

Consiglio Nazionale delle Ricerche
Istituto di Calcolo e Reti ad Alte Prestazioni

A Workflow Merging Approach for

Emergency Procedures

Rapporto Tecnico N.:
RT-ICAR-PA-16-01 Data:

febbraio 2016

Consiglio Nazionale delle Ricerche, Istituto di Calcolo e Reti ad Alte Prestazioni (ICAR)
– Sede di Cosenza, Via P. Bucci 41C, 87036 Rende, Italy, URL: www.icar.cnr.it
– Sede di Napoli, Via P. Castellino 111, 80131 Napoli, URL: www.na.icar.cnr.it
– Sede di Palermo, Viale delle Scienze, 90128 Palermo, URL: www.pa.icar.cnr.it

Consiglio Nazionale delle Ricerche
Istituto di Calcolo e Reti ad Alte Prestazioni

A Workflow Merging Approach for
Emergency Procedures

P. Ribino1, C. Lodato1 , M. Cossentino1

Rapporto Tecnico N.:
RT-ICAR-PA-16-01

Data:
febbraio 2016

1 Istituto di Calcolo e Reti ad Alte Prestazioni, ICAR-CNR, Sede di Palermo, Viale delle Scienze

edificio 11, 90128 Palermo.

I rapporti tecnici dell’ICAR-CNR sono pubblicati dall’Istituto di Calcolo e Reti ad Alte
Prestazioni del Consiglio Nazionale delle Ricerche. Tali rapporti, approntati sotto l’esclusiva
responsabilità scientifica degli autori, descrivono attività di ricerca del personale e dei
collaboratori dell’ICAR, in alcuni casi in un formato preliminare prima della pubblicazione
definitiva in altra sede.

A Workflow Merging Approach for Emergency

Procedures

P.Ribino, M.Cossentino, C.Lodato

Istituto di Calcolo e Reti ad alte Prestazioni
Consiglio Nazionale delle Ricerche - Italy

Abstract

Workflow merging is the problem to create a process model by unifying sev-
eral process models that share process fragments. This paper presents a
novel approach for merging emergency procedures to cope with the problem
to manage multi emergencies. Such an approach is based on a new formal-
ization of a process in terms of norms and goals. Norms are moreover used
for solving conflict during the merging process. The proposed approach tries
to overcome the limitations of design time merging approaches.

Keywords:

1. Introduction

Emergency management [1] is the discipline dealing with the creation of
emergency plans through which institutions try to avoid potential risk and
decrease the impact of disasters. The range of situations that could possibly
involve emergency management is extensive. An emergency plan includes
emergency procedures to address specific types of situations. An emergency
procedure (also named protocol) is a set of actions (i.e: a process) to be
conducted in a certain order when some situations occur. Commonly, these
procedures are defined to deal with a single event. Hence, procedures for
addressing terrorism, industrial accidents, natural calamity (such as earth-
quakes, fires, landslides) are ad hoc designed. When multi emergencies and
unpredicted scenarios simultaneously occur, a real time fusion of emergency
procedures along with the adoption of appropriate regulations is mandatory
in order to avoid waste of resources.

Preprint submitted to Elsevier March 16, 2016

This kind of issue can be compared with the problem of workflow merg-
ing in the context of Process Management. Process management is a field
of combining management and technology focused on aligning organizations
with the needs of clients. The basic element of process management is the
Business Process. A business process is a set of one or more linked procedures
or activities, which are collectively executed to reach required business ob-
jectives normally within the context of an organizational structure defining
functional roles and relationships.

In such context, it often occurs that several companies must make fre-
quent business process changes as well as organizational changes due to merg-
ers and acquisitions. Hence, multiple alternative processes, previously be-
longing to di↵erent companies, need to be consolidated into a single one in
order to eliminate redundancies and create synergies. To this end, teams
of business analysts need to compare similar process models so as to iden-
tify commonalities and di↵erences, and to create integrated process models.
Combining di↵erent procedures is a time-consuming and error-prone task. In
the context of business organizations few manual or semi-automatic methods
are proposed[2, 3]. Such methods work at design time. No timely solutions
are required.

In the context of multi-emergency, where several unexpected situations
may occur due to the combined e↵ect of multiple events, the number of
possible paths the combined process has to take into consideration may dra-
matically increase. The approaches proposed in the field of business pro-
cesses are not properly adequate. They could be used at design time for
creating multi-emergency procedures, but always with the limitation of the
unpredictability of the situations. In the context of emergency management,
well-timed solutions are crucial.

In this work we propose a method that allows a flexible run-time process
merging by including normative concepts in a goal-based paradigm for mod-
elling processes. In our approach, norms and goals allow to cope with two
main aspects of a process. Goals expresses what a process has to reach, what
is the desired state of the world a process has to result in. Norms denote
the way a process has to be conducted in order to achieve the desired state
of the world in compliance with the normative context in which that process
takes place. Norms represent process regulations by specifying obligations,
permissions or prohibitions to be followed during process activities in case of
certain conditions occur, thus relaxing or restricting a process.

The main contribution of this paper is a method for merging multiple

2

procedures in a real time fashion. For achieving our purpose, we propose
a merging algorithm that generates a single merged process starting from
several processes. Such an algorithm is based on a novel modelling approach
that allows to represent a process in terms of norms and goals. Hence, the
merged process could be executed by goal-oriented workflow engine. In this
paper, we tested our approach by developing a web application that uses
MUSA[4] as a workflow management engine for real time execution of emer-
gency procedures.

We use BPMN[5] and SBVR[6] as standard notations in order to show
the input and output of merging algorithms.

The research has been partially funded by SIGMA project -Sistema In-
tegrato di sensori in ambiente cloud per la Gestione Multirischio Avanzata.
SIGMA is a national research project developed in collaboration with several
research and industrial partners, its aim is the development of an integrated
framework for multi-emergency management.

The rest of the paper is organized as follows.

3

2. Theoretical Background

An emergency procedure is a set of actions (i.e: a process) to be conducted
in a certain order when some situations occur in order to reach a desired
result, that is addressing the emergency. Commonly, it is modelled by using
a BPMN notation in order to graphically represent the workflow.

The aim of this section is to provide the theoretical background the re-
search presented in this paper is based on. This section is organized in two
parts: the first one introduces the modeling language used for represent-
ing emergency procedure and its regulations. The second one provides an
overview of the adaptive framework for runt-time modification of workflows
in which we have implemented our proposed method for workflow fusion.

2.1. Modeling Business Processes: BPMN & SBVR

Business Process Modelling Notation (BPMN)[5] and the Semantic Busi-
ness Vocaboulary Rules (SBVR) [6] are widely recognized and well know
standards that allow to model each aspect of a process.

In particular, BPMN is a graph-oriented notation developed by Object
Management Group (OMG) that was conceived for being highly understand-
able by all business people (i.e: business analysts, technical developers and
business users) interested into business processes. Practically, BPMN con-
sists of a set of graphical objects can be connected almost arbitrarily. Such
graphical elements are grouped into four basic categories: Flow Objects, Con-
necting Objects, Swimlanes and Artifacts.

Flow Objects refer to elements that are connected together to form a
complete process flow. In a BPMN diagram it is possible to distinguish the
following Flow Objects: Event that represents something that happens dur-
ing the course of a business process; Activity that is a generic work that
company performs; and Gateway that is used for controlling how a business
process flows. Such objects are connected together in a diagram to create the
basic structure of a business process by means of Connecting Objects. There
are three possible connecting objects: Sequence Flow is used to show the
order (the sequence) that activities will be performed in a Business Process;
Message Flow is used to show the flow of messages between two separate
business participants that send and receive them; and Association is used to
associate data, text, and other Artifacts with flow objects. As concerns the
Swimlanes, they represent a mechanism to organize activities in order to il-
lustrate di↵erent responsibilities and process participants. Finally, Artifacts

4

are notational element for adding additional information to the business pro-
cess. They are: Data Objects that allow to show how data is required or
produced by activities; Group is a mean used for grouping element for anal-
ysis purposes and finally Annotations can be used to provide additional text
information for the reader of a BPMN Diagram.

