
 

Consiglio Nazionale delle Ricerche  
Istituto di Calcolo e Reti ad Alte Prestazioni  
 

 
 
 
 
 
 
 
 

 
From Means-End Analysis to 

Proactive Means-End Reasoning 
 
 
 

M. Cossentino  L. Sabatucci 

 
 

 
 
 
Rapporto Tecnico N.: 
RT-ICAR-PA-15-01 Febbraio 2015 
 
 
 
 
 
 
 
 
 
 
 
 

 

Consiglio Nazionale delle Ricerche, Istituto di Calcolo e Reti ad Alte Prestazioni (ICAR)  
– Sede di Cosenza, Via P. Bucci 41C, 87036 Rende, Italy, URL: www.icar.cnr.it 
– Sede di Napoli, Via P. Castellino 111, 80131 Napoli, URL: www.na.icar.cnr.it  
– Sede di Palermo, Viale delle Scienze, 90128 Palermo, URL: www.pa.icar.cnr.it 



 

 

Consiglio Nazionale delle Ricerche  
Istituto di Calcolo e Reti ad Alte Prestazioni  
 

 

 
 
 
 
 
 
 

From Means-End Analysis to 
Proactive Means-End Reasoning 

 
 

 
M. Cossentino1,L. Sabatucci1 

 

 
 
 
 
 
 
 
 
 
 
 
Rapporto Tecnico N.: 
RT-ICAR-PA-15-01 

Data: 
Febbraio 2015 

 
 
 
 
 
1  Istituto di Calcolo e Reti ad Alte Prestazioni, ICAR-CNR, Sede di Palermo, Viale delle Scienze 

edificio 11, 90128 Palermo. 
2  Università degli Studi di Palermo, Dipartimento di Ingegneria Chimica Gestionale Informatica e 

Meccanica,  Viale delle Scienze, 90128 Palermo. 
 
 
I rapporti tecnici dell’ICAR-CNR sono pubblicati dall’Istituto di Calcolo e Reti ad Alte 
Prestazioni del Consiglio Nazionale delle Ricerche. Tali rapporti, approntati sotto l’esclusiva 
responsabilità scientifica degli autori, descrivono attività di ricerca del personale e dei 
collaboratori dell’ICAR, in alcuni casi in un formato preliminare prima della pubblicazione 
definitiva in altra sede. 



From Means-End Analysis to
Proactive Means-End Reasoning

Luca Sabatucci and Massimo Cossentino
ICAR-CNR, Palermo

Email: {sabatucci,cossentino}@pa.icar.cnr.it

Abstract—Self-adaptation is a prominent property for devel-

oping complex distributed software systems. Notable approaches

to deal with self-adaptation are the runtime goal model artifacts.

Goals are generally invariant along the system lifecycle but

contain points of variability for allowing the system to decide

among many alternative behaviors.

This work investigates how it is possible to provide goal models

at run-time that do not contain tasks, i.e. the description of how

to address goals, thus breaking the design-time tie up between

Tasks and Goals, generally outcome of a means-end analysis. In

this vision the system is up to decide how to combine its available

Capabilities: the Proactive Means-End Analysis.

The impact of this research line is to implement a goal-oriented

form of self-adaptation where goal models can be injected at

runtime. The paper also introduces MUSA, a Middleware for

User-driven Service self-Adaptation.

I. INTRODUCTION

In the last decade self-adaptation has emerged as a promi-
nent property to tackle some of the most important challenges
for developing complex distributed software systems. Self-
adapting systems are able to adapt their behavior in response
to their perception of the environment and the system itself.
As long as software systems grow in size, complexity, and
heterogeneity, it becomes central to make them more versatile,
flexible, resilient and robust by making them able to dynami-
cally self-adapt to changing environmental conditions.

Self-adaptation has deep roots in several research fields, as
for instance, artificial intelligence, biological inspired com-
puting, robotics, requirements/knowledge engineering, control
theory and fault-tolerant computing, and so on. Researchers in
these areas have investigated different research issues that the
term self-adaptation unifies under a common terminology.

Two research roadmaps [1], [2] indicates the contribution
that research on software engineering may provide to the
topic. In particular up to date, little endeavor has been made
to establish approaches for a systematic provision of self-
adaptation. In [1] authors agree that the way self-adaptation
has to be conceived depends very much on aspects as users,
their needs and the characteristics of the environment. Mod-
eling and monitoring these aspects is the key for enabling a
software to adapt its behavior.

The system must also maintain a set of high level invariant
requirements that indicates the ultimate objective of the system
and that drives the adaptation regardless of the environmental
changes or uncertainty. To this regards traditional requirements
specification languages need to evolve for explicitly encapsu-
lating points of variability in the behavior [3] and elements of

uncertainty in the environment [4]. These elements must be
first class entities the system can exploit to decide how to act.

In the agent-oriented software engineering (AOSE) research
area, one of the most common approaches for facing the
emerging challenges posed by self-adaptive software is the
use of goal-directed behavior, where the goal is the con-
ceptualization of the objectives the system has to address.
For instance, some BDI programming languages explicitly
introduce keywords for specifying goals [5].

However, to date, a semantic gap exists between require-
ment specifications defined at design-time and the concept of
goal used at run-time [6]. This represents a limitation espe-
cially in the development of self-adaptive and fault-tolerant
systems.

A solution has been presented [6] where authors use goal
models at runtime and provide an operational semantics for
specifying the dynamics of goals, maintaining the flexibility
of using different goal types and conditions.

Dalpiaz et al. [7] propose a new type of goal model, called
runtime goal model (RGM) which extends the former with
annotation about additional state, behavioral and historical
information about the fulfillment of goals, for instance ex-
plaining when and how many instances of the goals and tasks
need to be created.

