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1.   INTRODUCTION	
  

In the wider context of capturing and understanding human behavior (Pantic et al., 2006), it is 
important to perceive (detect) signals such as facial expressions, body posture, and movements while 
being able to identify objects and interactions with other components of  the environment. The 
techniques of computer vision and machine learning methodologies  enable the gathering and 
processing of such data in an increasingly accurate and robust way (Kelley et al., 2010). If the system 
captures the temporal extent of these signals, then it can make predictions and create expectations of 
their evolution. In this sense, we speak of  detecting human intentions, and in a simplified manner, they 
are related to elementary actions of a human agent (Kelley et al., 2008). 

Over the last few years has changed the approach pursued in the field of HCI, shifting the 
focus on human-centered design for HCI, namely the creation of systems of interaction made for 
humans and based on models of human behavior (Pantic et al., 2006). The Human centered design, 
however, requires thorough analysis and correct processing of all that flows into man-machine 
communication: the linguistic message, non-linguistic signals of conversation, emotions, attitudes, 
modes by which information are transmitted, i.e. facial expressions, head movements, non-linguistic 
vocalizations, movements of hands and body  posture, and finally must recognize the context in which 
information is transmitted.  

In  general, the modeling of human behavior is a challenging task and is based on the various  
behavioral signals: affective and attitudinal states (e.g. fear, joy, inattention, stress);  manipulative 
behavior (actions used to act on objects environment or self-manipulative  actions like biting lips), 
culture-specific symbols (conventional signs as a wink or a thumbs30 up); illustrators actions 
accompanying the speech, regulators and conversational mediators  as who nods the head and smiles.  
Systems for the automatic analysis of human behavior should treat all human interaction  channels 
(audio, visual, and tactile), and should analyze both verbal and non verbal signals  (words, body 
gestures, facial expressions and voice, and also physiological reactions). In  fact, the human behavioral 
signals are closely related to affective states, which are  conducted by both physiological and using 
expressions. Due to physiological mechanisms,  emotional arousal affects somatic properties such as 
the size of the pupil, heart rate,  sweating, body temperature, respiration rate. These parameters can be 
easily detected and  are objective measures, but often require that the person wearing specific sensors. 
Such  devices in future may be low-cost and miniaturized, distributed in clothing and  environment, but 
which are now unusable on a large scale and in non structured situations.   

The visual channel that takes into account facial expressions and gestures of the body seems  
to be relatively more important to human judgment that recognizes and classifies behavioral  states. 
The human judgment on the observed behavior seems to be more accurate if you  consider the face and 
body as elements of analysis.  A given set of behavioral signals usually does not transmit only one type  
of message, but  can transmit different depending on the context. The context can be completely 
defined if  you find the answers to the following questions: Who, Where, What, How, When and Why  
(Pantic et al., 2006). These responses disambiguating the situation in which there are both  artificial 
agent that observes and the human being observed.  In the case of human-robot interaction, one of the 
most important aspects to be explored in  the detection of human behavior is the recognition of the 
intent (Kelley et al., 2008): the  problem is to predict the intentions of a person by direct observation of 
his actions and  behaviors. In practice we try to infer the result of a goal-directed mental activity that is 
not 0 observable, and characterizing precisely the intent. Humans recognize, or otherwise seek to  
predict the intentions of others, using the result of an innate mechanism to represent,  interpret and 
predict the actions of the other. This mechanism probably is based on taking  the perspective of others 
(Gopnick & Moore, 1994), allowing you to watch and think with  eyes and mind of the other.  The 
interpretation of intentions can anticipate the evolution of the action, and thus capture  its temporal 
dynamic evolution. An approach widely used in statistical classification of  systems that evolve over 
time, is what uses Hidden Markov Model (Duda et al., 2000). The  use of HMM in the recognition of 
intent (emphasizing the prediction) has been suggested in  (Tavakkoli et al., 2007), that draws a link 
between the HMM approach and the theory of the  mind.   