A
ut
ho
r

write
body

write
abstract

write title revise paper

paper
[initial]

paper
[final]

submit
 paper

Figure 1: An example of a BPMN model of a Business Process.

Figure 1 shows a simple BPMN diagram that models a process for writing
a paper to be submitted to a conference by using the most common notational
elements such as activitie (e.g: write title, revise paper, etc. . .), pools (e.g:
author) and data objects (e.g: paper).

Whilst BPMN models the dynamics of business processes, SBVR [6] al-
lows to model other complementary aspects of a business process such as
in particular business constraints. Generally, a business constraint describes
the conditions of a business process execution. In the business context the
term ”constraint” commonly refers to the broader understanding of so called
business rules (BR). A business rules may define the semantics of business
concepts, reactions to business events, constraints and preconditions on tasks
and activities, as well as the prohibitions, permissions and obligations of busi-
ness actors and activities. In other words, business rules guide and constrain
various aspects of business, including the sequence and timing of activities [7].
Thus, SBVR allows to model business vocabularies construction and business
rules definitions (elements of guidance that govern actions). However, SBVR
does not standardize any particular language for expressing vocabularies and
rules. Instead, SBVR uses ’semantic formulation’, which is a way of describ-
ing the semantic structure of statements and definitions. This approach of
specifying structures of meaning, with its sound theoretical foundation of for-
mal logic, provides a formal, language-independent means for capturing the
semantics of a community’s body of shared meanings. SBVR separates se-

5

mantic formulations from meanings. Meaning is divided into two categories:
Conceptsthat are classifiers of things (noun concepts) and classifiers of states
and actions (verb concepts or fact types) and Propositionsthat are meanings
of statements (rules also called element of guidance). SBVR further divides
the meaning of rule into the following subcategories:

• Structural or definitional rules: They are used to define an organiza-
tions setup. They are always true and cannot be violated (necessity,
possibility).

• Behavioural or operational rules: They express the conduct of an entity
and can be violated (obligation, prohibition).

SBVR includes constructs called semantic formulations that structure the
meaning of rules or the definition of concepts. There are two kinds of seman-
tic formulations: logical formulations and projections. Logical formulations
include modal operators, logical operations, quantifications, atomic formu-
lations based on fact types. Projections are used to formulate definition of
meaning and also impose constraints or restriction on concepts. SBVR also
proposes a Structured English (SSE) which is one of the multiple concrete
syntax which can be used to designate textually the statements with formal
meaning that could be mapped to SBVR concepts. SSE four formatting style
as follows:

• terms: underlined text is used for representing noun concepts defined
in the vocabulary (e.g: author);

• names: double-underlined green text is used for represented proper
nouns (e.g: Italy);

• verbs: blue italic text is used for representing fact types (e.g: author is
member of academic institution);

• keywords: red text is used for representing linguistic symbols used to
construct statements and definitions (e.g: It is necessary that)

For example, we can define by using the SSE notation a structural rule
for the process shown in Figure 1 as follows:

It is necessary that an author is member of an academic institution.
Analogously, a behavioural rule could be:

It is prohibited that an author submits a paper after deadline.

6

2.2. Middleware for User-driven Service Adaptation

The work proposed in this paper extends the conceptual framework pro-
posed in [4] by adding normative concepts and workflow merging methods.

The Middleware for User-driven Service Adaptation (MUSA) proposed
in [4] is intended to provide means for supporting run-time adaptation of a
process together with a multi agent system for executing the activities of the
process.

The core of such framework lies on the Proactive Means-End Reasoning
where its theoretical foundation are based on three key concepts:

• state of the world that is the knowledge (i.e: a set of beliefs) about the
world in a given moment the system owns;

• goal that is a desired change in the state of the world a user wants to
achieve;

• capability that is a run-time property of the system that may be inten-
tionally used to address a given result. The e↵ect of a capability is an
endogenous evolution of the state of the world.

The algorithm that implements the Proactive Means-End Reasoning [8]
is able to solve the following problem:

Given a current state of the world Wt, a Goal Model1 (G, R) and a
set of available Capabilities C, the Proactive Means-End Reasoning concerns
finding a set of capabilities CS ✓ C in which each capability will address one
of the goals of the Goal Model (G,R), thus to grant the achievement of the
root goal.

The MUSA is also endowed with a module (i.e: GoalSpec Translator) able
to translate BPMN business process in a set of goals expressed in GoalSPEC
language [9]. The GoalSPEC language has been specifically designed for en-
abling runtime goal injection into the system and software agent reasoning.
A goal in GoalSPEC is composed of Trigger Condition and Final State. The
trigger condition is an event that must occur in order to start acting for ad-
dressing the goal. The final state is the desired state of the world that must
be addressed. For example, looking at Figure 1, the GoalSpec Translator

1A goal model is a directed graph, (G,R) where G is a set of goals (nodes) and R is
the set of Refinement and Influence relationships (edges). In a goal model there is exactly
one root goal, and there are no refinement cycles.

7

Run-Time

Design-Time

Self-Awareness in JASON 9

goal-pack
business
analyst

web pageweb server
workflow

usersBPMN

MAS
Documents

goal

goal

goal

Fig. 2: Architecture of the workflow engine developed for the IDS project.

Currently, a beta version of the described framework is already redeployed for
beta testing at three project partners.

The grounding principle of our framework is to decouple what should be ad-
dressed from how this result can be achieved; this allows to make the system
and the goal-set evolve independently. Thus, being dynamic, system require-
ments may be considered as part of the execution context.

The result has been a workflow engine (see Figure 2) realized as a multi-agent
system that exploits its features (mainly autonomy and proactivity) in order to
monitor the execution state of the process and to discover a distributed solution
to unpredictable situations or to specifications’ evolution.

In such a system, each autonomous software agent must be self-aware as
described in Section 3. However, an agent is not generally able to execute the
whole workflow alone, so agents have to collaborate for building a distributed
plan.

All together, the agents have to self-organize in groups that proactively dis-
cover a distributed solution as the orchestration of many capabilities.

4.1 From BPMN to System Goals Achievement

The whole engine grounds on GoalSPEC [15], a language for representing busi-
ness and system goals. A goal has a responsible actor, and it describes a desired
state transition from a triggering condition to a final state. We use the following
notation for goal state transition: g : tc� > fs. In order to reduce any additional
burden for business analysts, we maintain the BPMN as the main interface to
model workflows. Hence, we developed BPMN2Goal, a component that is re-
sponsible to take a BPMN 2.0 XML file in input and to generate as output a set
of GoalSPEC goals. All the agents of the system are able to interpret GoalSPEC
and to convert goals into belief-sets (as well as in Listing 1).

A di↵erence with the engine described in Section 3 is that goals coming
from the same workflow are correlated. They must be considered as a goal-pack
that is injected into the system as a whole. Agents collaborate to discover a
solution that is a set of potential commitment to a subset of the goal-pack. The
goals of a solution are closely related, since if the solution is actuated, then the
commitment must be done for all or none of them at the same time.

Figure 3: A functional schema of the workflow engine

In the next section we present the theoretical basis of our work starting
from the definition of goal and state of world proposed in [].

4. Business Process Specification

This section presents the proposed business process specification in terms
of goals and norms that is the basis for the proposed workflow merging algo-
rithm. Hence, we need to introduce some concepts and definitions.

- A Business process is an activity (or set of activities) that is managed by
an organization to produce some result of value to that organization, its
customers, its suppliers, and/or its partners [5]. Commonly, a business
process is modelled by using a BPMN notation in order to graphically
represent the workflow;

- A Business Role is defined as the responsibility for performing specific
activities of a Business Process. Commonly, in a business process model
they are linked to the related activity;

- A Business Rule 3 is a statement that defines or constrains some as-
pect of the business. It is intended to assert business structure or to
control or influence the behaviour of the business. According to SBVR
standard, two kinds of business rules can be defined: Operative Busi-
ness Rules and Structural Business Rules4. For the scope of this paper,
we consider only Operative Business Rules that directly constraints the
business process. Commonly, such rules are modelled by using a SBVR
notation and are related to the activity the refer to.