The novelty of the proposed contribution is to present the
concept of Proactive Means-End Reasoning as a variation of
the classic activity of means-end analysis. The latter represents
one of the manual steps of methodologies for modeling goal
models. It aims at providing an operationalization of goals i.e.
analyzing how to address the desired result specified by a goal.
At the best of our knowledge, to date this is a purely human ac-
tivity. This paper aims to shown that under given assumptions,
and simplifications, it is possible to introduce the proactive
means-end reasoning as a software agent ability to decide
how to address a goal injected at runtime by the user in the
system. We exploit this property for building a self-adaptive
system in which Goals and Capabilities are two independent
entities that may be deployed by different development team.
We also developed a prototype called MUSA (Middleware for
User-driven Service self-Adaptation) that contains a concrete
implementation of the presented conceptual framework.

The paper is structured as follows: Section II presents the
theoretical background that introduces the basic concepts.
Section 1 introduces the ingredients for the self-adaptation
approach that is presented in Section IV. A critical analysis



is presented in Section V, and finally some conclusions are
drawn in Section VI.

II. FORMAL FOUNDATION

This section illustrates the theoretical background that in-
troduces the basic concepts of this paper.

A. State of the World Definition

We consider the software system has a (partial) knowledge
about the environment in which it runs. The classic way for
expressing this property is (Bel a ') [8] that specifies that a
software agent a believes ' is true, where ' is a generic state
of affair. We decided to limit the range of ' to first order
variable-free statements (facts). They are enough expressive
for representing an object of the environment, a particular
property of an object or a relationship among two ore more
objects. A fact is a statement to which it is possible to assign a
truth value. Examples are: tall(john) or likes(john,music).

Definition 1 (Subjective State of the World). We define the
subjective state of the world in a given time t as a set W t ⇢ S
where S is the set of all the (non-negated) facts (s1, s2 . . . sn)
that can be used in a given domain.

W t has the following characteristics:

W t = {s
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where a is the subjective point of view that believes all facts
in W t are true at time t; and
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i.e.: the state of the world is a consistent subset of facts
with no (semantics) contradictions.

W t describes a closed-world in which everything that is
not explicitly declared is assumed to be false. An example
of W t is shown in Figure 1, whereas, for instance the set
{tall(john), small(john)} is not a valid state of world since
the two facts produce a semantic contradiction.

tall(john)

likes(john,music)

likes(john,pizza)

age(john,16)

W t

Fig. 1. Example of a State of the World configuration at time t.

A Condition of a state of the world is a logic formula
composed by predicates or variables, through the standard set
of logic connectives (¬,^,_ ). A condition may be tested
against a given W t through the operator of unification.

B. Goal Definition

In many Goal-Oriented requirement engineering methods
the definition of Goal [3] is: “a goal is a state of affair that
an actor wants to achieve”. We refined this statement to be
compatible with the definition of W t as: “a goal is a desired
change in the state of the world an actor wants to achieve”, in
line with [?]. Therefore, to make this definition operative, it is
useful to characterize a goal in terms of a triggering condition
and a final state.

Definition 2 (Goal). A goal is a pair: htc, fsi where tc
and fs are conditions to evaluate (over a state of the world)
respectively when the goal may be actively pursued (tc) and
when it is eventually addressed (fs). Moreover, given a W t we
say that

the goal is active iff tc(W t) ^ ¬fs(W t) = true

the goal is addressed iff fs(W t) = true.

It is worth noting that when the triggering condition is
trivially defined as true, then the above reported definition
coincides with the classical definition of Goal.

It follows the definition of goal model, inspired by [7]:

Definition 3 (Goal Model). A goal model is a directed
graph, (G,R) where G is a set of goals (nodes) and R is
the set of Refinement and Influence relationships (edges). In
a goal model there is exactly one root goal, and there are no
refinement cycles.

Figure 2 is the partial goal model, represented with the i*
notation, for the meeting scheduling case study. This example,
redesigned from [7], includes functional (hard) goals only, and
AND/OR refinements. The root goal is to provide meeting
scheduling services that is decomposed in schedule meet-
ings, send reminders, cancel meetings and running a website.
Therefore meetings are scheduled by collecting participant
timetables, choosing a schedule and choosing a location. Such
a model is useful for analysts to explore alternative ways for
fulfilling the root goal.

OR

To Call 
Participants 

To Check 
Calendars 

To Mail 
Participants

AND

To Provide 
Meeting 

Scheduling

To 
Schedule 
Meetings

To Sent 
Reminders

To Cancel 
Meetings 

To Run 
Website

AND

To Collect 
Timetables 

To 
Choose 

Schedule 

To 
Choose 
Location

[…] […]

[…] […]

[…]

Fig. 2. Portion of Goal Model taken from [7] for the Meeting Scheduling
case study. For reasons of space, the tree has been truncated (with respect to
the original one) where the symbol [. . . ] appears.
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Fig. 3. Graphical representation of how the execution of a system Capability
will affect the state of the world.

C. Capability Definition

In many goal-oriented approaches, a Task is the operational-
ization of a Goal. This means that each task, in a goal model,
is associated to one (or more) leaf goal(s). This association is
made at design time as the result of a human activity called
means-end analysis. In the i* conceptual model [9], a means-
end link introduces a means to attain an end where the end
can be a goal, task, resource or softgoal, whereas the means
is usually a task. The TROPOS methodology [3] introduces
means-end analysis as an activity for identifying (possibly
several alternative) tasks to satisfy a goal.

The task is therefore an analysis entity that encapsulates
how to address a given goal according to the following
statement: “a Task T is a means to a Goal G (G being the end)
when one or more executions of T produce a post-situation
which satisfies G” [10].