The recognition of the intent intersects with the recognition of human activity and human  
behavior. It differs from the recognition of the activity as a predictive component:  determining the 
intentions of an agent, we can actually give an opinion on what we believe  are the most likely actions 



that the agent will perform in the immediate future. The intent  can also be clarified or better defined if 
we recognize the behavior. Again the context is  important and how it may serve to disambiguate 
(Kelley et al., 2008). There are a pairs of  actions that may appear identical in every aspect but have 
different explanations depending  on their underlying intentions and the context in which they occur.  
Both to understand the behaviors and the intentions, some of the tools necessary to address  these 
problems are developed for the analysis of video sequences and images (Turaga et al.,  2008). The 
aspects of security, monitoring, indexing of archives, led the development of  algorithms oriented to the 
recognition of human activities that can form the basis for the  recognition of intentions and behaviors. 
Starting from the bottom level of processing, the  first step is to identify the movements in the scene, to 
distinguish the background from the  rest, to limit the objects of interest, and to monitor changes in 
time and space. We use then,  techniques based on optical flow, segmentation, blob detection, and 
application of space37 time filters on certain features extracted from the scene.  When viewing a scene, 
the man is able to distinguish the background from the rest, that is,  instant by instant, automatically 
rejects unnecessary information. In this context, a model of  attention is necessary to select the relevant 
parts of the scene correctly. One problem may  be, however, that in these regions labeled as 
background is contained the information that  allows for example the recognition of context that allows 
the disambiguation. Moreover,  considering a temporal evolution, what is considered as background in 
a given instant, may  be at the center of attention in successive time instants.  Identified objects in the 
scene, as well as being associated with a certain spatial location  (either 2D, 2D and 1/2, or 3D) and an 
area or volume of interest, have relations between  them and with the background. So the analysis of 
the temporal evolution of the scene,  should be accompanied with a recognition of relationships 
(spatial, and semantic) between the various entities involved (the robot itself, humans, actions, objects 
1 of interest,  components of the background) for the correct interpretation of the context of action.  

But  defining the context in this way, how can we bind the contexts and intentions? There are  
two possible approaches: the intentions are aware of the contexts, or vice versa the  intentions are 
aware of the contexts (Kelley et al., 2008). In the first case, we ranked every  intention carries with it 
all possible contexts in which it applies, and real-time scenario is not  applicable. The second approach, 
given a context, we should define all the intentions that it  may have held (or in a deterministic or 
probabilistic way). The same kind of reasoning can  be done with the behaviors and habits, so think of 
binding (in the sense of action or sequence of actions to be carried out prototype) with the behaviors.  
A model of intention should be composed of two parts (Kelley et al, 2008): a model of  activity, which 
is given for example by a particular HMM, and an associated label. This is  the minimum amount of 
information required to enable a robot to perform disambiguation  of context. One could better define 
the intent, noting a particular sequence of hidden states  from the model of activity, and specifying an 
action to be taken in response. A context  model, at a minimum, shall consist of a name or other 
identifier to distinguish it from other  possible contexts in the system, as well as a method to 
discriminate between intentions. This  method may take the form of a set of deterministic rules, or may 
be a discrete probability  distribution defined on the intentions which the context is aware.  There are 
many sources of contextual information that may be useful to infer the intentions,  and perhaps one of 
the most attractive is to consider the so-called affordances of the object,  indicating the actions you can 
perform on it. It is possible then build a representation from  probabilities of all actions that can be 
performed on that object. For example, you can use an  approach based on natural language (Kelley et 
al., 2008), building a graph whose vertices  are words and a label is the weighed connecting arc 
indicating the existence of some kind of  grammatical relationship. The label indicates the nature of the 
relationship, and the weight  can be proportional to the frequency with which the pair of words exist in 
that particular  relationship. From such a graph, we can calculate the probability to determine the 
necessary  context to interpret an activity. Natural language is a very effective vehicle for expressing  
the facts of the world, including the affordances of the objects.  If the scene is complex, performance 
and accuracy can be very poor when you consider all  the entities involved. then, can be introduced for 
example the abstraction of the interaction  space, where each agent or object in the scene is represented 
as a point in a space with a  defined distance on it related to the degree of interaction (Kelley et al, 
2008). In this case,  then consider the physical artificial agent (in our case the humanoid) and its 
relationship  with the space around it, giving more importance to neighboring entities to it and ignore  
those far away. 