3From Business Rules Group’s Final Report of July 2000
4We refer also these kinds of rules as Behavioural Norms and Structural Norms to be

compliant with our previous work ASPECS EXTENTION[]

9

Business
Analyst Goal-pack_1

Act1 Act2 Act3 Act4
Process_1

Self-Awareness in JASON 9

goal-pack
business
analyst

web pageweb server
workflow

usersBPMN

MAS
Documents

goal

goal

goal

Fig. 2: Architecture of the workflow engine developed for the IDS project.

Currently, a beta version of the described framework is already redeployed for
beta testing at three project partners.

The grounding principle of our framework is to decouple what should be ad-
dressed from how this result can be achieved; this allows to make the system
and the goal-set evolve independently. Thus, being dynamic, system require-
ments may be considered as part of the execution context.

The result has been a workflow engine (see Figure 2) realized as a multi-agent
system that exploits its features (mainly autonomy and proactivity) in order to
monitor the execution state of the process and to discover a distributed solution
to unpredictable situations or to specifications’ evolution.

In such a system, each autonomous software agent must be self-aware as
described in Section 3. However, an agent is not generally able to execute the
whole workflow alone, so agents have to collaborate for building a distributed
plan.

All together, the agents have to self-organize in groups that proactively dis-
cover a distributed solution as the orchestration of many capabilities.

4.1 From BPMN to System Goals Achievement

The whole engine grounds on GoalSPEC [15], a language for representing busi-
ness and system goals. A goal has a responsible actor, and it describes a desired
state transition from a triggering condition to a final state. We use the following
notation for goal state transition: g : tc� > fs. In order to reduce any additional
burden for business analysts, we maintain the BPMN as the main interface to
model workflows. Hence, we developed BPMN2Goal, a component that is re-
sponsible to take a BPMN 2.0 XML file in input and to generate as output a set
of GoalSPEC goals. All the agents of the system are able to interpret GoalSPEC
and to convert goals into belief-sets (as well as in Listing 1).

A di↵erence with the engine described in Section 3 is that goals coming
from the same workflow are correlated. They must be considered as a goal-pack
that is injected into the system as a whole. Agents collaborate to discover a
solution that is a set of potential commitment to a subset of the goal-pack. The
goals of a solution are closely related, since if the solution is actuated, then the
commitment must be done for all or none of them at the same time.

Figure 3: A functional schema of the workflow engine

In the next section we present the theoretical basis of our work starting
from the definition of goal and state of world proposed in [].

4. Business Process Specification

This section presents the proposed business process specification in terms
of goals and norms that is the basis for the proposed workflow merging algo-
rithm. Hence, we need to introduce some concepts and definitions.

- A Business process is an activity (or set of activities) that is managed by
an organization to produce some result of value to that organization, its
customers, its suppliers, and/or its partners [5]. Commonly, a business
process is modelled by using a BPMN notation in order to graphically
represent the workflow;

- A Business Role is defined as the responsibility for performing specific
activities of a Business Process. Commonly, in a business process model
they are linked to the related activity;

- A Business Rule 3 is a statement that defines or constrains some as-
pect of the business. It is intended to assert business structure or to
control or influence the behaviour of the business. According to SBVR
standard, two kinds of business rules can be defined: Operative Busi-
ness Rules and Structural Business Rules4. For the scope of this paper,
we consider only Operative Business Rules that directly constraints the
business process. Commonly, such rules are modelled by using a SBVR
notation and are related to the activity the refer to.

3From Business Rules Group’s Final Report of July 2000
4We refer also these kinds of rules as Behavioural Norms and Structural Norms to be

compliant with our previous work ASPECS EXTENTION[]

9

Workflow
Users

Goal-pack_1

GoalSpec
Translator

Figure 2: A functional schema of the workflow engine

converts the activity revise paper in the following goal:

WHEN done(write body) AND done(write abstract) THE author SHALL
PRODUCE done(revise paper) AND final(paper)

where the Trigger Condition is [done(write body) AND done(write abstract)]
and the Final State is [done(revise paper) AND final(paper)].

For the sake of clarity in Figure 2 is reported a possible usage scenario
(the most simple one) of the framework2. In such scenario, as common a busi-
ness analyst models a business process as BPMN workflow. The GoalSpec
Translator converts the BPMN process in a goal pack, that is a set of Goal-
SPEC goal. This resulting goal pack is injected at Run-Time in the multi
agent system that executes the workflow adopting the proactive means-end
reasoning in order to decide how to address an injected goal. The agent that
owns the capabilities to achieve a goal provides the users the workflow users
the appropriate resources (i.e: web pages, documents, services and so on) to
accomplish the activities of the BPMN process.

In this paper we propose an extension of the framework that make possible

2It is out of the paper to discuss the self-adaptation of the framework and the run-time
goal injection. Our purpose is to introduce the fundamental concepts the reader needs in
order to understand the proposed method.

8

Design-Time Self-Awareness in JASON 9

goal-pack
business
analyst

web pageweb server
workflow

usersBPMN

MAS
Documents

goal

goal

goal

Fig. 2: Architecture of the workflow engine developed for the IDS project.

Currently, a beta version of the described framework is already redeployed for
beta testing at three project partners.

The grounding principle of our framework is to decouple what should be ad-
dressed from how this result can be achieved; this allows to make the system
and the goal-set evolve independently. Thus, being dynamic, system require-
ments may be considered as part of the execution context.

The result has been a workflow engine (see Figure 2) realized as a multi-agent
system that exploits its features (mainly autonomy and proactivity) in order to
monitor the execution state of the process and to discover a distributed solution
to unpredictable situations or to specifications’ evolution.

In such a system, each autonomous software agent must be self-aware as
described in Section 3. However, an agent is not generally able to execute the
whole workflow alone, so agents have to collaborate for building a distributed
plan.

All together, the agents have to self-organize in groups that proactively dis-
cover a distributed solution as the orchestration of many capabilities.

4.1 From BPMN to System Goals Achievement

The whole engine grounds on GoalSPEC [15], a language for representing busi-
ness and system goals. A goal has a responsible actor, and it describes a desired
state transition from a triggering condition to a final state. We use the following
notation for goal state transition: g : tc� > fs. In order to reduce any additional
burden for business analysts, we maintain the BPMN as the main interface to
model workflows. Hence, we developed BPMN2Goal, a component that is re-
sponsible to take a BPMN 2.0 XML file in input and to generate as output a set
of GoalSPEC goals. All the agents of the system are able to interpret GoalSPEC
and to convert goals into belief-sets (as well as in Listing 1).

A di↵erence with the engine described in Section 3 is that goals coming
from the same workflow are correlated. They must be considered as a goal-pack
that is injected into the system as a whole. Agents collaborate to discover a
solution that is a set of potential commitment to a subset of the goal-pack. The
goals of a solution are closely related, since if the solution is actuated, then the
commitment must be done for all or none of them at the same time.

Figure 3: A functional schema of the workflow engine

In the next section we present the theoretical basis of our work starting
from the definition of goal and state of world proposed in [].

4. Business Process Specification

This section presents the proposed business process specification in terms
of goals and norms that is the basis for the proposed workflow merging algo-
rithm. Hence, we need to introduce some concepts and definitions.

- A Business process is an activity (or set of activities) that is managed by
an organization to produce some result of value to that organization, its
customers, its suppliers, and/or its partners [5]. Commonly, a business
process is modelled by using a BPMN notation in order to graphically
represent the workflow;

- A Business Role is defined as the responsibility for performing specific
activities of a Business Process. Commonly, in a business process model
they are linked to the related activity;

- A Business Rule 3 is a statement that defines or constrains some as-
pect of the business. It is intended to assert business structure or to
control or influence the behaviour of the business. According to SBVR
standard, two kinds of business rules can be defined: Operative Busi-
ness Rules and Structural Business Rules4. For the scope of this paper,
we consider only Operative Business Rules that directly constraints the
business process. Commonly, such rules are modelled by using a SBVR
notation and are related to the activity the refer to.

3From Business Rules Group’s Final Report of July 2000
4We refer also these kinds of rules as Behavioural Norms and Structural Norms to be

compliant with our previous work ASPECS EXTENTION[]

9

Business
Analyst

Goal-pack_1

Act1 Act2 Act3 Act4
Process_1

Act1

Act6Act2

Act8 Act9

 Process_2

Goal-pack_2

Run-Time
Self-Awareness in JASON 9

goal-pack
business
analyst

web pageweb server
workflow

usersBPMN

MAS
Documents

goal

goal

goal

Fig. 2: Architecture of the workflow engine developed for the IDS project.