We explicitly introduce the concept of system Capability for
introducing a difference between means-end analysis made at
design-time and at run-time.

Definition 4 (Capability). A capability is a run-time property
of the system that may be intentionally used to address a given
result. The effect of a capability is an endogenous evolution of
the state of the world. The evolution is expressed as a function
that takes a state of world W t and produces a new state of
world W t+1 by manipulating statements in W t. The evolution
can start only if a given pre-condition is true over the current
state of the world (pre(W t) = true). If the capability has
been successfully executed, then a post-condition must be true
in the resulting state of the world (post(W t+1) = true).

A representation of the evolution, preconditions and post-
conditions of a capability is shown in Figure 3.

The main difference between Capability and Task is that the
former has not an explicit link with any goal. Capability is like
a ‘tool’ the system owns for changing the current state of the
world. It is up to the system to execute a reasoning process
for establishing which capability or sequence of capabilities
to select in order to address a target goal.

Problem 1 (Proactive Means-End Reasoning). Given a cur-
rent state of the world W

I

, a Goal Model (G,R) and a set of
available Capabilities C, the Proactive Means-End Reasoning
concerns finding a set of capabilities CS ✓ C in which each
capability will address one of the goals of the Goal Model
(G,R), thus to grant the achievement of the root goal g

root

.

In the next section, we introduce the role of ontology in our
approach and the specific metamodel we refer to in defining
the ontological models for our systems.

III. ONTOLOGY-BASED SYSTEM SELF-AWARENESS

Self-* properties may related to software quality factors as
defined in the ISO 9126-1 quality model. In particular there are
evidences that self-awareness, considered the base property for
all the other self-* system properties, impacts quality factors,
such as maintainability, functionality, and portability [11].

Self-awareness is often referred as the ability of a software
agent to know (and reason on) its state and its behavior.
In Philosophy, the term awareness is often associated with
theories of consciousness and of self-referential behavior [12].
“Thinking that One Thinks” resumes a very high level of
awareness that is common in human consciousness [13].

In Artificial Intelligence this property is often implemented
for enabling a software agent to plan its behavior. The theory
of self-knowledge and action [14] asserts an agent achieves a
goal by doing some actions if the agent knows what the action
is and it knows that doing the action would result in the goal
being satisfied [15].

With the aim of implementing self-aware software agents
we consider Goals and Capabilities as first-class entities for
agent deliberation. The abilities an agent needs to address a
goal that is provided at run-time are: 1) to know its own
capabilities, their usage and effect and 2) to decide which
capability to execute (and in which order) for addressing a
desired result.

The aim of the remaining part of this section is to describe
how we provide our agents with the proposed self-awareness
skills (Section III-D). In order to better detail the approach,
before that, we introduce the ingredients needed to achieve
our purpose: the way we depict the problem domain using
an ontology, a language for specifying goals that refers to
ontological elements as keys for grounding the goals on the
problem and, finally, a language for declaring capabilities that
supports the separation between an abstract description of the
capability and its concrete implementation.

A. The Domain Ontology Description
An ontology is a specification of a conceptualization made

for the purpose of enabling knowledge sharing and reuse [16].
An ontological commitment is an agreement to use a thesaurus
of words in a way that is consistent (even if not complete) with
respect to the theory specified by an ontology [17].

A Problem Ontology (PO) [18] is a conceptual model (and
a set of guidelines) used to create an ontological commitment
for developing complex distributed systems. This artifact aims
at visualizing an ontology as a set of concepts, predicates and
actions and how these are related to one another.

In this section we exploit the PO for encoding a specific
domain of interest as the baseline for implementing system
self-awareness of Goals and Capabilities.

The metamodel of a PO artifact (Figure 4) has been inspired
by the FIPA (Foundation for Intelligent Physical Agents)
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Fig. 4. Metamodel of the PO artifact.

standard [19] and refined for being used in the ASPECS
methodology [18], [20]. It is shown in Figure 4 and explained
below.

• A Concept is a general term usually used in a broad sense
to identify “anything about which something is said” [21]
that has a unique meaning in a subject domain. We use
the term Concept just for representing classes of domain
entities;

• a Predicate is the expression of a property, a quality
or a state of one (ore more) concept(s). It could define
a formal structure for statements and rules that relate
instances of those concepts;

• an Action is defined as “the cause of an event by an acting
concept” (adapted from [22]). Actions are classified as
intentional and unintentional [23] where intentionality
implies a kind of consciousness to act, whereas Unin-
tentional Action is an automatic response governed by
fixed rules or laws;

• a Position is a specialization of concept performing
Actions (both Intentional and Unintentional).

• finally, an Object represents all the concepts that can
perform only unintentional actions.

For what concerns relationships, the PO metamodel sup-
ports:

• is-a (or is-a-subtype-of) that is the relationship that de-
fines which objects are classified by which class, thus
creating taxonomies;

• part-of relationship (or the counterpart has-part), in
which ontological elements representing the components
of something are associated with the ontological element
representing the entire assembly;

• association that is a general purpose relationship for
establishing propositions that links two ontological ele-
ments. They are particularly useful for defining a formal
structure for instances of related concepts.

This representation, mainly human-oriented, is particularly
relevant for developing cognitive system that are able of stor-
ing, manipulating, reasoning on, and transferring knowledge
data directly in this form [20]. As an example, many Belief-
Desire-Intention (BDI) [24] system implementations use first-
order predicates for describing entities of the environment (and

their properties) that can be perceived and manipulated by a
software agent.

usrmsg

Meeting <<position>>
Attendee

<<position>>
Initiator Calendar

Timeslot

<<predicate>>
Confirmed

<<predicate>>
Canceled

<<predicate>>
Pending

<<action>>
Schedule

<<action>>
Accepted

<<action>>
Rejected

<<predicate>>
MinAttendees

Meeting 
DateTime

<<predicate>>
Notified

<<position>>
User

is-a

is-a

Contact Info

Email Skype Id

<<predicate>>
Busy

ISO 8601 
DateTime

is-a

is-a is-a

<<predicate>>
Free

Fig. 5. Example of Problem Ontology for the Meeting Scheduling application
context. Ontology elements represented without stereotypes are to be read as
concepts by default.

