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1.   INTRODUCTION	  

In the wider context of capturing and understanding human behavior (Pantic et al., 2006), it is 
important to perceive (detect) signals such as facial expressions, body posture, and movements while 
being able to identify objects and interactions with other components of  the environment. The 
techniques of computer vision and machine learning methodologies  enable the gathering and 
processing of such data in an increasingly accurate and robust way (Kelley et al., 2010). If the system 
captures the temporal extent of these signals, then it can make predictions and create expectations of 
their evolution. In this sense, we speak of  detecting human intentions, and in a simplified manner, they 
are related to elementary actions of a human agent (Kelley et al., 2008). 

Over the last few years has changed the approach pursued in the field of HCI, shifting the 
focus on human-centered design for HCI, namely the creation of systems of interaction made for 
humans and based on models of human behavior (Pantic et al., 2006). The Human centered design, 
however, requires thorough analysis and correct processing of all that flows into man-machine 
communication: the linguistic message, non-linguistic signals of conversation, emotions, attitudes, 
modes by which information are transmitted, i.e. facial expressions, head movements, non-linguistic 
vocalizations, movements of hands and body  posture, and finally must recognize the context in which 
information is transmitted.  

In  general, the modeling of human behavior is a challenging task and is based on the various  
behavioral signals: affective and attitudinal states (e.g. fear, joy, inattention, stress);  manipulative 
behavior (actions used to act on objects environment or self-manipulative  actions like biting lips), 
culture-specific symbols (conventional signs as a wink or a thumbs30 up); illustrators actions 
accompanying the speech, regulators and conversational mediators  as who nods the head and smiles.  
Systems for the automatic analysis of human behavior should treat all human interaction  channels 
(audio, visual, and tactile), and should analyze both verbal and non verbal signals  (words, body 
gestures, facial expressions and voice, and also physiological reactions). In  fact, the human behavioral 
signals are closely related to affective states, which are  conducted by both physiological and using 
expressions. Due to physiological mechanisms,  emotional arousal affects somatic properties such as 
the size of the pupil, heart rate,  sweating, body temperature, respiration rate. These parameters can be 
easily detected and  are objective measures, but often require that the person wearing specific sensors. 
Such  devices in future may be low-cost and miniaturized, distributed in clothing and  environment, but 
which are now unusable on a large scale and in non structured situations.   

The visual channel that takes into account facial expressions and gestures of the body seems  
to be relatively more important to human judgment that recognizes and classifies behavioral  states. 
The human judgment on the observed behavior seems to be more accurate if you  consider the face and 
body as elements of analysis.  A given set of behavioral signals usually does not transmit only one type  
of message, but  can transmit different depending on the context. The context can be completely 
defined if  you find the answers to the following questions: Who, Where, What, How, When and Why  
(Pantic et al., 2006). These responses disambiguating the situation in which there are both  artificial 
agent that observes and the human being observed.  In the case of human-robot interaction, one of the 
most important aspects to be explored in  the detection of human behavior is the recognition of the 
intent (Kelley et al., 2008): the  problem is to predict the intentions of a person by direct observation of 
his actions and  behaviors. In practice we try to infer the result of a goal-directed mental activity that is 
not 0 observable, and characterizing precisely the intent. Humans recognize, or otherwise seek to  
predict the intentions of others, using the result of an innate mechanism to represent,  interpret and 
predict the actions of the other. This mechanism probably is based on taking  the perspective of others 
(Gopnick & Moore, 1994), allowing you to watch and think with  eyes and mind of the other.  The 
interpretation of intentions can anticipate the evolution of the action, and thus capture  its temporal 
dynamic evolution. An approach widely used in statistical classification of  systems that evolve over 
time, is what uses Hidden Markov Model (Duda et al., 2000). The  use of HMM in the recognition of 
intent (emphasizing the prediction) has been suggested in  (Tavakkoli et al., 2007), that draws a link 
between the HMM approach and the theory of the  mind.   