Currently, a beta version of the described framework is already redeployed for
beta testing at three project partners.

The grounding principle of our framework is to decouple what should be ad-
dressed from how this result can be achieved; this allows to make the system
and the goal-set evolve independently. Thus, being dynamic, system require-
ments may be considered as part of the execution context.

The result has been a workflow engine (see Figure 2) realized as a multi-agent
system that exploits its features (mainly autonomy and proactivity) in order to
monitor the execution state of the process and to discover a distributed solution
to unpredictable situations or to specifications’ evolution.

In such a system, each autonomous software agent must be self-aware as
described in Section 3. However, an agent is not generally able to execute the
whole workflow alone, so agents have to collaborate for building a distributed
plan.

All together, the agents have to self-organize in groups that proactively dis-
cover a distributed solution as the orchestration of many capabilities.

4.1 From BPMN to System Goals Achievement

The whole engine grounds on GoalSPEC [15], a language for representing busi-
ness and system goals. A goal has a responsible actor, and it describes a desired
state transition from a triggering condition to a final state. We use the following
notation for goal state transition: g : tc� > fs. In order to reduce any additional
burden for business analysts, we maintain the BPMN as the main interface to
model workflows. Hence, we developed BPMN2Goal, a component that is re-
sponsible to take a BPMN 2.0 XML file in input and to generate as output a set
of GoalSPEC goals. All the agents of the system are able to interpret GoalSPEC
and to convert goals into belief-sets (as well as in Listing 1).

A di↵erence with the engine described in Section 3 is that goals coming
from the same workflow are correlated. They must be considered as a goal-pack
that is injected into the system as a whole. Agents collaborate to discover a
solution that is a set of potential commitment to a subset of the goal-pack. The
goals of a solution are closely related, since if the solution is actuated, then the
commitment must be done for all or none of them at the same time.

Figure 3: A functional schema of the workflow engine

In the next section we present the theoretical basis of our work starting
from the definition of goal and state of world proposed in [].

4. Business Process Specification

This section presents the proposed business process specification in terms
of goals and norms that is the basis for the proposed workflow merging algo-
rithm. Hence, we need to introduce some concepts and definitions.

- A Business process is an activity (or set of activities) that is managed by
an organization to produce some result of value to that organization, its
customers, its suppliers, and/or its partners [5]. Commonly, a business
process is modelled by using a BPMN notation in order to graphically
represent the workflow;

- A Business Role is defined as the responsibility for performing specific
activities of a Business Process. Commonly, in a business process model
they are linked to the related activity;

- A Business Rule 3 is a statement that defines or constrains some as-
pect of the business. It is intended to assert business structure or to
control or influence the behaviour of the business. According to SBVR
standard, two kinds of business rules can be defined: Operative Busi-
ness Rules and Structural Business Rules4. For the scope of this paper,
we consider only Operative Business Rules that directly constraints the
business process. Commonly, such rules are modelled by using a SBVR
notation and are related to the activity the refer to.

3From Business Rules Group’s Final Report of July 2000
4We refer also these kinds of rules as Behavioural Norms and Structural Norms to be

compliant with our previous work ASPECS EXTENTION[]

9

Norm
Awareness

Norm
Awareness

Workflow
Users

GoalSpec
Translator

Goal-pack_1

Goal-pack_2

Merged
Goal-pack

Merging
Module

Norms for
conflicting goal

(Mandatory)

Composition
Norms

(Optional)

Context-specific
Norms

(Optional)

Figure 3: A functional schema of the workflow engine with merging

the usage scenario shown in Figure 3.
It deals with two kinds of goal: social goal and individual goal. Social

goals are collective goals that specify top-level goals which achievement may
be obtained by addressing lower-level social goals or individual goals. Indi-
vidual goals are related to generating a specific outcome in the workflow. In
the next section we present the theoretical basis of our work.

9

3. Norms and Goals for modelling processes

The process merging approach proposed in this paper is build on some
theoretical foundations we introduce in this section. In order to exemplify,
we refer to a simple process for submitting a paper. Figure 1 shows a BPMN
diagram that models such process by using the most common notational
elements such as activities (e.g: write title, revise paper, etc...), pools (e.g:
author) and data objects (e.g: paper).

The basis of our approach lies on a process specification in terms of goals
and norms, as follows:

H Definition 3.1 — Process Specification

A Process Specification is defined by the elements of the following triple:

hG,R,N i

where

• G is a set of Goals that are states of the world the actors of the process
wants to achieve;

• R is a set of Roles played by the actors of the process for achieving goals.

• N is a set of norms that constraint the admissible states of the world.

Before to formally define goal and norm, it is useful to introduce a further
key concept of the approach: the state of the world. The state of the world
represents a set of declarative information concerning particular conditions
or set of circumstances in which the process operates in at specific time. In
this paper we assume that goals, norms and state of the world refer to the
same knowledge domain. It is out of the scope of the paper how to model this
knowledge. We assume that a knowledge domain is represented by means of
a predefined set of concepts and predicate.

H Definition 3.2 — State of the world

Let D the set of concepts of a knowledge domain. Let L be a first-order logic
defined on D with > a tautology and ? a logical contradiction, where an atomic

10

formula p(t1, t2..., tn)2L is represented by a predicate applied to a tuple of terms
(t1, t2..., tn)2D and the predicate is a property of or relation between such terms
that can be true or false.

A state of the world in a given time t (W t) is a subset of atomic formulae
whose values are true at the time t:

W t = [p1(t1, t2, ..., th), ..., pn(t1, t2, ..., tm)]

For example, let D = {paper, author, deadline} a set of concepts related
to a knowledge domain defined for the paper submission process (see Figure
1). A possible state of the world at time t could be expressed by the follow-
ing atomic formulae: W t = [before(deadline), done(submit paper)]. This
means that at time t to which the state of the world refers, the time for
paper submission is not expired yet and the author has submitted the paper.
Definition 3.2 is based on close world hypothesis that assumes all facts that
are not in the state of world are considered false.

The second element of process specification is the concept of goal. It is
widely used in software engineering and artificial intelligence to implement
sophisticated reasoning mechanism. Goal is defined as ”a state of a↵air an
actor wants to achieve” [10]. For the scope of this paper we use a revised
version of the formal definition of goal taken from [8].

H Definition 3.3 — Goal

Let D, L and p(t1, t2..., tn)2L as previously introduced in definition 3.2. Let
tc2L and fs2L formulae that may be composed of atomic formulae by means
of logic connectives AND(^), OR (_) and NOT (¬).

A Goal is a pair htc, fsi where tc (trigger condition) is a condition to evaluate
over a state of the world W t when the goal may be actively pursued and fs

(final state) is a condition to evaluate over a state of the world W

t+�t when it
is eventually addressed:

a goal is active i↵ tc(W t) ^ ¬fs(W t) = true

a goal is addressed i↵ fs(W t+�t) = true

Moreover, llet two goals g1 = htc1, fs1i and g2 = htc2, fs2i:

11

- the goal g1 is equivalent to (') g2 if the final state fs1 is logically
equivalent3 (,) to fs2,

g1 ' g2 i↵ fs1 , fs2.

- the goal g1 depends on (!) g2 if the trigger condition tc1 implies the
final state fs2 or if the final state fs1 implies the final state fs2,

g1 ! g2 i↵ tc1(W t)) fs2(W t) _ fs1(W t)) fs2(W t)

With respect to the previous example a possible goal could be g =
hdone(write paper), done(submit paper)i. This means an author can achieve
the desired state of a↵airs, namely the submission of his own manuscript,
only when the paper has been written. In other words, g is active when the
state of the world in a given time t is W t = [. . . , done(write paper), . . .].
Conversely, g is addressed only when exist a state of the world in a given
time t + �t in which done(submit paper) is true, for example W t+�t =
[done(write paper), before(deadline), done(submit paper)].