Here let’s consider how a requirement analyst uses the
ontology diagram to provide a denotation to significant states
of the world, thus allowing to give a precise semantics to
goals and capabilities. Given that a state of the world is made
of statements (that are considered true in a given time instant),
then ontology-based propositions are built with a formal
structure by grounding on concepts, predicates and actions.
Translation of formal ontology into representation systems
is a well-known topic in the state of art about knowledge
representation [25].

For instance, with reference to the ontology of the meet-
ing scheduling application (Figure 5), a state of the world
may have the form shown in Figure 6, where m123 is an
instance of the Meeting concept, mario.rossi is an instance
of Attendee and so on. At the same way, the statement noti-
fied(m123,mario.rossi) is an instance of the Notified predicate
of the PO.

B. A Goal Specification Language

The GoalSPEC language [26] has been specifically de-
signed for enabling runtime goal injection and software agent
reasoning. It takes inspiration from languages for specifying
requirements for adaptation, such as RELAX [4], however
GoalSPEC is in line with Definition 2. The language is based
on structured English and it adopts a core grammar with a

W t notified(m123,mario.rossi)

pending(m123)

accepted(john.smith,m123, dt(2015,01,06,10,30))

email(mario.rossi, m.rossi@gmail.com)

Fig. 6. A state of the world built in conformance to a domain ontology.
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basic set of keywords that must be extended by plugging-in a
domain ontology.

As already stated, the core grammar of GoalSPEC is in line
with Definition 2. Figure 7 represents its metamodel. The main
entity is Goal (wanted by some subject) that it is composed of
a Trigger Condition and a Final State. The subject is a noun
that describes the name of the involved person, role or group
of persons that owns the responsibility to address the goal. The
trigger condition is an event that must occur in order to start
acting for addressing the goal. The final state is the desired
state of the world that must be addressed.

It is worth underlining that both Trigger Conditions and
Final States must be expressed by using a State of the World,
that in turn is expressed through domain ontology predicates.

For a complete specification of the syntax of GoalSPEC
see [26]. Some examples of GoalSPEC productions for the
domain of the Meeting Scheduling are listed below:

1) WHEN schedule(Usr,Meeting) THE system SHALL
PRODUCE canceled(Meeting) OR confirmed(Meeting)

2) WHEN pending(Meeting) AND meeting datetime(DT) AND
attendee(Meeting,A) THE system SHALL PRODUCE
notified(A,Meeting,DT)

3) AFTER 2 days SINCE WHEN notified(Usr,Meeting,DT)
THE system SHALL PRODUCE accepted(Usr, Meeting,DT)
OR rejected(Usr, Meeting,DT)

Each of the items shown before are goals. For purpose of
clarity we put in uppercase the keywords of the language, and
in lowercase the domain specific predicates constrained by the
problem ontology (Figure 5). Goal 1 indicates that ‘when the
software agent knows a user is going to schedule a meeting,
then it should bring the meeting to a state of canceled or
confirmed’. Goal 2 states that ‘when a meeting is yet in a
state of pending, but a date-time is going to be proposed to a
set of attendees, then each of these attendees has to be notified
about’. Finally, Goal 3 says that ‘when two days past since
the notification has been sent, then the system must collect the
results (accepted or rejected)’.

After that a set of goals has been completed, it can be
injected into the running system, thus to let the system try to

address them. We called this mechanism goal injection [27].

C. A Capability Specification Language
In AI, the need for representing software agent’s actions

in order to implement reasoning directed towards action is a
long-dated issue [?], [8], [14], [15]. An agent is able to achieve
a goal by doing an action if either the agent knows what the
action is and knows that doing the action would result in the
goal being satisfied [14]. This topic has become even more
actual because the amount of services deployed in the web is
exponentially growing and researchers are looking for ways for
automatically searching, selecting and composing them [28].

We use Capability as an internal representation of an atomic
unit of work that a software agent may use for addressing
changes in the state of the world. A Capability is made of
two components: an abstract description (a set of beliefs that
makes an agent aware of owning the capability and able to
reason on its use), and a concrete body implementation (a set
of plans for executing the job).

Whereas we define a template for providing the abstract
description of a capability, we do not provide any language for
the body, leaving the choice of the specific technology to the
developer. The proposed template (Table I) is a refinement of
that presented in [28] for LARKS (language for advertisement
and request for knowledge sharing).

TABLE I
TEMPLATE FOR DOCUMENTING A CAPABILITY DESCRIPTION.

Name Unique label used to refer to the capability

InputParams Definition of the input variables necessary for
the execution.

OutputParams Definition of the output variables produced by
the execution.

Constraints Optional (logical or structural) constraints on
input/output variables.

Pre-Condition Condition that must hold in the current state of
the world in order to execute the capability.

Post-Condition Condition that must hold in the final state of
the world in order to assert the capability has
been correctly executed.

Evolution Function of evolution evo : W �! W as
described in Section II

Tables II and III are two examples of capabilities that work
with emails. The Proposal Mail Sender capability encodes
a question into the content of an email, thus the receiver
can select two links, for answering yes or not. The second
capability, Collect Response, looks at all the received answers
to a given question and returns an array in which there is an
item for each user who replied.