The recognition of the intent intersects with the recognition of human activity and human  
behavior. It differs from the recognition of the activity as a predictive component:  determining the 
intentions of an agent, we can actually give an opinion on what we believe  are the most likely actions 



that the agent will perform in the immediate future. The intent  can also be clarified or better defined if 
we recognize the behavior. Again the context is  important and how it may serve to disambiguate 
(Kelley et al., 2008). There are a pairs of  actions that may appear identical in every aspect but have 
different explanations depending  on their underlying intentions and the context in which they occur.  
Both to understand the behaviors and the intentions, some of the tools necessary to address  these 
problems are developed for the analysis of video sequences and images (Turaga et al.,  2008). The 
aspects of security, monitoring, indexing of archives, led the development of  algorithms oriented to the 
recognition of human activities that can form the basis for the  recognition of intentions and behaviors. 
Starting from the bottom level of processing, the  first step is to identify the movements in the scene, to 
distinguish the background from the  rest, to limit the objects of interest, and to monitor changes in 
time and space. We use then,  techniques based on optical flow, segmentation, blob detection, and 
application of space37 time filters on certain features extracted from the scene.  When viewing a scene, 
the man is able to distinguish the background from the rest, that is,  instant by instant, automatically 
rejects unnecessary information. In this context, a model of  attention is necessary to select the relevant 
parts of the scene correctly. One problem may  be, however, that in these regions labeled as 
background is contained the information that  allows for example the recognition of context that allows 
the disambiguation. Moreover,  considering a temporal evolution, what is considered as background in 
a given instant, may  be at the center of attention in successive time instants.  Identified objects in the 
scene, as well as being associated with a certain spatial location  (either 2D, 2D and 1/2, or 3D) and an 
area or volume of interest, have relations between  them and with the background. So the analysis of 
the temporal evolution of the scene,  should be accompanied with a recognition of relationships 
(spatial, and semantic) between the various entities involved (the robot itself, humans, actions, objects 
1 of interest,  components of the background) for the correct interpretation of the context of action.  

But  defining the context in this way, how can we bind the contexts and intentions? There are  
two possible approaches: the intentions are aware of the contexts, or vice versa the  intentions are 
aware of the contexts (Kelley et al., 2008). In the first case, we ranked every  intention carries with it 
all possible contexts in which it applies, and real-time scenario is not  applicable. The second approach, 
given a context, we should define all the intentions that it  may have held (or in a deterministic or 
probabilistic way). The same kind of reasoning can  be done with the behaviors and habits, so think of 
binding (in the sense of action or sequence of actions to be carried out prototype) with the behaviors.  
A model of intention should be composed of two parts (Kelley et al, 2008): a model of  activity, which 
is given for example by a particular HMM, and an associated label. This is  the minimum amount of 
information required to enable a robot to perform disambiguation  of context. One could better define 
the intent, noting a particular sequence of hidden states  from the model of activity, and specifying an 
action to be taken in response. A context  model, at a minimum, shall consist of a name or other 
identifier to distinguish it from other  possible contexts in the system, as well as a method to 
discriminate between intentions. This  method may take the form of a set of deterministic rules, or may 
be a discrete probability  distribution defined on the intentions which the context is aware.  There are 
many sources of contextual information that may be useful to infer the intentions,  and perhaps one of 
the most attractive is to consider the so-called affordances of the object,  indicating the actions you can 
perform on it. It is possible then build a representation from  probabilities of all actions that can be 
performed on that object. For example, you can use an  approach based on natural language (Kelley et 
al., 2008), building a graph whose vertices  are words and a label is the weighed connecting arc 
indicating the existence of some kind of  grammatical relationship. The label indicates the nature of the 
relationship, and the weight  can be proportional to the frequency with which the pair of words exist in 
that particular  relationship. From such a graph, we can calculate the probability to determine the 
necessary  context to interpret an activity. Natural language is a very effective vehicle for expressing  
the facts of the world, including the affordances of the objects.  If the scene is complex, performance 
and accuracy can be very poor when you consider all  the entities involved. then, can be introduced for 
example the abstraction of the interaction  space, where each agent or object in the scene is represented 
as a point in a space with a  defined distance on it related to the degree of interaction (Kelley et al, 
2008). In this case,  then consider the physical artificial agent (in our case the humanoid) and its 
relationship  with the space around it, giving more importance to neighboring entities to it and ignore  
those far away. 

2.   DEVELOPING	  AN	  INTENTIONAL	  SYSTEM1	  

In the following, we describe a cognitive architecture developed with the aim of detecting 
human movements and perceiving actions and intents (see Infantino et al. 2008) and the design of a 
                                                             
1	  	   I.	  Infantino,	  C.	  Lodato,	  S.	  Lopes,	  F.	  Vella	  (2008).	  An	  Intentional	  System	  based	  on	  a	  Knowledge	  
Base	  of	  Visual	  Perception.	  AIxIA	  
	  



semantic structure linked to visual data. In particular, we implemented an “intentional” vision system, 
that is, a system that “looks at people” and automatically perceives information relevant to interpret the 
human behavior (see for example Kuno et al. 1999), distinguishing between unintentional human 
movements, movement for manipulating objects, and gestures used for communicating. The use of 
word "intentional" in this context concerns the purpose of generating a stream of pre-processed data 
useful for reasoning, recognition, reacting, and interacting when a human and his activity are objects of 
observation from the artificial system. The raw data coming from multiple sources of images and 
videos are filtered and processed in order to retain information useful to understand the human will, 
state and condition.  