Moreover, the equivalence relationship between two goals g1 and g2 im-
plies that if g1 is addressed in a state of the world also g2 is addressed in the
same state of the world. This is because the equivalence relationship among
goal lies on the logical equivalence between their final states.

Finally, the key element of the process specification is the concept of
norm. We define norms in such away they can be used for constraining
the admissible state of the world by means of permissions, obligations or
prohibitions.

H Definition 3.4 — Norm

Let D, L and p(t1, t2..., tn)2L as previously introduced in definition 3.2. Let
�2L and ⇢2L formulae composed of atomic formula by means of logic connec-
tives AND(^), OR (_) and NOT (¬).
Moreover, let D

op

= {permission, obligation, prohibition} the set of deontic
operators.

3In logic, two statements are logically equivalent if they have the same truth value in
every model.

12

A Norm is defined by the elements of the following tuple:

n = hr , g , ⇢,�, di

where

- r2R is the Role the norm refers to. The special character “ ” indicates
that the norms refers any role.

- g2G is the Goal the norm refers to.The special character “ ” indicates that
the norms refers to any goal.

- ⇢2L is a formula expressing the set of actions and state of a↵airs that the
norm disciplines.

- �2L is a logic condition (to evaluate over a state of the world W t) under
which the norm is applicable;

- d2D
op

is the deontic operator applied to ⇢ that the norm prescribes to the
couple (r , g)2R⇥ G.

In particular d(⇢) =

8
><

>:

⇢ i↵ d = obligation

¬⇢, i↵ d = prohibition

⇢ _ ¬⇢ i↵ d = permission

In other words, let a state of the world W t a norm prescribes to a couple
(r , g) the deontic operator d applied to ⇢ if � is true in W t.

With respect to the previous example a norm could be

n = h , , done(submit paper), after(deadline), prohibitioni

which prescribes to anyone the prohibition to submit a paper (i.e: d(⇢) =
¬done(submit paper)) after the deadline.

In the following we introduce two further definitions that characterize the
concept of state of the world and norm. Such definitions allow to implement
sophisticated reasoning in the proposed process merging algorithms. In par-
ticular we define: (i) the concept of Inadmissible State of the World in order

13

to determine the boundary within which a process has to be carried out; and
(ii) the concept of State of Norm for determining the particular condition
that a norm is in at a specific time.

H Definition 3.5 — Inadmissible State of the World

A state of the world at a given time t

W t = [p1(t1, t2, ..., th), ..., pn(t1, t2, ..., tm)]

is an Inadmissible State of the World i↵ 9 n = hr , g , ⇢,�, di |
(
�(W t��t) ^ ¬⇢(W t��t) = true

p1(t1, t2, ..., th) ^ ... ^ pn(t1, t2, ..., tm) ^ d(⇢) = ?

It is worth noting that � and ⇢ have to be evaluate in W t��t. This means
that a state of the world at a given time t is an Inadmissible State of the
world if at time t ��t the condition under which the norm is applicable is
true and the process is not in the state of a↵air the norm disciplines.

In order to exemplify, let us consider the previous norm that prohibits
the submission of a paper after the deadline

n = h , , done(submit paper), after(deadline), prohibitioni

Let assume that at time t the state of the world is

W t = [done(write paper), after(deadline)]

Then let us suppose that in some way someone or something has changed
the state of the world and at time t + �t

W t+�t = [done(write paper), after(deadline), done(submit paper)]

According to the previous definition W t+�t is an Inadmissible State of the
world because:

after(deadline)| {z }
�(Wt)

^¬done(submit paper)| {z }
¬⇢(Wt)

= true

14

done(write paper) ^ after(deadline) ^ done(submit paper)| {z }
Wt+�t

^

^¬done(submit paper)| {z }
d(⇢)

= ?

Indeed, in W t the predicate done(submit paper) is false for the close
world hypothesis. Thus ¬done(submit paper) is true.
In W t+�t, done(submit paper) is true by definition (see definition 3.2). More-
over, in this case d(⇢) is equal to ¬done(submit paper). This makes the
second condition of definition 3.5 a logical contradiction.

In order to clarify, we show another example considering an obligation
norm. Let us suppose a norm that obligates the submission of the camera
ready if the paper was accepted.

n = h , , done(submit camera ready)| {z }
⇢

,

accepted(paper) ^ before(camera ready deadline)| {z }
�

, obligationi

Let assume that at time t the state of the world is:

W t = [done(write paper), accepted(paper), before(camera ready deadline)]

Then let us suppose at time t + �t nothing is changed in the state of the
world except the time:

W t+�t = [done(write paper), accepted(paper), after(camera ready deadline)]

According to the previous definition W t+�t is an Inadmissible State of
the World because:

accepted(paper) ^ before(camera ready deadline)| {z }
�(Wt)

^¬done(submit camera ready)| {z }
¬⇢(Wt)

= true

done(write paper) ^ accepted(paper) ^ after(camera ready deadline)| {z }
Wt+�t

^

15

^ done(submit camera ready)| {z }
d(⇢)

= ?

Indeed, in W t the predicate done(submit camera ready) is false for the
analogous considerations of the previous example.

In W t+�t, done(submit camera ready) is still false. This is equivalent to
have in the W t+�t the following formula ¬done(submit camera ready). As
a consequence, W t+�t the same predicate has at the same time value both
false and true. This makes the second condition a logical contradiction.

Conversely, let us consider the previous norm

n = h , , done(submit paper), after(deadline), prohibitioni

Let assume that at time t the state of the world is

W t = [done(write paper), after(deadline), done(submit paper)]

Then let us suppose at time t + �t that nothing is changed in the state
of the world except the time:

W t+�t = [done(write paper), after(deadline), done(submit paper)]

In this case although the second condition of definition 3.5 is the same of
the first case:

done(write paper) ^ after(deadline) ^ done(submit paper)| {z }
Wt+�t

^

^¬done(submit paper)| {z }
d(⇢)

= ?

The first one is not satisfied:

after(deadline)| {z }
�(Wt)

^¬done(submit paper)| {z }
¬⇢(Wt)

= false

The evaluation of the first condition allows to avoid to consider inadmis-
sible a state of the world that a process reached in a given moment in which
the condition of the norm was not valid.

Hence, it results useful introduce also the concept of State of Norm.

16

H Definition 3.6 — State of Norm

Let a norm n = hr , g , ⇢,�, di where g = htc, fsi and let a state of the world in
a given time t (W t)

A norm can assume the following states:

- n is applicable at time t i↵ �(W t) = true _ � = >

- n is active at time t i↵ n is applicable and t
c

(W t) = true

- n is logically contradictory i↵ � is ?

- n is violated at time t i↵ W t is an inadmissible state of the world

- n is in opposition to goal i↵ fs ^ d(⇢) is ?

- n is incompatible with goal i↵ it is applicable and @ W t | fs(W t) = true

4.

Moreover, let a state of the world in a given time t (W t) and let two norms
n
1

= hr
1

, g
1

, ⇢

1

,�

1

, d
1

i and n
2

= hr
2

, g
2

, ⇢

2

,�

2

, d
2

i where r
1

= r
2

, g
1

= g
2

⇢

1

= ⇢

2

- n
1

and n
2

are deontically contradictory i↵

(
�1(W t) ^ �2(W t) = true

d1 6= d2

It is worth noting that we talk about logically contradictory when the con-
tradiction concerns the logical conditions (�2L) under which the norms are
applicable. At the contrary, we talk about deontically contradictory when the
contradiction concerns the semantic meaning of the deontic operator (d2D

op

)
the norms apply.

In order to simplify the concepts previously introduced, let us consider
the BPMN workflow depicted in Figure 4 that models a business process for

4A trivial example of this situation could be a norm prescribing that is always prohibited
to bathe applied to the goal ”swimming”. In this case the norm is applicable in any state
of the world because there are no condition to be verified but the fulfilment of the goal
leads always in a not admissible state of the world because it is impossible to swim without
to bathe.

17

A
ut
ho
r

write
body

write
abstract

write title revise paper

paper
[new]

paper
[initial]

paper
[draft]

paper
[final]

submit
 paper

SBVR 1: It is prohibited that an
author submits a paper after

deadline

submit
 camera
ready

SBVR 2: It is prohibited that an
author submits camera ready if

paper is not accepted

Figure 4: A BMPN/SBVR model of a workflow for submitting a paper.

submitting a paper. Let us consider that an extract of the set of concepts
defining the business domain is:

D =
�
paper, author, deadline, title, abstract, write abstract, submit paper, . . .