2.   DEVELOPING	
  AN	
  INTENTIONAL	
  SYSTEM1	
  

In the following, we describe a cognitive architecture developed with the aim of detecting 
human movements and perceiving actions and intents (see Infantino et al. 2008) and the design of a 
                                                             
1	
  	
   I.	
  Infantino,	
  C.	
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  S.	
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  (2008).	
  An	
  Intentional	
  System	
  based	
  on	
  a	
  Knowledge	
  
Base	
  of	
  Visual	
  Perception.	
  AIxIA	
  
	
  



semantic structure linked to visual data. In particular, we implemented an “intentional” vision system, 
that is, a system that “looks at people” and automatically perceives information relevant to interpret the 
human behavior (see for example Kuno et al. 1999), distinguishing between unintentional human 
movements, movement for manipulating objects, and gestures used for communicating. The use of 
word "intentional" in this context concerns the purpose of generating a stream of pre-processed data 
useful for reasoning, recognition, reacting, and interacting when a human and his activity are objects of 
observation from the artificial system. The raw data coming from multiple sources of images and 
videos are filtered and processed in order to retain information useful to understand the human will, 
state and condition.  

In	
  order	
  to	
  model,	
   recognize,	
  and	
   interpret	
  human	
  behavior,	
  several	
   tasks	
  must	
  be	
  
addressed	
   (see	
   for	
   example	
  Turk	
  2004):	
   face	
  detection,	
   location,	
   tracking	
  and	
   recognition;	
  
facial	
  expression	
  analysis,	
  and	
  human	
  emotion	
  recognition;	
  audiovisual	
  speech	
  recognition;	
  
eye-­‐gaze	
   tracking;	
   body	
   tracking;	
   hand	
   tracking;	
   gait	
   recognition;	
   recognition	
   of	
   postures,	
  
gestures,	
  and	
  activity	
  	
  in	
  general	
  (see	
  for	
  example	
  Moeslund	
  et	
  al.	
  2001).	
  	
  

The	
  complexity	
  of	
  the	
  “intentional”	
  analysis	
  can	
  be	
  managed	
  by	
  a	
  semantic	
  approach	
  
(see	
   for	
   example	
   Gruber	
   1991):	
   an	
   ontology	
   is	
   the	
   semantic	
   structure	
  which	
   encodes	
   the	
  
implicit	
  rules	
  constraining	
  the	
  structure	
  of	
  a	
  piece	
  of	
  reality	
  	
  (Guarino	
  1995).	
  We	
  propose	
  an	
  
ontology	
  that	
  describes	
  the	
  logical	
  structure	
  of	
  a	
  “intentional	
  system”	
  domain,	
   its	
  concepts	
  
and	
   the	
   relations	
   between	
   them.	
   This	
   conceptualization	
   is	
   associated	
   to	
   visual	
   data	
   and	
  
instances	
  of	
  classes,	
  forming	
  a	
  knowledge	
  base	
  where	
  the	
  values	
  and	
  their	
  relationship	
  are	
  
stored	
  in	
  the	
  same	
  information	
  structure	
  (for	
  example	
  see	
  the	
  approach	
  used	
  in	
  Garcıa-­‐Rojas	
  
2006).	
  
 

 
	
  
Fig.	
  1.	
   	
  SeARCH	
  In:	
  Sensing-­‐Acting-­‐Reasoning:	
  Computer	
  understands	
  Human	
  Intentions.	
   Intentional	
  vision	
  

framework	
  scheme.	
  

2.1	
  The	
  Intentional	
  Framework	
  

The proposed framework is named SeARCH In (Sensing-Acting-Reasoning: Computer 
understands Human Intentions). The relevant modules of the proposed architecture and their functional 
interconnections are depicted in figure 1. The core of intentional vision system is composed by two 
specialized modules: Intentional Perception of Body (IPB) and Intentional Perception of Face (IPF). 
The first module (IPB) deals with the detection and tracking of human bodies. In particular, it tries to 
locate silhouette, head, and hands of the people detected in the scene and performs their posture 
recognition. Furthermore, IPB detects and tracks also relevant objects moved by the hands. The output 
of this module consists in sequences of positions, and shape descriptors corresponding to all the 
detected entities. The second module (IPF) performs the recognition of the human detected in the scene 
and his face expression analysis. The main output of IPF module is a temporal sequence of recognized 
facial expressions characterizing the human mood.  