In	  order	  to	  model,	   recognize,	  and	   interpret	  human	  behavior,	  several	   tasks	  must	  be	  
addressed	   (see	   for	   example	  Turk	  2004):	   face	  detection,	   location,	   tracking	  and	   recognition;	  
facial	  expression	  analysis,	  and	  human	  emotion	  recognition;	  audiovisual	  speech	  recognition;	  
eye-‐gaze	   tracking;	   body	   tracking;	   hand	   tracking;	   gait	   recognition;	   recognition	   of	   postures,	  
gestures,	  and	  activity	  	  in	  general	  (see	  for	  example	  Moeslund	  et	  al.	  2001).	  	  

The	  complexity	  of	  the	  “intentional”	  analysis	  can	  be	  managed	  by	  a	  semantic	  approach	  
(see	   for	   example	   Gruber	   1991):	   an	   ontology	   is	   the	   semantic	   structure	  which	   encodes	   the	  
implicit	  rules	  constraining	  the	  structure	  of	  a	  piece	  of	  reality	  	  (Guarino	  1995).	  We	  propose	  an	  
ontology	  that	  describes	  the	  logical	  structure	  of	  a	  “intentional	  system”	  domain,	   its	  concepts	  
and	   the	   relations	   between	   them.	   This	   conceptualization	   is	   associated	   to	   visual	   data	   and	  
instances	  of	  classes,	  forming	  a	  knowledge	  base	  where	  the	  values	  and	  their	  relationship	  are	  
stored	  in	  the	  same	  information	  structure	  (for	  example	  see	  the	  approach	  used	  in	  Garcıa-‐Rojas	  
2006).	  
 

 
	  
Fig.	  1.	   	  SeARCH	  In:	  Sensing-‐Acting-‐Reasoning:	  Computer	  understands	  Human	  Intentions.	   Intentional	  vision	  

framework	  scheme.	  

2.1	  The	  Intentional	  Framework	  

The proposed framework is named SeARCH In (Sensing-Acting-Reasoning: Computer 
understands Human Intentions). The relevant modules of the proposed architecture and their functional 
interconnections are depicted in figure 1. The core of intentional vision system is composed by two 
specialized modules: Intentional Perception of Body (IPB) and Intentional Perception of Face (IPF). 
The first module (IPB) deals with the detection and tracking of human bodies. In particular, it tries to 
locate silhouette, head, and hands of the people detected in the scene and performs their posture 
recognition. Furthermore, IPB detects and tracks also relevant objects moved by the hands. The output 
of this module consists in sequences of positions, and shape descriptors corresponding to all the 
detected entities. The second module (IPF) performs the recognition of the human detected in the scene 
and his face expression analysis. The main output of IPF module is a temporal sequence of recognized 
facial expressions characterizing the human mood.  

The sequences coming from both modules are linked to the relevant human states (hungry, 
sleeping, and so on) by the Reasoning Module (RM). RM outputs the interpreted human wills (to eat, 
to sleep, etc.) on the basis of IPF, and IPM data stream. Its effectiveness is improved on if knowledge 
of the individual is stored in the Collection of Habits (CH) that represents the memory of RM. Finally, 



the Action Planner module (AP) decides if and how the system has to interact, collaborate, or assist the 
human.  

Actually, RM has been implemented as a simple rule based algorithm, and it employs queries 
to consult the knowledge data base described by OWL. This database includes the Collection Habit that 
has been built by means of a supervised learning phase. Finally, an imitation based approach has been 
used to record in the Action Planner all the operations necessary to accomplish the task just as the 
human is used to do it. 

