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Abstract

Run-time goal-model artifacts represent a notable approach to

communicate requirements to the system and open new directions for

dealing with self-adaptation.

This work presents a theoretical framework and a general architec-

ture for system evolution, self-configuration and self-healing. The nov-

elty is that of breaking design-time constraints between system goals

and tasks. The user may inject, at run-time, goal-models that do not

contain tasks, i.e. the description of how to address them. Therefore,

the architecture is responsible to configure its components as the re-

sult of deductions made at the knowledge level. The strength of this

architecture is to promote reusability and domain independence.

Finally, the proposed implementation of the architecture has been

evaluated in the context of self-configuration and self-healing through

the execution of a set of randomized stress tests.

1 Introduction

Modern distributed and open software systems raise the need to integrate sev-
eral heterogeneous components and environments into corporate-wide com-
puting systems, and to extend their working boundaries beyond companies
into the Internet [34]. As long as software systems grow in size, complexity,
heterogeneity and interconnection, it becomes central to design and imple-
ment them in a more versatile, flexible, resilient and robust way. The IBM
manifesto of autonomic computing [34], released in 2001, suggests a promising
direction for facing software complexity through self-adaptation. Direction
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that is detailed through many research roadmaps [17, 24] of software engi-
neering for self-adaptive system that define self-adaptive systems as those
systems able to autonomously modify their behavior and/or their structure in
response to their perception of the environment, and the operative context, in
order to address their goals [24].

The vision of computing systems that can manage themselves is fascinat-
ing. They are able of changing their behavior at run-time in order either
to maintain or enhance their functions [17]. Self-adaptation has deep roots
in several research fields, as for instance, artificial intelligence, biological
inspired computing, robotics, requirements/knowledge engineering, control
theory, fault-tolerant computing, and so on. In the last decade, the large
and heterogeneous number of works concerning self-adaptation investigated
several aspects of the problem, for instance specific architectures for imple-
menting adaptive control loops [46], self-organizing paradigms [4], adaptive
requirements [23] an so on. However, to date, many of these problems still
remain significant intellectual challenges [17, 24].

Among the others, one point is becoming clear: as long as self-adaptive
systems become reality, human users (not only managers) will inevitably
participate to the process of adaptation [7]. This point is central for the
models@runtime community [9] that is looking for appropriate artifacts to
shorten the distance between user and system through a model of require-
ments and functionality at a high level of abstraction. However, traditional
requirements specification languages need to evolve for explicitly encapsu-
lating points of variability in the behavior of the system [40] and elements
of uncertainty in the environment [60]. These elements must be first class
entities the system can exploit to decide how to act. Currently goal-oriented
methodologies [14, 23] represent the trend for specifying how a software sys-
tem may adapt through the conceptualization of system’s objectives and
system variation points. In particular goal-models allow describing alterna-
tive ways to address system’s objectives. Goals represent “invariant points”
that motivates the whole mechanism of adaptation.

In previous works we observed that functional requirements could be run-
time entities, to provide to the system according to specific user needs. We
also adopted goals as a primary way to describe system’s objectives. More-
over we explored a mechanism for injecting or changing goal-models during
system’s execution. To this aim we defined a human-oriented language for
specifying system goals [55]. We also set up a formal background, based
on the concept of state of the world, for allowing the system to run when
the specifications of how to address goals are not provided together with the
goal model. The result is the PMR Ability, i.e. a facility of the system for
autonomously deciding how to operationalize a given goal for which it has
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no hard-coded knowledge [51].
This paper aims at refining the problem of proactive means-end reasoning

and implementing a general architecture for adaptation that, working at the
knowledge level [42], is independent from any specific application context, but
it rather can be reused in many domains. A specific focus is given to atomic
and self-contained portion of behavior, called capabilities, which implement
the paradigm of full-reuse [6]. Indeed their peculiarity is of being automati-
cally composable, on demand, in order to build system functionalities and to
address dynamic and evolving goals. The proposed architecture integrates
the MAPE-K model [46, 15] in order to deal with three characterizations of
self-adaptation: system evolution, self-configuration and self-healing.