There is also a special category of capabilities that is Cloud
Capability. These capabilities have been created for interacting
with a REST application on the cloud. An example is the
Google Calendar Check capability reported in Table IV. The
aim of this capability is to interact with users’ google calendar
account for obtaining whether a given time slot is free or busy.



TABLE II
ABSTRACT SPECIFICATION OF THE PROPOSAL MAIL SENDER CAPABILITY.

Name PROPOSAL MAIL SENDER

InputParams QUESTION : TEXT,
RESPONSEID: STRING
USERMAIL : STRING

OutputParams NONE

Constraints format(UserMail,

RFC 5322 Address Specification)

Pre-Condition email(Usr, UserMail)

Post-Condition notified(Question, Usr)

Evolution evo = {add(notified(Msg, Usr)),
add(mailed(UserMail,Question))
add(questioned(Usr,ResponseId))}

TABLE III
ABSTRACT SPECIFICATION OF THE COLLECT RESPONSE CAPABILITY.

Name COLLECT MAIL RESPONSES

InputParams RESPONSEID : STRING

OutputParams RESPONSEARRAY : ARRAYOF(
RESPONSE(USR,{yes | not}))

Constraints NONE

Pre-Condition questioned(Usr,ResponseId))

Post-Condition accepted(Usr,ResponseId)_
rejected(Usr,ResponseId)

Evolution evo = {add(accepted(Usr,ResponseId))
add(rejected(Usr,ResponseId))
remove(questioned(Msg,ResponseId))}

D. Implementing Self-Awareness

Reasoning about knowledge and belief is still an issue
of concern in philosophy and artificial intelligence. For the
purpose of this work, some simplifications have been assumed
for aiming at the core of this research problem.

The principle at the base of the approach is that a software
agent can store injected goals, its capabilities, the compu-
tational state and the execution process by using the same
belief baseFirst-order logic provides a well-understood model-
theoretic semantics and it enables characterization of reasoning
on goals and capabilities in terms of classical notions of
deduction and consistency [29].

The issue of implementing injected user-goals into a
BDI [24] agent has been already considered in some recent
works in literature [30]. Similarly, also annotating agent’s
capabilities/services with a first-order logic semantics is an
open branch of research [5].

Here it is a couple of examples of how respectively Goal
1 and Goal 2 reported in Section III-B may be encoded in a
software agent’s belief base:

agent_goal(

params( [usr,mtg] , [

category(usr, attendee),

category(mtg, meeting) ]),

TABLE IV
ABSTRACT SPECIFICATION OF THE GOOGLE CALENDAR CHECK

CAPABILITY.

Name GOOGLE CALENDAR CHECK

InputParams SLOT : TIMESLOT, USERCALENDAR : CAL-
ENDAR

OutputParams RESPONSEARRAY : ARRAYOF(
SLOT(USR,{free | busy}))

Constraints format(Slot,
slot(dt(year,month, day, hour,minute),
dt(year,month, day, hour,minute)))

Pre-Condition calendar(Usr, UserCalendar)

Post-Condition free(Usr, T imeslot)_
busy(Usr, T imeslot)

Evolution evo = {add(notified(Msg, Usr)),
add(free(Usr, T imeslot))
add(busy(Usr, T imeslot))}

tr_condition( schedule(usr,mtg)),

final_state( or(

canceled(mtg),

confirmed(mtg) ) ),

system

)

agent_goal(

params( [mtg,dt,a], [

category(mtg, meeting),

category(dt, meetingdatetime),

category(a,attendee) ) ,

tr_condition( and(

pending(mtg),

meeting_datetime(dt),

attendee(mtg,a) ) ),

final_state( notified(a,mtg,dt ),

system

)

This code has to be read as follows: the agent knows
to own a couple of goals. The first goal is linked to two
concepts of the ontology: Attendee and Meeting. It has, as
triggering condition, the formula schedule(usr,meeting) and,
as final state, a logical OR condition between two statements:
canceled(meeting) and confirmed(meeting). The second goal
grounds over three concepts of the domain: Meeting, Meeting-
DateTime and Attendee. The goal precondition is the logical
AND condition of three elements, whereas the final state is
the formula notified(a,mtg,dt).

The first advantage of having goals in the agent belief base
is that they can dynamically change during the agent life.
Indeed, new goals can be added into the belief-base, or existing
goals can be retreat. An injected goal is not automatically
committed by the agent through a plan (as it happens in many
rule-based systems): goal commitment is the result of agent
reasoning.

In a similar encoding style, the agent can also store ab-
stract capabilities. Here a couple of examples of the pro-
posal mail sender and collect mail responder capabilities, re-
spectively.



agent_capability( proposal_mail_sender,

in_params([question,response_id,usermail]),

out_params( [] ),

precondition( email(user,usermail) ),

postcondition( notified(question, user) ),

evolution( [

add( notified(question, user) ),

add(mailed(usermail, question) ),

add( questioned(user,response_id) ) ] )

)

agent_capability( collect_mail_responder,

in_params( [response_id] ),

out_params([array(response(user,boolean))]),

precondition( questioned(user,response_id) ),

postcondition( or(

accepted(user,response_id),

rejected(user,response_id) ) ),

evolution( [

add( accepted(user,response_id) ),

add( rejected(user,response_id) ),

remove(questioned(user,response_id))])

)

This code is the faithful reproduction of information in form
of logical predicates, shown in Table II and Table III.

IV. SELF-ADAPTATION AS THE RESULT OF AGENT
DELIBERATION

The principle at the base of this approach for software agent
deliberation is that each agent knows to know something.