The IPF module is devoted to recognize the people detected in the scene and to analyze their 
facial expression. Its main output is a temporal sequence of recognized facial expressions (see first row 
of figure 2) that is sent to the reasoning module. The technique described in Viola and Jones (2004) is 
used for detecting the presence of faces in the scene, and for detecting relevant facial feature points. 
The facial expression recognition is performed by the tracking (using a Particle Filter) of eyebrows and 
lips movements. We have implemented a Facial Action Coding System (FACS) (Ekman and Friesen 
1978) classifying simple expressions: anger, disgust, fear, joy, sadness, surprise.  The sequences of 
these elementary emotions are recorded to the aim of building a sort of signature representative of a 
particular human condition in the scene: he/she is hungry, he/she is bored, and so on. In a learning 
phase, relevant sequences are recorded, and they will be included in the Collection of Habits of a 
particular person. 

Face and  Facial expression 

 
Posture and Clothing 

   
Task Observation 

  
Fig.	  2.	  Results	  of	  various	  processed	  visual	  inputs.	  First	  row:	  facial	  expression	  tracking	  and	  recognition	  example.	  

A	   rule-‐based	   recognition	  algorithm	  classifies	   simple	  expressions	   (anger,	  disgust,	   etc.)	   that	   are	   indicated	  by	   the	  
yellow	  small	  icon	  depicted	  on	  upper-‐left	  corner	  of	  image;	  sequences	  of	  elementary	  emotions	  are	  considered	  to	  
recognize	  human	  mood.	  Second	  row:	  Perception	  of	  human	  movements.	  Example	  of	  multiple	  people	  tracking	  and	  
silhouette	  extraction.	  Third	  row:	  robot	  observation	  of	  a	   task	  shown	  by	  the	  human	  user:	   the	  task	  of	  “to	   lay	  the	  
table”	  is	  simulated	  by	  the	  placing	  of	  simple	  planar	  objects	  (cutlery	  and	  plate)	  on	  red	  area	  (the	  table).	  Trajectories	  
of	  object	  movements	  are	  recorded	  in	  order	  to	  build	  an	  occurrence	  matrix	  (see	  left	  side	  of	  the	  figure	  related	  to	  
“fork”).	  This	  matrix	  is	  used	  for	  finding	  positional	  relation	  of	  objects	  in	  the	  table,	  and	  for	  calculating	  paths	  to	  place	  
an	  object.	  

	  
	  



The	   Intentional	  Perception	  of	  Body	  module	  has	  been	  designed	  for	  the	  detection	  of	  
human	   presence	   and	   activity.	   It	   accomplishes	   three	   main	   tasks:	   human	   silhouette	  
localization	  and	  posture	   recognition	   (see	   second	   row	  of	   figure	  2),	   and	  hands	   tracking.	   The	  
input	  to	  IPB	  module	  comes	  from	  at	  least	  one	  fixed	  camera	  observing	  an	  indoor	  environment	  
whose	  map	  is	  known.	  Two	  more	  cameras	  placed	  on	  a	  mobile	  robotic	  platform	  are	  then	  used	  
to	  take	  close	  views	  of	  human	  standing	  in	  an	  area	  “of	  interest”	  monitored	  by	  fixed	  cameras.	  	  
We	   use	   a	   Condensation	   algorithm	   to	   track	   the	   people	   and	   PCA	   technique	   for	   recognize	  
postures	  (see	  Chella	  et	  al.	  2006).	  When	  robot	  is	  observing	  an	  area	  “of	  interest”,	  the	  system	  
attention	  will	  be	   focalized	  on	  hands	  and	  objects	  movements.	  The	  aim	   is	   to	   learn	  a	  human	  
task	  by	  means	  of	  observation,	  or	  to	  collaborate/interact	  with	  the	  person	  if	  the	  task	  is	  known.	  
The	  approach	  used	   for	   implementing	  both	  capabilities	   is	   inspired	  to	   the	  work	  of	  Rao	  et	  al.	  
(2007),	  where	  a	  simple	  statistical	  analysis	  is	  employed.	  	  The	  robot	  camera	  view	  is	  rectified	  in	  
respect	   to	   the	  plane	  of	   the	  working	  area,	  where	  human	  hands	  manipulate	  several	  objects.	  
The	   detected	   features	   are:	   position	   of	   centre	   of	   mass,	   color,	   and	   shape	   (by	   Fourier	  
descriptors)	   of	   objects,	   and	  hands	  position.	  An	  occurrences	  matrix	   for	   each	   entity	   records	  
the	  number	  of	  times	  that	  the	  object	  is	  detected	  in	  a	  particular	  location	  of	  the	  working	  plane	  
(see	  third	  row	  of	  figure	  2).	  When	  a	  new	  working	  area	   is	  observed,	  or	  an	  object	  never	  seen	  
before	   is	   noticed,	   occurrences	   matrices	   and	   features	   values	   are	   built	   or	   updated.	   If	   the	  
knowledge	   of	   the	   working	   area	   is	   already	   acquired	   and	   known	   objects	   are	   detected,	   the	  
intentional	  system	  could	  execute	   the	  task	   replacing	   the	  human	  actions	  or	  collaborate	  with	  
him/her	  to	  place	  some	  objects	  until	  the	  final	  configuration	  is	  obtained.	  	  	  	  

