5: Instance of Relationships - Case 1

Figure 5 shows the case in which at level M1 two instances
of SMMEs, Agent and Role, are related by one instance
of an SMMR (Play); this configuration of model allows to
represent the system as illustrated in the level M0. The
result in the M0 level depends on the notation one decides to
use, in this case the Agent is realized by mean of a package,
the Role by the oval and the relation Play by the mutual
position of the ovals and the packages.

4.1.2 Case 2: one relationship connects two instances
of the same element

Figure 6 shows the second case in which, at level M1, two
ImplemAgent are related through the relation Association,
the cardinality is two to one, hence in the model two in-
stances of the same SMME are related by one instance of
the SMMR. An example of diagram at level M0, regard-
less of the notation, implies two instance of Implementation
Agent (the TLPlanner and the EngController).

4.1.3 Case 3: one relationship among two elements
determines the definition of another element of
the metamodel

This is a special case of the previous one. Two instances
of the same SMME are related by one instance of an SMMR,
but the definition of the relationship at M1 level implies the
definition of another SMME.

<<SMMME>>
ImplAgent

2 1

<<instanceOf>>

<<instanceOf>>

<<instanceOf>>

<<SMMR>>
Association

-name

TLPlanner EngController

Diagram model (M1-System
Metamodel)

Diagram Design-Time
Instances

(M0-System Model)

Figure 6: Instance of Relationships - Case 2

<<instanceOf>>

<<instanceOf>>

Role 1
Info

Role 2
Info

<<service>>

<<SMMME>>
Role

2 1 <<SMMMR>>
Service

Dependency

1..n <<SMMME>>
Service

1

Diagram model (M1-System
Metamodel)

Diagram Design-Time
Instances

(M0-System Model)

Figure 7: Instance of Relationships - Case 3

In order to understand when this case occurs, let us go
from the bottom and consider the level M0 shown in the
Figure 7: suppose to be designing a system where agents
provide services to other agents depending on the role they
are playing. In this case each role is dependent from the
other through the service to be provided. Hence the model
of the system (level M1) includes the SMMEs Service and
Role and the SMMR Service Dependency but while the Role
and Service Dependency have their own notational element
(level M0) the service dosn’t need that because its definition
is implicit in the definition of the relationship and it would
not be otherwise because if we represented the instance of
Service through a specific icon we should connect it to the
Role 1 and the Role 2 falling again, in this way, into the
previous case and thus changing the semantic of the level
M1 because the element cannot exist with that relation. The
instantiation name of the Service SMME is in the name of
the ServiceDependency instantiation.

4.1.4 Case 4: one metamodel construct is at the same
time an SMME and an SMMR

In the fourth case two instances of the same element are
related through an instance of one SMMR but this time the
relationship is also an SMME and it can exist without the re-
lationship (see Figure 8), it shares features from both SMME
and SMMR hence it is an instance of a SMMR Association
Class.

<<SMME>>
Agency_Role 2 1

<<instanceOf>>

<<instanceOf>>

<<instanceOf>>

<<SMMME,SMMMR>>
Communication

Purchaser

Purchase
Manager

StockToPurchase

<<SMME>>
Content

Language

StockInfo
ContLang = RDF

+ContLang

<<SMMR>>
Plays

<<SMME>>
Agency_Agent

Diagram Design-Time Instances
(M0-System Model)

<<instanceOf>>

Diagram model (M1-System
Metamodel)

Figure 8: Instance of Relationships - Case 4

4.1.5 Case 5: one metamodel construct generalizes
other metamodel constructs

This is the case when the system metamodel reports an
abstract construct and all its specializations, each of them
can be (separately) instantiated in different workproducts
and different design actions can be made on different con-
structs, hence each specialized construct has to be treated
as it were a single construct thus being united to all the
previous cases.

4.2 Rules for Representing Metamodel Con-
structs in the WP Content Diagram

Each case before illustrated follows a different rule for the
representation of metamodel constructs in the workproduct
content diagram.

<<SMMME>>
Agent

D/Q
R

<<SMMMR>>
<<SMMME>>
Communicaton

D/Q

<<SMMME>>
Agent

D/Q
R

<<SMME>>
Agent

<<SMME>>
Role

D/Q
R

D/Q

<<SMME>>
Role

<<SMME>>
Service

DQ
R

R

Case 1 Case 2

Case 3 Case 4

Figure 9: Rules for WP Content Diagram

Figure 9 shows the rules for the first four cases whereas for
the fifth case we have to consider that the abstract element
has not to be labelled because the design action is done on
one of its specialization whereas as regard the relationships
we have to take into account that each construct related
to the abstract one is really related to the corresponding
number of specializations.