Let us suppose the software agent a knows W t (the current
state of the world), and a goal g is injected. The agent must
be able of understanding if g is already addressed in W t

by evaluating the goal triggering condition and final state,
respectively tc(W t) and fs(W t). If g is yet to be addressed,
then the agent starts considering the opportunity to pursue
that and therefore it reasons on the set of capabilities C it
owns, and for each cap

i

2 C how the generic capability
affects W t. We call Goal/Capability Deliberation the ability
of discovering a sequence of cap

i

2 C which execution will
lead to address g (Problem 1).

The BDI software architecture [24], inspired by human
attitudes (beliefs, desires, intentions), is a common model
for implementing a goal-directed behavior. The assumption
of the BDI model is that computer programs can have a
mental state. Thus BDI systems are computer programs having
computational features that are analogues to beliefs, desires
and intentions [24]. BDI software agents offer the required
level of abstraction to build an autonomous, self-aware and
self-adaptive system. However, the basic BDI approach is not
sufficient to implement the Goal/Capability deliberation as it
has been described before. It is a common practice in current
BDI application to develop collections of plans at design time.
The objective of the agent is then solved by pursuing these
plans for their execution at run time. This mechanism lacks of
flexibility because i) plans are directly connected to goals they
address and ii) the attitude of an agent to deal with changing
circumstances is dependent on how plans are coded for it by
the agent programmer.

A. Proactive Means-End Reasoning

We implement an agent execution framework based on an
architecture that lays upon the BDI model; it exploits beliefs
for storing the knowledge about W t, Goals and Capabilities,
and it allows the agent to reason on how to achieve goals
injected at runtime by using the capabilities they own. This
is achieved by means of a Proactive Means-End Reasoning
algorithm and a Goal/Capability Deliberation algorithm that
are implemented through desires and intentions.

Given a goal model (G,R) where g
root

2 G is the top
goal of the hierarchy, the Proactive Means-End Reasoning
algorithm explores the hierarchy, starting from g

root

in
a top-down fashion. The objective is to check the root
goal addressability according to available capabilities. The
algorithm exploits AND/OR decomposition relationships to
deduct a goal addressability according to its subgoals.

Algorithm 1 meansend resoning(GM, g
target

,W
I

, C)

1: meansend goal cap deliberation(W
I

, g
target

, C)
2: if g

target

IS leaf then

3: sol set meansend
4: else if meansend = ; then

5: dec type get decomposition type(g
target

, GM)
6: children get subgoals(g

target

, GM)
7: for all g

i

2 children do

8: sub sols meansend resoning(GM, g
i

,W
I

, C)
9: if dec type == ’and’ then

10: if sub sols 6= ; then

11: sol set permut(sol set, sub sols)
12: else

13: return ;
14: end if

15: else if dec type == ’or’ then

16: sol set union(sol set, sub sols)
17: end if

18: end for

19: end if

20: return sol set

The first step of the algorithm is to check whether at least
one solution exists for addressing the given goal (by using
the Goal/Capability Deliberation procedure in Algorithm 2).
If the target goal is a leaf goal the adopted solution is the one
returned by the sub procedure, otherwise, if no solution has
been found, the algorithm proceeds with a top-down recursive
approach.

• If the relationship is an AND decomposition the result
is the permutation of all the solutions found for each
children node.

• If the relationship is an OR decomposition the result is
the union of all the solutions found for each children
node.

Let us indicate with {.} a complete/partial solution for
the fulfillment of a goal where the ‘dot’ is to be re-



placed by a capability or a sequence of capabilities, ex-
pressed in the form hc1, c2, . . . , cni. Therefore, a generic
solution set generated by the algorithm has the following
form: {hc1, c2, . . . , cni, hc1, c2, . . . , cmi, . . . }

If a goal g
A

is AND-decomposed in two sub-goals g
B

and g
C

, and the algorithm finds {hc1i, hc2i} as solutions to
g
B

and {hc3i} as solution of g
C

, then the solution of g
A

is
{hc1, c3i}, {hc2, c3i}.

Conversely, if a goal g
A

is OR decomposed in two sub-goals
g
B

and g
C

, and the algorithm finds {hc1i, hc2i} as solutions
to g

B

and {hc3i} as solution of g
C

, then the solution of g
A

is
{hc1i, hc2i, hc3i}.

B. Goal/Capability Deliberation
Algorithm 1 is mainly intended for exploring the goal

model hierarchy and composing partial solutions into a top
level solution that addresses g

root

. However, the core of
Algorithm 1 is the procedure called at the first instruction.
The procedure for the Goal/Capability Deliberation is reported
in Algorithm 2. It exploits agent’s mental states in order to
evaluate what happens when capabilities are pursed through a
simulation of evolution of possible worlds.

The inputs of the algorithm are the current state of the world
W

I

and a generic goal g
i

2 G of the goal model. At each step
the algorithm explores the space of solutions by simulating the
employment of one of the available capabilities, thus gener-
ating a tree of possible evolution paths of the current state.
Each path in the tree represents a sequence of capabilities and
their endogenous effects over W

I

. An instance of execution
of the Algorithm 2 is shown in Figure 8. Let us suppose to be
able of representing the solution space as a surface in which
each point indicates a different configuration of statements
s
i

2 S. Some areas of this surface are marked as ‘forbidden’,
meaning that those configurations are not valid. Therefore, the
algorithm analyzes at each step the most promising path. This
is evaluated by considering a score function that measures (i)
the distance from the final state and (ii) the quality of the
partial configuration.

When an evolution path is selected the algorithm checks
whether it addresses the goal g

i

: in this case the set of
capabilities used to obtain the path is marked as one of the
possible solutions. Otherwise the algorithm tries to expand the
current path by employing other available capabilities. The
output of this algorithm is a list of all the solutions that have
been discovered.