	  
Previous	  described	  modules	  could	  be	  composed	  in	  a	  flexible	  and	  dynamical	  way.	  The	  

aim	  is	  to	  have	  an	  adaptable	  “intentional	  vision	  software	  system”	  which	  is	  capable	  to	  act	   in	  
different	   situations	   or	   scenarios.	   Generally,	   we	   could	   suppose	   to	   have	   a	   series	   of	   color	  
cameras	   and	   video	   streams	   accessible	   by	   a	   large	   band	   network.	   A	   coordinator	   software	  
agent	   named	  CA	  will	   collect	   all	   visual	   information	   resulting	   from	   various	   sources,	   and	  will	  
provide	  an	  aggregate	  view	  of	  the	  whole	  scenario,	  making	  available	  this	  data	  to	  the	  cognitive	  
architecture	  for	  a	  further	  analysis.	  We	  perform	  simple	  experiments,	  where	  CA	  agent	  includes	  
reasoning	   module,	   action	   planner	   module,	   and	   collection	   of	   habits,	   allowing	   to	   have	   a	  
simplified	  cognitive	  architecture.	  The	  knowledge	  managed	  by	   intentional	  vision	  subsystem,	  
updated	  at	   regular	   time	   interval,	  will	   record	   the	   following	  data:	   label	  of	   identified	  person,	  
his/her	   localization,	   state	   of	   motion,	   	   posture,	   and	   facial	   expression,	   positions	   of	   his/her	  
visible	   body	   parts,	   behavior	   pattern.	   Other	   information	   could	   be	   considered	   in	   order	   to	  
completely	  satisfy	  the	  requirements	  of	  the	  cognitive	  architecture.	  

2.2	  Semantic	  Structure	  of	  Visual	  Perceptual	  Data	  

The	   semantic	   structure	   takes	   in	   account	   an	   experimental	   scenario	   that	   has	   two	  
special	  places	  indicated	  as	  working	  areas.	  The	  red	  working	  area	  has	  been	  used	  for	  showing	  
how	  “to	   lay	  the	  table”	  using	  spoon,	  fork,	  knife,	  plate,	  and	  glass;	  the	  blue	  working	  area	  has	  
been	  used	   for	  showing	   the	   task	   	  “to	   tidy”,	  using	  book,	  pencil,	   stapler,	  and	  eraser.	   In	   these	  
areas,	  the	  robot	  observes	  actions	  in	  order	  to	  learn	  tasks	  by	  means	  of	  examples	  given	  to	  it	  by	  
humans.	  Details	  about	  each	  module	  of	  proposed	  architecture	  are	  reported	  in	  Infantino	  et	  al.	  
(2008).	   Table	   1	   reports	   relevant	   entity	   definitions	   and	   recognition	   performances	   where	  
applicable.	  

	   Entity	   Quantity	   Recognition	  
rate	   Definition	  or	  range	  	  

f	  
i	  

Face	  	   15	  persons	  /	  
750	  faces	   95%	   00002-‐11112	  

e
i	  

Expression	  	   7	  elementary	  
emotions	   63%	   0002-‐1112	  

m Mood	  	   15	  clusters	  	  	   -‐	   [e1,e2,…,e50]	  



k	  
p

i	  
Posture	   7	  body	  postures	   95%	   0002-‐1112	  

d
i	  

Clothing	   10	   -‐	  
[r1,	  g1,	  b1,	  vr1,	  vg1,	  

vb1,	  …,	  r4,	  g4,	  b4,	  vr4,	  vg4,	  
vb4]	  

o
i	   Object	   10	  	  

90%	   {color,	  shape}	  

M
i	  

-‐	   Occurrence	  matrix	  

ti	   Task	   7	   -‐	   0002-‐1112	  
h

i	  
Habit	   15	   -‐	   hik=[fi,di,mk,tk]	  

	  
	   Table	  1.	  List	  of	   	  relevant	  entity	  definitions	  and	  recognition	  performances.	  For	  example,	  second	  row	  

indicates	  that	  750	  faces	  of	  15	  persons	  has	  been	  processed,	  the	  face	  recognition	  rate	  was	  95%.	  A	  binary	  value	  f	  i	  
is	  associated	  to	  each	  person	  (code	  00002	  means	  that	  face	  is	  not	  recognized).	  	  
 