According to the definition 3.1 the process shown in Figure 4 can be expressed
as follows:

G =

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

goal
social

= hnew(paper), [final(paper) ^ done(revise paper)]i
g
1

= hnew(paper), [initial(paper) ^ done(write title)]i
g
2

= h[initial(paper) ^ done(write title)], done(write body)i
g
3

= h[initial(paper) ^ done(write title)], done(write abstract)i
g
4

= h[draft(paper) ^ done(write title) ^ done(write abstract)],

[final(paper) ^ done(revise paper)]i
g
5

= h[final(paper) ^ done(revise paper)], done(submit paper)i
g
6

= hdone(submit paper), done(submit camera ready)i

9
>>>>>>>>>>>>>=

>>>>>>>>>>>>>;

The set of roles is:
R =

�
author

The set of norms is:

N =

(
n
1

= hauthor , g
5

, done(submit paper), after(deadline), prohibitioni
n
2

= hauthor , g
6

, done(submit camera ready), ¬accepted(paper), prohibitioni

)

Let us to suppose that at a given time t

Wt =
�
done(revise paper)

18

The norm n
1

is not applicable because �
1

= after(deadline) is false in Wt

whilst the norm n
2

is applicable because �
2

= ¬accepted(paper) is true in Wt5.
Let us to suppose that at a given time t + �t the state of the world is the

following:

Wt+�t =
�
done(revise paper), after(deadline), accepted(paper)

In this case, the norm n1 is applicable because �1 = after(deadline) is true
in Wt+�t whilst the norm n2 is not applicable because �2 = ¬accepted(paper) is
false in Wt+�t.

Finally, let two norms n1, n22N where

n
1

= hauthor , g
6

, done(submit camera ready), accepted(paper), obligationi
n
2

= hauthor , g
6

, done(submit camera ready), after(deadline), prohibitioni

Let us to suppose that the state of the world in a given time t (W t) is

Wt =
�
after(deadline), accepted(paper)

In such case both �
1

and �
2

are true in Wt making deontologically contradic-
tory n1 and n2, according to definition 3.6.

In the following section, the algorithms for merging workflow are presented.

4. Algorithms for merging emergency procedures

We define workflow-merging as the process of combining several workflows
into another by unifying redundant activities. We refer to the original workflows
as merging workflows and the resulting workflow as the merged workflow.

In our approach merging workflows (i.e: emergency procedures) are initially
specified according to BPMN/SBVR notation in order to maintain a standard rep-
resentation that is understandable by the domain expert. Conversely, the merged
workflow (i.e: multi-emergency procedure) is specified according to definition 3.1.
It is out the scope of this paper the algorithm that convert the merged workflow
into a BPMN workflow. For the sake of simplicity, we shows the merged workflow
both according our specification and BPMN.

In our approach, norms can be context-specific norms that represent regula-
tions of the normative environment the merging workflows have to obey. At the
same time, norms can be appositely defined for avoiding process deadlock in the
merged workflow.

5It is worth noting that all facts that are not in the state of world are considered false.

19

Algorithm 1: Workflow-merge algorithm
Data: n standard (BPMN/SBVR) workflow models, n � 2
Result: Merged Workflow WFmerged = hGmerged, R, N i
// Loop for generating WFi = hGi, Ri, Nii
1� for i 1 to n do

Gi ?;
2�foreach BPMN activity aj of WFi do

translate aj into goal gj ;
add gj to Gi

Ni ?;
3� foreach SBVR rule rh of WFi do

translate rh into norm nh;
add nh to Ni

add Ri to R
4� GTemp goal fusion // see algorithm 2

5� if 9 WFi | Ni 6= ?, i = 1...n then

Gmerged combine norm and goal // see algorithm 3

else

Gmerged GTemp

6� foreach g 2 Gmerged do

// see Algorithm 5

if isPursuable(g) = false then

select norms related to g;
revise norms;

The workflow-merge algorithm (see Algorithm 1) takes in input several merging
workflows and produces an unique merged workflow. Some steps of the algorithm
are grouped according to their function and have been separately presented.

In particular, step 1� is a mandatory procedure for translating standards work-
flows according to the proposed process specification. In particular steps 2� and
3� convert BPMN activities and SBVR rules respectively into goal and norms. For
space concerns, we avoid to detail the algorithms that allow such conversion. They
are basically two parsers that convert XML schema of BPMN/SBVR models into
goals and norms specification according to definitions 3.3 and 3.4. For the purpose
of this work, it is only worth nothing that this conversion produces two kinds of
goal: social goal and individual goal. Social goals are collective goals that specify
top-level goals which achievement may be obtained by addressing lower-level so-
cial goals or individual goals. Individual goals are related to generating a specific
outcome in the workflow.

The set of resulting goals thus are initially combined (step 4�) according to

20

Algorithm 2. Step 5� allows to encapsulate the condition expressed by the norms
inside the goal they refer (see Algorithm 3). Then the whole fusion process is
resulting in a new set of goals, namely Gmerged. The final step of the algorithm
makes a control about the satisfiability of each goal of Gmerged.

Algorithm 2 shows how to merge goals. The input are the merging workflows
expressed according to our specification (i.e: WF=hG, R, N i). It produces a set
of goals, where equivalent goals (if any) are combined in a unique goal. Step 1�
allows for separately grouping social goals and individual goals. Social goals play
a fundamental role in the goal fusion process. They contains global information
about an entire merging workflow. Their fusion produces the social goal for the
whole merged workflow (see Step 2�). The key element of the goal fusion algorithm
lies on the equivalence between goals (see Step 3�). Two goals can be fused if they
are equivalent goals (see Definition 3.3). The output of Algorithm 2 is a set of goals
where some of them have been unified. Figure 5 shows a a graphical representation
of Algorithm 2.

A further step for completing the whole merging process is to reconcile norms
with goal they refer and above all with merged goal resulting from algorithm
2. This task is addressed by Algorithm 3. It allows to encapsulate the condition
expressed by the norms inside the goal they refer. Encapsulating a norm condition
into a goal modifies the activation of that goal making it compliant with norm.
This algorithm consists in an initial pre-filtering of logically contradictory norms
(see Step 1�). Then norms are encapsulated into goals (see Step 2�) by compositing
new trigger conditions for goals from the norm conditions. Such composition (see
Algorithm 4) takes into consideration di↵erent types of norm and addresses to
the following question ”when norms regulate a goal, in what cases that goal is
activated?”. The answer is: i) when the trigger condition is true and the norm
is not applicable or ii) when the norm is applicable and its deontic operator is
permission; iii) when the norm is active and its deontic operator is an obligation.
Figure 6 shows the activation table of a goal regulated by a norm.

Finally, Algorithm 5 evaluates if exists at least one possible state of the world
in which the goal may be actively pursued. Otherwise, it shows a list of norms
related to the goal in order to revise them for ensuring goal satisfaction. This
algorithm detects logical contradictions inside a merged goal thus ensuring the
consistency of the merged workflow.

In the following section, some typical merging scenarios are presented.