A prototype of the architecture has been implemented in JASON [11]
a declarative programming language based on BDI theory [13]. We also
randomly generated a set of stress tests to evaluate the performance of self-
adaptation. The result provided us interesting findings for planning future
works.

The paper is structured as follows: Section 2 presents the theoretical back-
ground and defines some basic concepts. Section 3 presents a knowledge-level
approach for solving the proactive means-end reasoning problem through a
top-down strategy combined with an algorithm for capability composition.
Section 4 presents the architecture based on the ability to solve the proactive
means-end reasoning problem and the MAPE-K model. Section 5 presents
the results of a set of tests, compares the approach with some relevant works
from the state of the art and, finally, discuss strengths and limits of the
approach. Section 6 briefly summarizes the proposed architecture. Other
details of the prototype are in Appendix.

2 Background and Definition

This section illustrates the theoretical background that introduces the basic
concepts of this paper.

2.1 State of the World and Goals

We consider software system has (partial) knowledge about the environment
in which it runs. The classic way for expressing this property is (Bel a ') [61]
that specifies that a software agent a believes ' is true, where ' is a generic
state of a↵air. We decided to limit the range of ' to first order variable-free
statements (facts). They are enough expressive for representing an object of
the environment, a particular property of an object or a relationship between
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two ore more objects. A fact is a statement to which it is possible to assign
a truth-value. Examples are: tall(john) or likes(john,music).

Definition 1 (State of the World) The state of the world in a given time
⌧ is a set W

⌧ ⇢ S where S is the set of all the (non-negated) first order
variable-free statements (facts) s1, s2 . . . sn that can be used in a given do-
main.

W

⌧ has the following characteristics:

W

⌧ = {s
i

2 S|(Bel a s

i

)} (1)

where a is the subjective point of view (i.e. the execution engine) that
believes all facts in W

⌧ are true at time ⌧ .

W

t describes a closed-world in which everything that is not explicitly
declared as true is then it assumed to be false. An example of W

t is
{tall(john), age(john, 16), likes(john,music)}.

A State of the World is said to be consistent when 8s
i

, s

j
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if {s
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j
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i
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⌧ ) s

j

62 W

⌧

s

j
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⌧ ) s

i

62 W

⌧

(2)

i.e.: it contains only facts with no (semantic) contradictions. For instance
the set {tall(john), small(john)} is not a valid state of the world since the
two facts produce a semantic contradiction.

A Condition ' : W

⌧ �! {true, false} of a state of the world is a
logic formula composed by predicates or variables, through the standard
set of logic connectives (¬,^,_). A condition may be tested against a
given W

⌧ through the operator of unification. For instance, the condi-
tion ' = likes(Someone,music) ^ age(Someone, 16) is true in the state of
the world {tall(john), age(john, 16), likes(john,music)} through the bind-
ing Someone 7! john that realizes the syntactic equality.

In many Goal-Oriented requirements engineering methods the definition
of Goal [14] is: “a goal is a state of a↵air that an actor wants to achieve”.
We refined this statement to be compatible with the definition of W t as: “a
goal is a desired change in the state of the world an actor wants to achieve”,
in line with [1]. Therefore, to make this definition operative, it is useful to
characterize a goal in terms of a triggering condition and a final state.

Definition 2 (Goal) A goal is a pair: htc, fsi where tc and fs are conditions
to evaluate (over a state of the world). Respectively the tc describes when the
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goal should be actively pursued and the fs describes the desired state of the
world. Moreover, given a W

t we say that

the goal is addressed i↵ tc(W t) ^ ⌃fs(W t+k) where k > 0 (3)

i.e. a goal is addressed if and only if, given the trigger condition is true,
then the final state must be eventually hold true somewhere on the subse-
quent temporal line.

Definition 3 (Goal Model) A goal model is a directed graph, (G,R) where
G is a set of goals (nodes) and R is the set of Refinement relations (edges)
i.e. relations that provide a hierarchical decomposition of goals is sub-goals
through AND/OR operators. In a goal model there is exactly one root goal,
and there are no refinement cycles.