The algorithm takes an exponential time to complete. To
simplify its execution, we assume of: i) selecting (at each step)
only a subset of all possible capabilities to expand the tree, ii)
exploring a limited space of solutions in which some areas are
forbidden (see Figure 8) and iii) employing domain-specific
utility functions to measure the quality of the partial solutions.

C. Self-Adaptation
The proactive means-end reasoning procedure may be the

ground for engineering a self-adaptative software system.
According the roadmap of self-adaptive systems [1], one of the
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Fig. 8. Abstract representation of the strategy used to explore a space of
solutions for building a plan.

Algorithm 2 goal cap deliberation(W
I

, g, C, Space[= ;])
1: CS  extract highest scored path(Space)
2: if g is satisfied by CS from W

I

then

3: sol set put(CS, sol set)
4: if dim(sol set) > max dim then

5: return sol set
6: end if

7: else

8: cap set select capabilities(C,CS,W
I

)
9: Space expand and score(CS, cap set, Space)

10: end if

11: return goal cap deliberation(W
I

, g, C, Space)

principles for implementing such a system is to explicitly focus
on the ‘control loop’ as an internal mechanism for controlling
the system’s dynamic behavior.

Figure 9 shows the adaptation cycle whose core activities
are: goal injection, proactive means-end reasoning, goal com-
mitment, environment monitoring, and capability execution.
The agent reacts to goal injection by activating the proactive
means-end reasoning and by trying to assemble a solution for
addressing the goal. If at least one solution is discovered the
agent selects the highest scored set of capabilities (according to
capability costs, reliability and other QoS factors) for enabling
the goal commitment. As a consequence the agent enters in
a sub-cycle of monitoring and execution. If everything goes
as planned, the goal will be eventually addressed. However,
the goal/capability deliberation procedure did not considered
exogenous changes of the state of affairs. As a consequence the
agent is not ready to act in case of unexpected changes coming
from outside the model. When this happens, the proactive
means-end reasoning is executed again, but with a different
current state of the world. The result will be a new set
of capabilities (if possible) for overcoming the unexpected
state change. The self-adaptation cycle also considers cases in
which the execution of a capability terminates with errors. In



this case too, the proactive means-end reasoning is executed,
with the shrewdness to mark the capability that failed as
‘unselectable’.

monitor
goal injection

proactive
means-end 
reasoning

goal
commitment

environment
monitoring

capability
execution

failure

unexpected
state

Fig. 9. Graphical representation of the Self-Adaptation Cycle.

V. DISCUSSION AND EVALUATION

Sections III-IV faced Problem 1 by exploiting a semantic
approach for bridging Capabilities and Goals.

This work tries to improve the state of the art in at least
two ways. First, the idea of a proactive means-end reasoning
strongly grounds on the research line that explores goal
models as mechanisms for software agents to reflect upon
their requirements during their operation. In particular, Dalpiaz
et al. [7] propose runtime goal model (RGM) that annotate
goals with additional information about the fulfillment of
goals. Despite RGM is an exceptional instrument for system
reasoning, we observed the behavior of the system is wired
into tasks of the RGM. The system may adapt its behavior
only by selecting (hard-coded) task among alternative OR
decomposition relationships. Therefore the research question
we raise up is: what if tasks are not provided together with
the goal model?

Second, the idea of goal injection comes from observing
that functional requirements could be a runtime entity, to
be provided to the system on the need [4]. GoalSPEC is a
language for specifying requirements in form of goals for
self-adaptive systems. With respect to the work of Whittle et
al. [4], GoalSPEC has a simpler syntax but a limited support to
uncertainty. The authors have planned of extending GoalSPEC
with a new set of keywords for handling uncertainty and
high/low priority among goals as future work.

The following subsection introduces the middleware we
developed to concretely implement and experiment the above
reported theories.

A. A Middleware for User-driven Service self-Adaptation
MUSA (Middleware for User-driven Service Adaptation)

is a holonic multi-agent system for the composition and or-
chestration of services in a distributed and open environment.
MUSA aims at providing run-time modification of the flow of
events, dynamic hierarchies of services and integration of user
preferences together with a system for run-time monitoring of
activities that is also able of dealing with unexpected failures
and optimization.

The concept of holon, coined in the field of biology and
social science for explaining emergence, equilibrium and self-
adaptation, has been recently used in software engineering
too [18], [31].

Holon is a general term for indicating a concrete or abstract
entity that has its own individuality, but at the same time, it
is embedded in larger wholes. The main principle that rules
an holon is the Janus effect, that is a principle of duality: the
same entity has its own individuality but at the same time it
is made of many parts. An example of concrete holon is an
organ that is a part of an organism, but a whole with regard
to the cells of which it is comprised. An example of abstract
holon is a word that is part of a sentence, but a whole with
regard to the letters that compose it.

IN MUSA holons have been used for bridging self-
organization and self-adaptation. A composed service may be
seen as a holarchy, i.e. a hierarchy of elements in which
each component is a whole and a part at the same time.
When developing a complex service, each part maintains its
autonomy but it also has to collaborate with other entities
for providing a composed functionality. In MUSA this is
implemented as a multi-agent system in which elements are
able of organizing themselves in holonic structures [32].

Requests for service composition are injected at runtime
through the use of user-goal specified in GoalSPEC. Services
are deployed in the web as usual, but agents own specific
capabilities for dealing with classes of them. Since software
agent are deployed in a distributed environment, MUSA im-
plements a distributed version of Algorithm 2 in which the
result is not only a set of capabilities for addressing goals, but
also a contract among the agents for working in collaboration.
Therefore, service composition is obtained at run-time, as the
result of a self-organization phenomenon.