21

Algorithm 2: Goal Fusion
Data: n worlkflow models WF=hG, R, N i, n � 2 ,
Result: a merged set of goal G0

create a list SocialGoalList, size(SocialGoalList) = n ;
create a list GoalList, size(GoalList) = card(G1) + ... + card(Gn)� n;
// Loop for separately grouping social goals and individual

goals

1�for i 1 to n do

for j 1 to card(Gi) do

htc, fsi gj ;
if gj = socialgoal then

add htc, fsi to SocialGoalList ;
else

add htc, fsi to GoalList

htc, fsi SocialGoalList[1];
2�for i 2 to n do

htci, fsii SocialGoalList[i];
tc OR composition(tc, tci);
fs AND composition(fs, fsi);

gsocial htc, fsi;
Temp GoalList GoalList ;
/* Loop for finding equivalent goals */

3� for i 1 to size(GoalList) do

Equivalent GoalList ?;
htc, fsi GoalList[i];
for j 1 to size(Temp GoalList) do

htcj , fsji GoalList[j];
if (GoalList[i] 6= GoalList[j]) ^ (fsj , fs) then

add GoalList[j] to Equivalent GoalList;
remove GoalList[j] from Temp GoalList;

if size(Equivalent GoalList) 6= 0 then

for h 1 to size(Equivalent GoalList) do

htch, fshi Equivalent GoalList[h];
tc AND composition(tc, tch);

g htc, fsi;
add g to Final GoalList ;

G0 Final GoalList

22

G1 G2 G

gb

ga

gc gf
ge

gd

gb

gc

ga+e
gf

gd

+ =

g1_social =⟨tC_social_1,fs_social_1⟩ ga = ⟨tCa, fsa⟩
g2_social =⟨tC_social_2,fs_social_2⟩ ge = ⟨tCe, fse⟩

ga ⋍ ge

gsocial =⟨tC_social_1⋁ tC_social_2,fs_social_1 ⋀ fs_social_1⟩
ga+e = ⟨tCa⋀tCe,fsa⟩

g1_social g2_social
gsocial

Figure 5: Graphical representation of Goal Fusion Algorithm (see Algorithm 2)

Algorithm 3: Combine norm and goal
Data: a set of goal G and several sets of norms Ni, i = 1...n
Result: Gmerged

GoalList GTemp;
create a list NormList, size(NormList) = card(N

1

) + ... + card(N
n

);
Gmerged ?;
// Loop for creating a unique list of norms from N1, ..., Nn

1� for i 1 to n do

for j 1 to card(N
i

) do

hr , g , ⇢, �, di nj ;
if nj is not logically contradictory then

add hr , g , ⇢, �, di to NormList;
else

revise norm

// Loop for encapsulating norms into goals

2� for i 1 to size(GoalList) do

if GoalList[i] is a composed goal then

(�mergedOR, �mergedAND) null;
foreach g ⇢ GoalList[i] do

(�OR, �AND) compose norm(g, NormList); // See Alg.4

�mergedOR OR composition(�mergedOR, �OR);
�mergedAND AND composition(�mergedAND, �AND);

else

(�mergedOR, �mergedAND)
compose norm(GoalList[i], NormList);

// Goal composition

htc, fsi GoalList[i];
tc OR composition(tc, �mergedOR);
tc AND composition(tc, �mergedAND);
add htc, fsi to Gmerged;

23

A) Permission

tC φtC ⋁ φ

1 0
10

0 0
1 1

1
1

1
0

n = ⟨_,g,ρ,φ,d⟩ g=⟨tC, fs⟩

C) Prohibition

tC φtC ⋀ ¬φ
1 0

10
0 0
1 1

1

0
0

0

B) Obligation

tC φtC ⋁ (φ ⋀ tC)

1 0
10

0 0
1 1

1

1
0
0

Figure 6: Activation Table

Algorithm 4: Compose Norm
Data: a goal gcurrent, a list of norms NormList
Result: a set (�mergedOR, �mergedAND)
List� OR ?;
List� AND ?;
// Identification of norm types

1�for j 1 to size(NormList) do

hr , g , ⇢, �, di NormList[j];
htc, fsi g;
// Choose among norms of current goal, what are directly

linked to final state of goal and that are not in

opposition to goal

if (g = gcurrent) ^ (fs = ⇢) ^ ((fs ^ d(⇢)) 6= ?) then

switch d do

case Obligation
break;

case Prohibition
add ¬� to List� AND;

case Permission
add � to List� OR;

// Permissions give alternatives (OR)

2�if Size(List� OR) 6= 0 then

�mergedOR List� OR[1];
for h 2 to Size(List� OR) do

�mergedOR OR composition(�mergedOR, List� OR[h]);

// Prohibition are mandatory (AND)

3�if Size(List� AND) 6= 0 then

�mergedAND List� AND[1];
for h 2 to Size(List� AND) do

�mergedAND AND composition(�mergedAND, List� AND[h]);

24

Algorithm 5: Pursuable Goal
Data: a goal g
Result: Boolean
htc, fsi g;
List Of Atomic Formulae decompose(tc);
remove multiple instances from List Of Atomic Formulae;
/* Generate all potential models of W */

List Of W ?;
for k 1 to List Of Atomic Formulae do

List Of W[k] Combination(n, k);

foreach W 2 List Of W do

if tc(W) = true then

return true;

return false;

4.1. Merging Scenarios

This section shows some elementary merging patterns. Their composition cov-
ers a wide range of merging scenarios. For the sake of clarity, let us suppose two
emergency procedures Procedure 1 and Procedure 2 are composed of atomic activ-
ities. They are represented by the BPMN models shown in the right side of Figure
7 along with the related goal models in the left side. In these goal models, goal
relationships refer to dependencies among goals. Particularly, a dependency may
be between trigger conditions and final states or between final states. An arrow
from a trigger condition to a final state means that the trigger condition depends
on the final state. An arrow from a final state to another means the source final
state depends on the target final state. In the following, some possible merging
patterns are illustrated.

Activity
A4

Activity
A5

Activity
A6

Activity
A1

Activity
A2

Activity
A3

Procedure_2

Procedure_1

tcsoc2 fssoc2

gsoc2

tc6 fs6

g6

tc5 fs5

g5

tc4 fs4

g4

tcsoc1 fssoc1

gsoc1

tc3 fs3

g3

tc2 fs2

g2

tc1 fs1

g1

Figure 7: BPMN and goal models of dummy emergency procedures.

25

CASE 1: Merging two procedures without common activities. Let us to
suppose procedures Procedure 1 and Procedure 2 do not share common activities.
This is the most simple situation that could be occur. In this case, the output of
the Workflow-merge algorithm is represented by the goal model shown in the left
side of Figure 8, where tc

socM

= tc1 _ tc4 and fs
socM

= fs3 ^ fs6 . The right side of
Figure 8 shows a possible BPMN model resulting from this goal model6.

Activity
A4

Activity
A5

Activity
A6

Activity
A1

Activity
A2

Activity
A3tc6 fs6

g6

tc5 fs5

g5

tc4 fs4

g4

tcsocM fssocM

gsocM
tc3 fs3

g3

tc2 fs2

g2

tc1 fs1

g1

AND

Figure 8: Goal model and BPMN model resulting from merging two procedures without
common activities.

CASE 2: Merging two procedures with the same initial activity. Let us
to suppose that procedures Procedure 1 and Procedure 2 have the same initial
activity (Activity A1 = Activity A4 in Figure 7). In this case, the output of the
Workflow-merge algorithm is represented by the goal model shown in the right part
of Figure 9, where: (i) the merged social goal is determined by tc

socM

= tc1 _ tc4
and fs

socM

= fs3 ^ fs6 ; (ii) the goal gM resulting from the fusion of g1 and g4 is
determined by tc

M

= tc1 ^ tc4 and fs
M

= fs1 (or fs4). The bottom part of Figure
9 shows a possible BPMN model resulting from this goal model.

Activity
A1

Activity
A5

Activity
A6

Activity
A2

Activity
A3tc6 fs6

g6

tc5 fs5

g5

tcsocM fssocM

gsocM

tc3 fs3

g3

tc2 fs2

g2

ANDtcM fsM

gM

Figure 9: Goal Model and BPMN model resulting from merging two procedures with
common initial activities.

CASE 3: Merging two procedures with common final activities. Let us to suppose
that protocols Protocol 1 and Protocol 2 have the same final activities, in the
example shown in Fig.7 Activity A3 equal to Activity A6. In this case, the output

6It is out of the scope of this paper the algorithm that converts a goal model in a
BPMN model. It is not fundamental for this work because the WFMS that is considered
in this paper executes a goal model not a BPMN model. We show the resulting BPMN
model only for the sake of clarity.

26

of the Workflow-merge algorithm is represented by the goal model shown in the
left side of Figure 10, where: (i) the merged social goal is determined by tc

socM

=
tc3 and fs

socM

= fs3 ; (ii) the goal gM resulting from the fusion of g3 and g6 is
determined by tc

M

= tc3 ^ tc6 and fs
M

= fs3 (or fs6). The right side of Figure 10
shows a possible BPMN model resulting from this goal model.