The sequences coming from both modules are linked to the relevant human states (hungry, 
sleeping, and so on) by the Reasoning Module (RM). RM outputs the interpreted human wills (to eat, 
to sleep, etc.) on the basis of IPF, and IPM data stream. Its effectiveness is improved on if knowledge 
of the individual is stored in the Collection of Habits (CH) that represents the memory of RM. Finally, 



the Action Planner module (AP) decides if and how the system has to interact, collaborate, or assist the 
human.  

Actually, RM has been implemented as a simple rule based algorithm, and it employs queries 
to consult the knowledge data base described by OWL. This database includes the Collection Habit that 
has been built by means of a supervised learning phase. Finally, an imitation based approach has been 
used to record in the Action Planner all the operations necessary to accomplish the task just as the 
human is used to do it. 

The IPF module is devoted to recognize the people detected in the scene and to analyze their 
facial expression. Its main output is a temporal sequence of recognized facial expressions (see first row 
of figure 2) that is sent to the reasoning module. The technique described in Viola and Jones (2004) is 
used for detecting the presence of faces in the scene, and for detecting relevant facial feature points. 
The facial expression recognition is performed by the tracking (using a Particle Filter) of eyebrows and 
lips movements. We have implemented a Facial Action Coding System (FACS) (Ekman and Friesen 
1978) classifying simple expressions: anger, disgust, fear, joy, sadness, surprise.  The sequences of 
these elementary emotions are recorded to the aim of building a sort of signature representative of a 
particular human condition in the scene: he/she is hungry, he/she is bored, and so on. In a learning 
phase, relevant sequences are recorded, and they will be included in the Collection of Habits of a 
particular person. 

Face and  Facial expression 

 
Posture and Clothing 

   
Task Observation 

  
Fig.	
  2.	
  Results	
  of	
  various	
  processed	
  visual	
  inputs.	
  First	
  row:	
  facial	
  expression	
  tracking	
  and	
  recognition	
  example.	
  

A	
   rule-­‐based	
   recognition	
  algorithm	
  classifies	
   simple	
  expressions	
   (anger,	
  disgust,	
   etc.)	
   that	
   are	
   indicated	
  by	
   the	
  
yellow	
  small	
  icon	
  depicted	
  on	
  upper-­‐left	
  corner	
  of	
  image;	
  sequences	
  of	
  elementary	
  emotions	
  are	
  considered	
  to	
  
recognize	
  human	
  mood.	
  Second	
  row:	
  Perception	
  of	
  human	
  movements.	
  Example	
  of	
  multiple	
  people	
  tracking	
  and	
  
silhouette	
  extraction.	
  Third	
  row:	
  robot	
  observation	
  of	
  a	
   task	
  shown	
  by	
  the	
  human	
  user:	
   the	
  task	
  of	
  “to	
   lay	
  the	
  
table”	
  is	
  simulated	
  by	
  the	
  placing	
  of	
  simple	
  planar	
  objects	
  (cutlery	
  and	
  plate)	
  on	
  red	
  area	
  (the	
  table).	
  Trajectories	
  
of	
  object	
  movements	
  are	
  recorded	
  in	
  order	
  to	
  build	
  an	
  occurrence	
  matrix	
  (see	
  left	
  side	
  of	
  the	
  figure	
  related	
  to	
  
“fork”).	
  This	
  matrix	
  is	
  used	
  for	
  finding	
  positional	
  relation	
  of	
  objects	
  in	
  the	
  table,	
  and	
  for	
  calculating	
  paths	
  to	
  place	
  
an	
  object.	
  

	
  
	
  



The	
   Intentional	
  Perception	
  of	
  Body	
  module	
  has	
  been	
  designed	
  for	
  the	
  detection	
  of	
  
human	
   presence	
   and	
   activity.	
   It	
   accomplishes	
   three	
   main	
   tasks:	
   human	
   silhouette	
  
localization	
  and	
  posture	
   recognition	
   (see	
   second	
   row	
  of	
   figure	
  2),	
   and	
  hands	
   tracking.	
   The	
  
input	
  to	
  IPB	
  module	
  comes	
  from	
  at	
  least	
  one	
  fixed	
  camera	
  observing	
  an	
  indoor	
  environment	
  
whose	
  map	
  is	
  known.	
  Two	
  more	
  cameras	
  placed	
  on	
  a	
  mobile	
  robotic	
  platform	
  are	
  then	
  used	
  
to	
  take	
  close	
  views	
  of	
  human	
  standing	
  in	
  an	
  area	
  “of	
  interest”	
  monitored	
  by	
  fixed	
  cameras.	
  	