5. CONCLUSIONS
In this work we defined a metamodeling layered architec-

ture meant to fully support the creation of system meta-
model for managing the knowledge of the system in design

process representation and documentation. The metamod-
eling layered architecture is based on the OMG modeling in-
frastructure and a set of instance of relationships with MOF
has been identified. The M2 (system meta-metamodel) level,
we identified contains all the constructs useful for defining
whatever system metamodel providing rules for modeling
class of systems. In so doing we have a mean for defining
system metamodels in a common way that, as our experi-
ence highlights, covers a very important role in design pro-
cess. Together with the meta-metalevel we illustrated a set
of rules for managing all the different design situations that
can occur.

The key idea of this approach is that during the enactment
of design process the designer needs a good formalization of
the constructs he can use to represent the problems he is
working on and all the constructs he can instantiate in the
solution system model. Therefore having the rules for defin-
ing the system metamodel allows to describe and document
the process, hence the knowledge on the process, in a quite
uniform and consistent way. This are the contributions pro-
posed in this paper. We are widely using this approach in
our work, it has been shared by a large community of re-
searchers with the result that the way of describing a design
process is now a standard [7].

This approach provides a common base for sharing knowl-
edge about different design processes in terms of the sys-
tem metamodel constructs. For instance, by only using
the knowledge provided by the system metamodel, and in
some cases the work product content diagram, we can ap-
ply method engineer techniques for extracting or assembling
portions of work or we can establish and apply algorithms
for measuring specific features of the design process in an
unbiased fashion or we can establish if a specific design pro-
cess fits the needs of the designer for solving specific prob-
lems and, what is very important, avoiding the presence of
skilled persons that perfectly know that design process.

6. ACKNOWLEDGMENTS
This work has been partially supported by the EU project

FP7-Humanobs.

7. REFERENCES
[1] C. Atkinson and T. Kuhne. The essence of multilevel

metamodeling. Uml 2001: The Unified Modeling
Language: Modeling Languages, Concepts, and Tools:
4th International Conference, Toronto, Canada,
October 1-5, 2001: Proceedings, 2001.

[2] C. Atkinson and T. Kuhne. Processes and products in
a multi-level metamodeling architecture. International
Journal of Software Engineering and Knowledge
Engineering., 11(6):761–783, 2001.

[3] C. Atkinson and T. Kuhne. Model-driven
development: A metamodeling foundation. IEEE
Software, 20(5):36–41, September/October 2003.

[4] S. Brinkkemper. Method engineering: engineering the
information systems development methods and tools.
Information and Software Technology, 37(11), 1996.

[5] A. Fuggetta. Software process: a roadmap. In In
Proceedings of the Conference on the Future of
Software Engineering.ACM Press, New York (USA),
pages 25–34, Limerick (Ireland), June 4-11 2000.

[6] W. Hesse. More matters on (meta-)modelling: remarks
on thomas kuhnes matters. Software and Systems
Modeling (SoSyM), 5(4):387–394, December 2006.

[7] IEEE Foundation for Intelligent Physical Agents.
Design Process Documentation Template, Document
number XC00097A-Experimental, 2011.

[8] T. Kuhne. Matters of (meta-) modeling. Journal on
Software and Systems Modeling, 5(4):369–385,
December 2006.

[9] J. Mukerji and J. Miller. MDA guide version 1.0.1.
Technical Report omg/2003-06-01, Object
Management Group, 2003.

[10] Object Management Group. Meta Object Facility
(MOF) Specification.
http://doc.omg.org/formal/02-04-03, 2003.

[11] J. Odell. Power types. J. Object-Oriented
Programming, 7(2):8–12, 1994.

[12] OMG. Object Management Group. Software &
Software Process Engineering Metamodel. version 2.0.
Document number: formal/2008-04-01. 2008, 2008.

[13] L. Padgham, M. Winikoff, S. DeLoach, and
M. Cossentino. A unified graphical notation for aose.
Agent-Oriented Software Engineering IX, pages
116–130, 2009.

[14] J. Ralyté. Towards situational methods for
information systems development: engineering
reusable method chunks. Procs. 13th Int. Conf. on
Information Systems Development. Advances in
Theory, Practice and Education, pages 271–282, 2004.

[15] C. Rolland, N. Prakash, and A. Benjamen. A
multi-model view of process modelling. Requirements
Engineering, 4:169–187, 1999. 10.1007/s007660050018.

[16] UML. Object Management Group. OMG UML
Specification v. 2.3, 05-05- 2010.