This definition has been inspired by [22] but we explicitly removed In-
fluence [22] relations and Means-End [14] relations from the definition. The
influence relation prescribes a change in the satisfaction level of a goal af-
fects the satisfaction level of its adjacent goal. It is not currently used in
our theoretical model. Whereas means-end links provide a direct connection
between a goal and the procedure the system would engage to address it.
They are not in the definition of goal-model because the system generates
them at run-time.

Figure 1 is the partial goal model, represented with the i* notation,
for the meeting scheduling case study. This example, redesigned from [22],
includes functional (hard) goals only, and AND/OR refinements. The root
goal is to provide meeting scheduling services: it is decomposed into schedule
meetings, send reminders, cancel meetings and running a website. Therefore
meetings are scheduled by collecting participant timetables, choosing a sched-
ule and a location. Such a model is useful for analysts to explore alternative
ways to fulfill the root goal.

2.2 Proactive Means-End Reasoning

In many goal-oriented approaches, a Task is defined as the operationalization
of a Goal. This means that each task, in a goal model, is associated to one
(or more) leaf goal(s). This association is made at design time as the result of
a human activity called means-end analysis. In the i* conceptual model [62],
a means-end link introduces a means to attain an end where the end can be
a goal, task, resource or softgoal, whereas the means is usually a task. The
TROPOS methodology [14] introduces means-end analysis as the activity for
identifying (possibly several alternative) tasks to satisfy a goal.
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Figure 1: Portion of Goal Model for the Meeting Scheduling case study. The
tree has been truncated (with respect to the original one) where the symbol
[. . . ] appears because of space concerns.

The task is therefore an analysis entity that encapsulates how to address
a given goal according to the following statement: “a Task T is a means to
a Goal G (G being the end) when one or more executions of T produce a
post-situation that satisfies G” [31].

This paper introduces the concept of system Capability for highlighting
the di↵erence between means-end analysis made at design-time and at run-
time.

Definition 4 (Capability) A capability hevo, pre, posti is an atomic and
self-contained action the system may intentionally use to address a given
evolution of the state of the world. The evolution, denoted as evo : W ! W is
an endogenous change of the state of the world that takes a state of the world
W

t and produces a new state of the world W

t+1 by manipulating statements
in W

t. The capability may be executed only when a given pre-condition is
true (pre(W t) = true). Moreover, the post-condition is a run-time helper to
check if the capability has been successfully executed (post(W t+1) = true).

Explicit di↵erences between the concepts of Capability and Task, will be
discussed in the following.

Capabilities and Goals. Whereas a task has an explicit link to a goal,
a capability is relatively independent from a specific goal. The concept of
capabilities raises up as the attempt to provide goal models at run-time
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(goal-injection) that do not contain tasks. The system is assumed to own a
repository of capabilities to be used for addressing one of the injected goals.

The connection between Capabilities and Goals relies on the enclosed
semantics. In order to evaluate if a capability may satisfy a goal the system
generates and tries to solve a system of equations obtained by the current
state of the world, the capability’s pre/post conditions and goal’s trigger/final
state. Given W

k, c
j

= hevo
j

, pre

j

, post

j

i will address g
i

= htc
i

, fs

i

i i↵:
8
>>>>>>>><

>>>>>>>>:

s = true, 8s 2 W

k

tc

i

(W k) = true

pre

j

(W k) = true

evo

j

(W k) = W

k+1

post

j

(W k+1) = true

fs

i

(W k+1) = true

(4)

This problem can be easily translated, through predicate resolution, into
a boolean satisfiability problem [8] whose details are out of the scope of this
paper.

Composition of Capabilities. In order to increase the variability of system
behavior this work assumes that it is convenient to decompose functionality in
its atomic (but self-contained) components. It is the contextual composition
of this parts that may produce a range of possible results. For this reason,
capabilities are composable entities.

Their composition is not specified in a design-time model, but it can be
deduct at run-time by checking the satisfiability of pre and post conditions [8]
. When capabilities are composable then System of equations 4 changes for
including the resulting evolution function as the sum of each single capabil-
ity’s evolution.