  
We	
   use	
   a	
   Condensation	
   algorithm	
   to	
   track	
   the	
   people	
   and	
   PCA	
   technique	
   for	
   recognize	
  
postures	
  (see	
  Chella	
  et	
  al.	
  2006).	
  When	
  robot	
  is	
  observing	
  an	
  area	
  “of	
  interest”,	
  the	
  system	
  
attention	
  will	
  be	
   focalized	
  on	
  hands	
  and	
  objects	
  movements.	
  The	
  aim	
   is	
   to	
   learn	
  a	
  human	
  
task	
  by	
  means	
  of	
  observation,	
  or	
  to	
  collaborate/interact	
  with	
  the	
  person	
  if	
  the	
  task	
  is	
  known.	
  
The	
  approach	
  used	
   for	
   implementing	
  both	
  capabilities	
   is	
   inspired	
  to	
   the	
  work	
  of	
  Rao	
  et	
  al.	
  
(2007),	
  where	
  a	
  simple	
  statistical	
  analysis	
  is	
  employed.	
  	
  The	
  robot	
  camera	
  view	
  is	
  rectified	
  in	
  
respect	
   to	
   the	
  plane	
  of	
   the	
  working	
  area,	
  where	
  human	
  hands	
  manipulate	
  several	
  objects.	
  
The	
   detected	
   features	
   are:	
   position	
   of	
   centre	
   of	
   mass,	
   color,	
   and	
   shape	
   (by	
   Fourier	
  
descriptors)	
   of	
   objects,	
   and	
  hands	
  position.	
  An	
  occurrences	
  matrix	
   for	
   each	
   entity	
   records	
  
the	
  number	
  of	
  times	
  that	
  the	
  object	
  is	
  detected	
  in	
  a	
  particular	
  location	
  of	
  the	
  working	
  plane	
  
(see	
  third	
  row	
  of	
  figure	
  2).	
  When	
  a	
  new	
  working	
  area	
   is	
  observed,	
  or	
  an	
  object	
  never	
  seen	
  
before	
   is	
   noticed,	
   occurrences	
   matrices	
   and	
   features	
   values	
   are	
   built	
   or	
   updated.	
   If	
   the	
  
knowledge	
   of	
   the	
   working	
   area	
   is	
   already	
   acquired	
   and	
   known	
   objects	
   are	
   detected,	
   the	
  
intentional	
  system	
  could	
  execute	
   the	
  task	
   replacing	
   the	
  human	
  actions	
  or	
  collaborate	
  with	
  
him/her	
  to	
  place	
  some	
  objects	
  until	
  the	
  final	
  configuration	
  is	
  obtained.	
  	
  	
  	
  

	
  
Previous	
  described	
  modules	
  could	
  be	
  composed	
  in	
  a	
  flexible	
  and	
  dynamical	
  way.	
  The	
  

aim	
  is	
  to	
  have	
  an	
  adaptable	
  “intentional	
  vision	
  software	
  system”	
  which	
  is	
  capable	
  to	
  act	
   in	
  
different	
   situations	
   or	
   scenarios.	
   Generally,	
   we	
   could	
   suppose	
   to	
   have	
   a	
   series	
   of	
   color	
  
cameras	
   and	
   video	
   streams	
   accessible	
   by	
   a	
   large	
   band	
   network.	
   A	
   coordinator	
   software	
  
agent	
   named	
  CA	
  will	
   collect	
   all	
   visual	
   information	
   resulting	
   from	
   various	
   sources,	
   and	
  will	
  
provide	
  an	
  aggregate	
  view	
  of	
  the	
  whole	
  scenario,	
  making	
  available	
  this	
  data	
  to	
  the	
  cognitive	
  
architecture	
  for	
  a	
  further	
  analysis.	
  We	
  perform	
  simple	
  experiments,	
  where	
  CA	
  agent	
  includes	
  