Activity
A4

Activity
A5

Activity
A1

Activity
A2

Activity
A3

tc5 fs5

g5

tc4 fs4

g4

tcsocM fssocM

gsocM

tcM fsM

gMtc2 fs2

g2

tc1 fs1

g1

AND

Figure 10: Goal Model and BPMN model resulting from merging two procedures with
common final activities.

CASE 4: Merging two procedures with initial activity equal to final activity. Let
us to suppose that the final activity of procedure Protocol 1 is the same of the
initial activity ofProtocol 2, in the example shown in Fig.7 Activity A3 equal to
Activity A4. In this case, the output of the Workflow-merge algorithm is repre-
sented by the goal model shown in the left side of Figure 11, where: (i) the merged
social goal is determined by tc

socM

= tc1 _ tc4 and fs
socM

= fs3 ; (ii) the goal gM
resulting from the fusion of g3 and g4 is determined by tc

M

= tc3^tc4 and fs
M

= fs3
(or fs4). The right side of Figure 11 shows a possible BPMN model resulting from
this goal model.

Activity
A5

Activity
A6

Activity
A1

Activity
A2

Activity
A3tc6 fs6

g6

tc5 fs5

g5

tcM fsM

gM

tc2 fs2

g2
tc1 fs1

g1

tcsocM fssocM

gsocM

Figure 11: Goal Model and BPMN model resulting from merging two procedures with
common final activities.

CASE 5: Merging two di↵erent protocols with common activities. Let us to sup-
pose that protocols Protocol 1 and Protocol 2 share common activities. In partic-
ular, let us to suppose that Activity A5 is equal to Activity A3. In this case, the
output of the Workflow-merge algorithm is represented by the goal model shown
in the top part of Figure 12, where: (i) the merged social goal is determined by
tc

socM

= tc1 _ tc4 and fs
socM

= fs6 ; (ii) the goal gM resulting from the fusion of g5

and g3 is determined by tc
M

= tc5 ^ tc3 and fs
M

= fs5 (or fs3). The bottom part
of Figure 12 shows a possible BPMN model resulting from this goal model.

27

Activity
A4

Activity
A3

Activity
A6

Activity
A1

Activity
A2

tc6 fs6

g6

tcM fsM

gM

tc4 fs4

g4
tcsocM fssocM

gsocMtc2 fs2

g2

tc1 fs1

g1

AND

Figure 12: Goal Model and BPMN model resulting from merging two di↵erent protocols
with common activities.

CASE 6: Merging two di↵erent protocols with common activities regulated by
composition norms. Let us to suppose that protocols Protocol 1 and Protocol 2
share common activities. In particular, let us to suppose that Activity A5 is equal
to Activity A3. Moreover, let us to suppose that for relaxing some constraints a
domain expert introduces the following SBVR rule: It is permitted that the Activ-
ity A3 is performed after Activity A4 and before Activity A2. It is a composition
norm that in our approach is represented by:

n = h , g3, done(Activity A3), before(done(Activity A2)), permissioni

In such case, the output of the Workflow-merge algorithm is represented by
the goal model shown in the top part of Figure 12, where: (i) the merged social
goal is determined by tc

socM

= tc1 _ tc4 and fs
socM

= fs6 ^ fs2 ; (ii) the goal
gM resulting from the fusion of g5 and g3 is determined by tc

M

= tc5 ^ (tc3 _
before(done(Activity A2))) and fs

M

= fs5 (or fs3). The bottom part of Figure
13 shows a possible BPMN model resulting from this goal model.

Activity
A4

Activity
A3

Activity
A6

Activity
A1

Activity
A2tc6 fs6

g6

tcM fsM

gM

tc4 fs4

g4

tcsocM fssocM

gsocM
tc2 fs2

g2

tc1 fs1

g1

AND

Figure 13: Goal Model and BPMN model resulting from merging two di↵erent protocols
with common activities regulated by norms .

5. Discussions

In this paper we have defined a workflow merging algorithm based on a Goal-
Norm specification of processes. In the following we discuss strengths and limits
of the proposed approach.

Detection of Merging Points - A key step of workflow merging is to find
merging points. A weakness of the approach proposed by Sun et.al lies on manual

28

detection of merging points. Our approach overcomes such limitation by introduc-
ing a specification of a process in term of goals. In particular we introduced the
concept of equivalent goal that allows to identify goals whose fulfilment produces
the same e↵ect on the state of the world. The formal specification of goals and
their equivalence allowed us to implement algorithms that automatically detect
merging points. We are also expand the definition of equivalent goal in such away
that it will be possible to automatically find groups of activities in a workflow
that could be merged with a single activity of another workflow. Moreover we
are working for introducing also the concept of semi-equivalent goal. This concept
will help to identify activities that could be partially merged by identifying goals
whose fulfilment produces similar state of the world.

Activities Conflicts Resolution - Several merging points and norms in-
crease the complexity of the merging process. Merging workflows have conflicting
dependencies between the same pair of activities. The approach proposed in Sun
et.al resolve manually this conflict before performing the merging process. Our ap-
proach addresses these kind of conflict by introducing opportunely defined norms,
such as a permission in our case study. Such norms allow to automatically resolve
such conflicts during the merging process. Another kind of conflict our approach is
able to detect during the merging process is the presence of activity preconditions
that can be never satisfied, thus making the merged workflow inconsistent. In this
case our approach detect the conflict but it is not able to automatically solve it.

Norms Merging - The approaches proposed in literature do not address
merging of business rules. Processes are commonly defined both by specifying
the flow of the activities they are composed of but also rules that constraints the
activities. Our merging approach considers also these restrictions by introduc-
ing norms. The concept of norm with its formal specification allow us to reason
also about constraints and rules (or commonly business rules) during the merging
process thus unifying them in the new merged process.

Norm Conflicts - Considering norms during the merging process may cause
conflict about norms defined for the same activity in the merging workflows. In our
approach we introduced mechanisms that allow to detect conflicts among norms.
In particular, we are able to identify two kinds of conflicts that can occur: (i)
conflicts among norms when the merging of two or more norms generates a new
norm that is logically contradictory; (ii) conflicts between norm and goal when a
norm is in opposition to a goal (i.e: the fulfilment of goal causes always a norm
violation).

Semantic Ambiguity- Di↵erent workflows may be defined according to dif-
ferent set of domain concepts. Thus same concept may have the di↵erent semantic
meaning in each domain as well as di↵erent concepts may indicate the same se-
mantic meaning. This may cause semantic ambiguity when performing workflow

29

merging. At the moment our approach is not able to cope with this issue.

References

[1] G. Haddow, J. Bullock, D. P. Coppola, Introduction to emergency manage-
ment, Butterworth-Heinemann, 2013.

[2] S. Sun, A. Kumar, J. Yen, Merging workflows: A new perspective on con-
necting business processes, Decision Support Systems 42 (2) (2006) 844–858.

[3] M. La Rosa, M. Dumas, R. Uba, R. Dijkman, Business process model merg-
ing: An approach to business process consolidation, ACM Transactions on
Software Engineering and Methodology (TOSEM) 22 (2) (2013) 11.

[4] M. Cossentino, C. Lodato, S. Lopes, L. Sabatucci, Musa: a middleware for
user-driven service adaptation.

[5] S. A. White, et al., Business process modeling notation, Specification, BPMI.
org.

[6] O. M. Group, Semantics of business vocabulary and business rules (sbvr).
version 1.3. may 2015.

[7] G. Witt, Writing E↵ective Business Rules: A Practical Method, Elsevier,
2012.

[8] L. Sabatucci, M. Cossentino, From means-end analysis to proactive means-end
reasoning, in: Proceedings of the 10th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems, IEEE Press, 2015, pp.
2–12.

[9] L. Sabatucci, P. Ribino, C. Lodato, S. Lopes, M. Cossentino, Goalspec: A goal
specification language supporting adaptivity and evolution, in: Engineering
Multi-Agent Systems, Springer, 2013, pp. 235–254.

[10] P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia, J. Mylopoulos, Tropos:
An agent-oriented software development methodology, Autonomous Agents
and Multi-Agent Systems 8 (3) (2004) 203–236.

30