Parametric Capabilities : a task is generally arranged for a particular
working context and therefore it is scarcely reusable. Conversely a capability
is conceived with the objective of being reusable as much as possible.

To this aim a capability may be ‘parametric’ i.e. it may specify some
input/output ports. As a consequence pre/post and evolution expressions
contains some logical variables. The robotic-style capability for moving an
physical object is an example of parametric capability; its pre-condition is
at(X1, Y1) whereas the post-condition is moved to(X2, Y2) where X1, X2 and
Y1,Y2 must be specified for making the action concrete.

Intuitively, depicting the space of solutions as a Cartesian plane where
points represent states of the world, a Capability may be intuitively expressed
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as a vector that induces a movement from a state A to a state B. A para-
metric capability is therefore drawn as a family of vectors where the initial
state and the final state are subject to variability. The strength of parametric
capabilities is that they could be used in di↵erent circumstances and they
are more versatile in compositions.

According to the principle that capabilities have not an explicit link to
goals, the proposed approach is based on delegating to the system the re-
sponsibility to establish which capability to select (or in alternative which
composition of capabilities to compose) and to configure its parameters for
addressing a given goal.

Definition 5 (Operationalization) The Operationalization is defined as
the tuple hg, hi where g is the goal to address and h is the instance of a simple
or composed capability, assigned for making the goal operational, where all
parameters have been assigned to a ground value.

Setting the operationalization of a whole goal model is a problem formal-
ized as follows:

Problem 1 (Proactive Means-End Reasoning) Given the current state
of the world W

I

, a Goal Model (G,R) and a set of available Capabilities C,
the Proactive Means-End Reasoning is the problem of finding a complete and
minimal set of operationalization for the goal model.

We denote with Configuration a solution to the Proactive Means-End
Reasoning problem. A Configuration is therefore a set of tuple hg

i

, h

j

i where
g

i

2 G and h

j

may be a simple or composed capability.

Given a goal model (G,R), a configuration cnf is said to be

complete i↵ 8g
i

2 G, 9h
j

: hg, hi 2 cnf ; otherwise it is partial; (5)

minimal i↵ 8g
i

2 G, @h
k

, h

r

: hg
i

, h

k

i 2 cnf, hg
i

, h

r

i 2 cnf . (6)

It is worth noting that:

1. next sections are going to illustrate an approach for solving Problem 1;
for the sake of clarity we use the following terminology: Proactive
Means-End Reasoning is a shortcoming for Problem 1, whereas PMR
ability refers to the algorithm for solving the problem;
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2. Problem 1 is di↵erent from a scheduling problem since it does not re-
quire an exact timing of the activities and it is di↵erent from a planning
problem because it does not require to create a workflow for executing
the activities [25];

3. when solving the Proactive Means-End Reasoning problem, discover-
ing more configurations produces an additional value for the purpose
of adaptation. Indeed, it allows comparing them according to meta-
properties (for instance the quality of service). This is possible under
the assumption that C is a redundant set of capabilities, and therefore
it is possible to replace a capability either with other simple or with
composed ones. Indeed, redundancy represents the common operative
context for several works in the area of self-adaptive systems [44, 40, 22].

3 Solving the Problem at the Knowledge Level

In this section we introduce an approach to Problem 1 that is based on the
concept of state of the world to model a dynamic knowledge base.

We make the assumption that the solution to the Proactive Means-End
Reasoning problem should not depend on the actual data of the environment,
but rather its flow of operations and interactions depend on how this data is
represented in abstract form.

Reasoning at the knowledge level [42], it is possible to represent com-
plex abstract data that is instantiated only at run-time. This simplifies the
problem by only modeling those features of the environment that are rel-
evant for the execution (properties to monitor and environment entities to
manipulate).

For instance, even if we do not know all the users of the meeting sched-
uler, we are able of implementing a capability that checks whether a de-
sired participant is available or not for the meeting through the predicate
available(User,Meeting). At the same way we may specify a generic goal
concerning the selection of a location for the meeting through the predicate
assigned(Meeting,Location).