reasoning	
   module,	
   action	
   planner	
   module,	
   and	
   collection	
   of	
   habits,	
   allowing	
   to	
   have	
   a	
  
simplified	
  cognitive	
  architecture.	
  The	
  knowledge	
  managed	
  by	
   intentional	
  vision	
  subsystem,	
  
updated	
  at	
   regular	
   time	
   interval,	
  will	
   record	
   the	
   following	
  data:	
   label	
  of	
   identified	
  person,	
  
his/her	
   localization,	
   state	
   of	
   motion,	
   	
   posture,	
   and	
   facial	
   expression,	
   positions	
   of	
   his/her	
  
visible	
   body	
   parts,	
   behavior	
   pattern.	
   Other	
   information	
   could	
   be	
   considered	
   in	
   order	
   to	
  
completely	
  satisfy	
  the	
  requirements	
  of	
  the	
  cognitive	
  architecture.	
  

2.2	
  Semantic	
  Structure	
  of	
  Visual	
  Perceptual	
  Data	
  

The	
   semantic	
   structure	
   takes	
   in	
   account	
   an	
   experimental	
   scenario	
   that	
   has	
   two	
  
special	
  places	
  indicated	
  as	
  working	
  areas.	
  The	
  red	
  working	
  area	
  has	
  been	
  used	
  for	
  showing	
  
how	
  “to	
   lay	
  the	
  table”	
  using	
  spoon,	
  fork,	
  knife,	
  plate,	
  and	
  glass;	
  the	
  blue	
  working	
  area	
  has	
  
been	
  used	
   for	
  showing	
   the	
   task	
   	
  “to	
   tidy”,	
  using	
  book,	
  pencil,	
   stapler,	
  and	
  eraser.	
   In	
   these	
  
areas,	
  the	
  robot	
  observes	
  actions	
  in	
  order	
  to	
  learn	
  tasks	
  by	
  means	
  of	
  examples	
  given	
  to	
  it	
  by	
  
humans.	
  Details	
  about	
  each	
  module	
  of	
  proposed	
  architecture	
  are	
  reported	
  in	
  Infantino	
  et	
  al.	
  
(2008).	
   Table	
   1	
   reports	
   relevant	
   entity	
   definitions	
   and	
   recognition	
   performances	
   where	
  
applicable.	
  

	
   Entity	
   Quantity	
   Recognition	
  
rate	
   Definition	
  or	
  range	
  	
  

f	
  
i	
  

Face	
  	
   15	
  persons	
  /	
  
750	
  faces	
   95%	
   00002-­‐11112	
  

e
i	
  

Expression	
  	
   7	
  elementary	
  
emotions	
   63%	
   0002-­‐1112	
  

m Mood	
  	
   15	
  clusters	
  	
  	
   -­‐	
   [e1,e2,…,e50]	
  



k	
  
p

i	
  
Posture	
   7	
  body	
  postures	
   95%	
   0002-­‐1112	
  

d
i	
  

Clothing	
   10	
   -­‐	
  
[r1,	
  g1,	
  b1,	
  vr1,	
  vg1,	
  

vb1,	
  …,	
  r4,	
  g4,	
  b4,	
  vr4,	
  vg4,	
  
vb4]	
  

o
i	
   Object	
   10	
  	
  

90%	
   {color,	
  shape}	
  

M
i	
  

-­‐	
   Occurrence	
  matrix	
  

ti	
   Task	
   7	
   -­‐	
   0002-­‐1112	
  
h

i	
  
Habit	
   15	
   -­‐	
   hik=[fi,di,mk,tk]	
  

	
  
	
   Table	
  1.	
  List	
  of	
   	
  relevant	
  entity	
  definitions	
  and	
  recognition	
  performances.	
  For	
  example,	
  second	
  row	
  

indicates	
  that	
  750	
  faces	
  of	
  15	
  persons	
  has	
  been	
  processed,	
  the	
  face	
  recognition	
  rate	
  was	
  95%.	
  A	
  binary	
  value	
  f	
  i	
  
is	
  associated	
  to	
  each	
  person	
  (code	
  00002	
  means	
  that	
  face	
  is	
  not	
  recognized).	
  	
  
 

 
Fig.	
  3.	
  Diagram	
  of	
  SearchIn	
  Ontology:	
  principal	
  classes	
  and	
  attributes	
  	
  (direct	
  and	
  inverse	
  relationship).	
  