The whole system has been implemented by using JASON
and CArtAgO. The JASON [33] platform is based on the
AgentSpeak language [5] and the BDI theory [24]. AgentS-
peak is a programming language based on events and actions.
The state of an agent together with its environment and
eventual other agents represent its belief base. Desires are
states which the agent wants to attain based on its perceptions
and beliefs. When an agent adopts a plan it transforms a
desire to an intention to be pursued. In JASON, the agent’s
knowledge is expressed by a symbolic representation by using
beliefs, that are simple predicates that state what the agent
thinks to be true.

JASON agents are not aware neither of their goals nor
of their capabilities. The specification of a goal is strictly
connected to the plans to be executed for achieving it. In
order to implement self-awareness we use the belief base as
illustrated in Section III-D.

CArtAgO (Common ARTifact infrastructure for AGents
Open environments) [34] is a general purpose frame-
work/infrastructure that makes it possible to model and pro-
gram the agents’ environment. In MUSA the body of Capa-
bilities for interacting with web services exploits CArtAgO.

MUSA have been employed in the following research



project and case studies:
• Project IDS (Innovative Document Sharing) started in

2011-closed in 2014 and funded by the Autonomous
Region of Sicily within the Regional Operative Plans
(PO-FESR) of the EU Community. MUSA is the core en-
gine for executing dynamic workflows in small/medium
enterprises. The architecture includes a BPMN2GOAL
component that translates a BPMN 2.0 specification file
into a set of GoalSPEC goals. Therefore these goals are
injected into the system in which agents are responsible
of 1) automatic tasks (as the document classification)
2) to interface with human workers (BPMN Resources)
and 3) monitoring manual tasks (as the document super-
vise) [27].

• Project OCCP (Open Cloud Computing Platform) started
in 2014-to close in late 2015 and again funded by
the Autonomous Region of Sicily within the PO-FESR
initiative. MUSA is currently employed for the automatic
mash-up of cloud application. The expected result is to
allow a user to define a new cloud application as the
integration (in terms of data and process) of existing
cloud applications.

• Project PON SIGMA (integrated cloud system of sensors
for advanced multi-risk management) started in 2013-
to close in early 2015. This project explores how to
merge protocols for emergency when many disasters (for
instance earthquake and fire) happen at the same time.
MUSA is going to be employed for simulating security
operations according to goals and norms.

• Case study on a Smart Travel Agency. This state-of-the-
art benchmark has been used for testing the possibility to
adopt MUSA in the context of a final user fine configura-
tion of service composition. In this context user goals are
indeed used for requesting a fine grained configuration for
a ‘travel’ product. The system is also able to monitor the
traveler during its journey and to propose variation to the
planned travel when something changes in the context
(i.e. a delay or a new user goal).

• Case study on an Exhibition Center system. This case
study is still in progress. It aims at testing MUSA in the
context of a socio-technical system in which technical
aspects are as important as social assets.

B. Limits
This subsection presents a critical analysis of the approach.

The first and most relevant topic regards computational com-
plexity. The proposed Algorithm 2 is a search algorithm that
improves a breadth-first search even if the time complexity for
the worst case is yet O(bd) where b is the branching factor and
d is the depth. This algorithm is a starting point for exploring
the research direction. Below we will quickly review some
alternative approaches to improve the performance.

Planning/Scheduling algorithms. It could be natural to
think that a solution to Problem 1 can be designed by
exploiting the state of the art in planning and scheduling.
Algorithms for planning are concerned with figuring out what

actions need to be carried out for addressing a given result,
whereas algorithms for scheduling are concerned with when
to carry these actions for the same purpose [35], [36].

SAT solver. Searching in the space of State of Worlds is
a combinatorial problem, and therefore it may afforded by
a SAT solver. Despite the fact that the Propositional Satisfi-
ability is a NP-complete problem, recently many algorithms
(i.e. DPLL, CDCL [37]) reach impressive performances with
several hundreds of variables and several thousand of clauses
in worst conditions [38].

Case Based reasoning. Case-based reasoning [39] is
a problem solving paradigm that in many respects is
fundamentally different from other major AI approaches
since it is able to utilize the specific knowledge of previously
experienced, concrete problem situations. A new problem is
solved by finding a similar past case, and reusing it in the new
problem situation. This approach would be applied together
with a divide and conquer strategy (Algorithm 1) in which a
complex problem is decomposed in simpler sub-problems to
front them separately.

Another point of discussion concerns the real degree of
decoupling between Capabilities and Goals. The authors have
introduced the use of an ontology for enabling a semantic
compatibility between these two elements. By committing to
the same ontology, Capabilities and Goals can be implemented
and delivered by different development teams. Our experi-
mental phase has provided evidences that if the ontology is
built correctly then the approach works properly. However
it must be yet considered how changes in the PO affect the
maintenance of Capabilities and Goals. For instance, changing
de definition of a predicate in the ontology could have a
detrimental impact over the effectiveness of the approach by
implying a revision of deployed Capabilities. Authors are
already working on building a reasoning algorithm more robust
to changes of the language [40], thus to deal with conceptual
ambiguities and linguistics flaws (as, for instance similarities
and synonyms).

VI. CONCLUSION

This work is a preliminary step for answering to the research
question whether how to implement self-adaptive system in
which tasks are not provided together with the goal model.
In this vision, system’s functional requirements are not hard-
coded, but rather they are provided at run-time as Goals.
It is necessary an autonomous and proactive software agent
able of deciding how to combine its available Capabilities for
addressing injected goals. The first result, presented in this
work is MUSA, a Middleware for User-driven Service self-
Adaptation that implements in a belief-desire-intention pro-
gramming language an ontology-based algorithm for finding
capabilities for addressing a generic goal. The work can evolve
in several ways: i) to improve the performance of searching a
solution, ii) handling uncertainty and high/low priority among
goals iii) to relax the dependency of the approach on an
ontological commitment.
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