In order to make the algorithm a↵ordable we obtain the knowledge level
automatically from specifications of goals and capabilities. Therefore, evalu-
ating the contextual fulfillment of goals and the compatibility of capabilities
in composition may be done through symbolic checking techniques.

The proposed approach for implementing a PMR Ability uses a two-steps
strategy that combines a top-down ‘divide’ method with a bottom-up ‘merge’
method.
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The top-down goal decomposition explores a hierarchy by decomposing
the problem space into smaller disjoint sub-spaces according the structure of
the goal model and available capabilities. Then it uses a STRIPS-based [26]
approach for bottom-up composition of simpler capabilities into more com-
plex ones.

3.1 Top-Down Goal Decomposition

Given a goal model (G,R) where g

root

2 G is the top goal of the hierarchy,
the first step of the proposed procedure is to explore the hierarchy of goals,
starting from g

root

in a top-down recursive fashion. The algorithm exploits
AND/OR decomposition relationships to deduct the addressability of a goal
according to its sub-goals. The objective is to obtain at least a complete
configuration that addresses the problem. However, when possible, it will
return a set of alternative configurations.

Let us indicate with cnf

i

= (o1, o2, . . . , on) a complete/partial configu-
ration for the fulfillment of the goal model where o

i

= hg
i

, h

i

i are the op-
erationalizations. Therefore we use the following notation for indicating a
generic solution set generated by the algorithm: {cnf1, cnf2 . . . cnfk}.

For instance, {(hg
A

, h1i), (hgB, h2i)} indicates a solution set made of two
configurations, each one composed by only one operationalization. Con-
versely {(hg

C

, h3i, hgD, h4i)} represents a solution set that contains only one
configuration, made of a couple of operationalizations.

The first step of the algorithm is to check if a goal is either a leaf or it is
decomposed into sub-goals.

When the goal is not a leaf, if the relationship is an AND decomposition
the result is the permutation of all the solutions found for each children node.
Example: if a goal g

A

is AND-decomposed in two sub-goals g
B

and g

C

, and
the algorithm finds

(
sol set

B

= {(hg
b

, c1i), (hgb, c2i)}
sol set

C

= {(hg
c

, c3i)}
(7)

then the composed solution of g
A

is

sol set

A

= {(hg
b

, c1i, hgc, c3i), (hgb, c2i, hgc, c3i)} (8)

If the relationship is an OR decomposition the result is the union of all
the solutions found for each children node. Example: if a goal g

A

is OR
decomposed in two sub-goals g

B

and g

C

, and the algorithm finds
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ALGORITHM 1: Means End Reasoning (part I - exploring goal hi-
erarchies)

Input: GM is the goal-model to address, g
target

is the goal analyzed
at this step of the procedure, W

I

is the current state of the
world and C is the set of available capabilities.

Output: The set of solutions sol set.

Function means end reasoning(GM, g

target

, C) begin
if g

target

is leaf then
h set compose capabilities(C,GM, g

target

);
foreach h

i

2 h set do
add solution(sol set, h(g

target

, h)i);
end

else
dec type get decomposition type(g

target

, GM);
subgoals get subgoals(g

target

, GM);
foreach g

i

2 subgoals(g
target

) do
sub sol  means end reasoning(GM, g

i

, C);
if dec type is AND then

sol set permutation(sol set, sub
s

ol);
else if dec type is OR then

sol set union(sol set, sub sol);
end

end
end
return sol set

end

(
sol set

B

= {(hg
b

, c1i), (hgb, c2i)}
sol set

C

= {(hg
c

, c3i)}
(9)

then the composed solution of g
A

is

sol set

A

= {(hg
b

, c1i), (hgb, c2i), (hgc, c3i)} (10)

Otherwise when the target goal is a leaf goal then it is necessary to search
for a capability or a composition of capabilities that is able to satisfy such a
goal. This procedure is discussed in the next section.
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3.2 Bottom-Up Capability Composition

A capability produces a state of the world evolution. At the same way,
the composition of capabilities produces a multi-step world evolution. The
capability composition is a procedure that explores the potential impact of
a sequence of capabilities with respect to the initial state of the world and
the desired goal to address.