 



We designed an ontology related to SearchIn framework domain in order to manage extracted 
visual knowledge, and to process it by an inference engine.  The ontology is implemented  as OWL-DL 
model by using Protegè (see Protégé link in the bibliography). Fact++ reasoning engine has been used 
for checking ontology consistence. Some APIs has been used for performing queries, and data 
retrieving. Even if numeric data are related to the previous described scenario, the ontology can be 
adapted to other similar experiments. All data described in table 1 correspond to values of  individuals 
specified in the ontology and are included in the following classes: Human_Identity, Face_Expression, 
Human_Mood, Body_State, Posture, Clothing, Working_Area, Environment_Map, Task, Object, 
Habit. A scheme of  the principal defined classes, and attributes  (direct and inverse relationship) are 
showed in figure 3  (by using GrOWL tool, see the bibliography). Moreover the following subclasses 
are defined: ProfileFace, and FrontalFace; LeftHand, and RightHand; TableObject, and DeskObject 
(they have more subclasses such as fork, spoon, knife, pen, eraser, and so on).  

As example of  expressiveness assured by the implemented semantic structure, some queries 
(using Protegè DL Query Tab) are reported in the following: 
 
Who has at least one recorded habit?      
Query: Human_Identity and hasPerformed some Habit   
Results (Instances): InoKnownIdentity  

        DanielaKnownIdentity 
        IgnazioKnownIdentity  
        FilippoKnownIdentity 

What are Filippo’s habits? 
Query: Habit and isTypicalOf value FilippoKnownIdentity   
Results:  H4_Habit 
      H1_Habit 
(H1 and H4 Habit are data stored in knowledge base) 
Which is the Filippo’s habit when he is hungry?  
Query: Habit and isTypicalOf value FilippoKnownIdentity and isMotivatedBy value HungryMood 
Results: H1_Habit 
Which task is executed by Ignazio when he is confused? 
Query: Task and isPerformedWhenItIsShown some (Habit and isTypicalOf value IgnazioKnownIdentity 
and isMotivatedBy value ConfusedMood)  
Results: ToTidyUpTask 

	
  2.3	
  Example	
  of	
  application	
  

A list of objects and occurrences matrices {oj, Mj}k corresponds to each task tk. During the 
learning phase, when a human is near to a working area, the robot goes there to recognize him/her and 
observe actions. In normal activity, after the learning phase, the human-robot interaction is regulated by 
following set of simple rules: 
- if the people tracking module detects a person close to a working area, and di is similar to a 
known one, the CA agent sends a command to make the robot approach such a place; 
- if the face is recognized, then the robot observes the face expressions in order to determine 
his/her mood; else a new person is introduced in face database;  
afterwards the robot searches and selects a task among the available “collection of his/her habits” given 
the recognized mood. This task represents the human will to satisfy. We have performed 10 
experiments for each task (“to lay the table”, and “to tidy”): 5 are related to the learning phase and 5 to 
the collaboration one. Even if this is a preliminary experimentation, we report only 3 failures: 2 are due 
to erroneous recognition of human moods, and the other to erroneous recognition of the human face. 

2.4	
  Future	
  works	
  

The	
  described	
  framework	
  aims	
  to	
  obtain	
  a	
  vision	
  systems	
  focused	
  on	
  the	
  extraction	
  
of	
  information	
  useful	
  to	
  understand	
  human	
  wills.	
  We	
  have	
  described	
  a	
  possible	
  composition	
  
of	
  several	
  standard	
  artificial	
  vision	
  algorithms	
  for	
  implementing	
  an	
  intentional	
  vision	
  system	
  
to	
   insert	
   in	
   a	
   cognitive	
   architecture.	
   Different	
   applicative	
   scenarios	
   will	
   be	
   considered	
   to	
  
have	
  an	
  exhaustive	
  testing	
  phase	
  of	
  the	
  proposed	
  architecture.	
  Our	
  intent	
  is	
  to	
  exploit	
  all	
  the	
  



advantages	
  of	
  semantic	
  structure,	
  and	
  to	
  obtain	
  more	
  sophisticated	
  reasoning	
  and	
  planning	
  
modules.	
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