 
Fig.	  3.	  Diagram	  of	  SearchIn	  Ontology:	  principal	  classes	  and	  attributes	  	  (direct	  and	  inverse	  relationship).	  

 



We designed an ontology related to SearchIn framework domain in order to manage extracted 
visual knowledge, and to process it by an inference engine.  The ontology is implemented  as OWL-DL 
model by using Protegè (see Protégé link in the bibliography). Fact++ reasoning engine has been used 
for checking ontology consistence. Some APIs has been used for performing queries, and data 
retrieving. Even if numeric data are related to the previous described scenario, the ontology can be 
adapted to other similar experiments. All data described in table 1 correspond to values of  individuals 
specified in the ontology and are included in the following classes: Human_Identity, Face_Expression, 
Human_Mood, Body_State, Posture, Clothing, Working_Area, Environment_Map, Task, Object, 
Habit. A scheme of  the principal defined classes, and attributes  (direct and inverse relationship) are 
showed in figure 3  (by using GrOWL tool, see the bibliography). Moreover the following subclasses 
are defined: ProfileFace, and FrontalFace; LeftHand, and RightHand; TableObject, and DeskObject 
(they have more subclasses such as fork, spoon, knife, pen, eraser, and so on).  

As example of  expressiveness assured by the implemented semantic structure, some queries 
(using Protegè DL Query Tab) are reported in the following: 
 
Who has at least one recorded habit?      
Query: Human_Identity and hasPerformed some Habit   
Results (Instances): InoKnownIdentity  

        DanielaKnownIdentity 
        IgnazioKnownIdentity  
        FilippoKnownIdentity 

What are Filippo’s habits? 
Query: Habit and isTypicalOf value FilippoKnownIdentity   
Results:  H4_Habit 
      H1_Habit 
(H1 and H4 Habit are data stored in knowledge base) 
Which is the Filippo’s habit when he is hungry?  
Query: Habit and isTypicalOf value FilippoKnownIdentity and isMotivatedBy value HungryMood 
Results: H1_Habit 
Which task is executed by Ignazio when he is confused? 
Query: Task and isPerformedWhenItIsShown some (Habit and isTypicalOf value IgnazioKnownIdentity 
and isMotivatedBy value ConfusedMood)  
Results: ToTidyUpTask 

	  2.3	  Example	  of	  application	  

A list of objects and occurrences matrices {oj, Mj}k corresponds to each task tk. During the 
learning phase, when a human is near to a working area, the robot goes there to recognize him/her and 
observe actions. In normal activity, after the learning phase, the human-robot interaction is regulated by 
following set of simple rules: 
- if the people tracking module detects a person close to a working area, and di is similar to a 
known one, the CA agent sends a command to make the robot approach such a place; 
- if the face is recognized, then the robot observes the face expressions in order to determine 
his/her mood; else a new person is introduced in face database;  
afterwards the robot searches and selects a task among the available “collection of his/her habits” given 
the recognized mood. This task represents the human will to satisfy. We have performed 10 
experiments for each task (“to lay the table”, and “to tidy”): 5 are related to the learning phase and 5 to 
the collaboration one. Even if this is a preliminary experimentation, we report only 3 failures: 2 are due 
to erroneous recognition of human moods, and the other to erroneous recognition of the human face. 

2.4	  Future	  works	  

The	  described	  framework	  aims	  to	  obtain	  a	  vision	  systems	  focused	  on	  the	  extraction	  
of	  information	  useful	  to	  understand	  human	  wills.	  We	  have	  described	  a	  possible	  composition	  
of	  several	  standard	  artificial	  vision	  algorithms	  for	  implementing	  an	  intentional	  vision	  system	  
to	   insert	   in	   a	   cognitive	   architecture.	   Different	   applicative	   scenarios	   will	   be	   considered	   to	  
have	  an	  exhaustive	  testing	  phase	  of	  the	  proposed	  architecture.	  Our	  intent	  is	  to	  exploit	  all	  the	  



advantages	  of	  semantic	  structure,	  and	  to	  obtain	  more	  sophisticated	  reasoning	  and	  planning	  
modules.	  	  
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