The outcome of composing capabilities is modeled as a state transition
system where nodes are states of the world and transitions are due to com-
ponent capabilities:

Definition 6 (State of the World Transition System) A State of the
World Transition System (WTS) is a 5-tuple hS,W

I

, C, E,Li where

• S is the finite set of reachable states of world;

• W

I

2 S is the initial state of the world;

• C is the finite set of available capabilities;

• E is the transition relation made as a finite set of evolution functions
where evo 2 E : W ⇥W

• L : S ! Score is the labeling function that associates each state to a
score that measures (i) the distance from the final state and (ii) the
quality of the partial paths and therefore it estimates the global impact
in satisfying the whole goal-model.

The procedure for incrementally building the WTS is reported in Algo-
rithm 2. The inputs of the algorithm are the current state of the world W

I

, a
generic goal g

target

2 G of the goal model and the set of available capabilities
C. The objective is to explore the endogenous e↵ects of combinations of
capabilities with the aim of addressing g

target

.
At each step the algorithm gets most promising state of the world W

i

to explore (this is evaluated through a score that is discussed later in this
section). Then it extracts the CS as the shortest sequence of capabilities
that produces the evolution from W

I

to W

i

.
First, it checks if CS satisfies the goal g

target

according to Equation 3.
In other words, given the Triggering Condition and the Final State of the
goal, the sub-procedure check cs is solution explores the evolution sequence
to check if both TC and FS are satisfied by states of the world and if FS=true
occurs after that TC=true (see Figure 2). In the case CS satisfies the goal
then the capability sequence represents a solution and it is added to the
h set.
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ALGORITHM 2: Means End Reasoning (part II - composing capa-
bilities)

Input: GM is the goal-model to address, g
target

is the goal for which
finding a capability or a composition of capabilities, W

I

is the
current state of the world and C is the set of available
capabilities.

Output: h is a capability or a composition of capabilities that
satisfies g

target

.

Function compose capabilities(GM, g

target

,W

I

, C) begin
WTS  initialize space(W

I

);
while |h set| < max h set AND |WTS| < max space do

W

i

 get highest scored state(WTS);
CS  path from to(WTS,W

I

,W

i

);
if check cs is solution(CS, g

target

) then
add solution(h set, CS);
mark as solution(WTS,CS);

else
cap set get next capabilities(W

i

, CS,WTS);
expand and score(WTS,W

i

, cap set);
end

end
return h set

end

Conversely, the procedure selects a set of capabilities that may be used to
expand the WTS. The first criterion to select capabilities filters those that
may be executed in W

i

: i.e. it considers only capabilities whose pre-condition
is true in W

i

:

cap set

0 = {hevo, pre, posti 2 C|pre(W
i

) = true} (11)

However this set may be further restricted to exclude irrelevant capabili-
ties that do not produce significant changes into the state of the world:

cap set = {hevo, pre, posti 2 cap set

0|evo(W
i

) \ {W
I

,W1, . . . ,Wi

}} (12)

Finally, the sub-procedure expand and score for each c

i

2 cap set cre-
ates a new transition in the WTS from W

i

to the new state of the world
evo

ci(Wi

). The generated states of the world are subsequently labeled with
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WI
c1 W1 … Wi

c2 ck

TC=true FS=true

WTS

CS={c1, c2, …, ck}

Goal Conditions

Figure 2: Illustration of the procedure for evaluating the satisfaction of a
goal along a state of the world evolution. Firstly the algorithm searches for
a state of the world in which TC = true. After that, it proceeds searching
for a state of the world in which FS = true.

the score function.

The score function provides an indication of quality of a sequence of states
of the world seq = {W

I

,W1, . . .Wi

} with respect to the goal to address,
and therefore it measures how promising is the corresponding sequence of
capabilities CS. The score function has been designed to drive the algorithm
to explore combinations that are more promising for the satisfaction of the
goal, decreasing at the same time the size of the explored space. For instance,
a sequence of states in which TC = true is more interesting than one where
TC = false.

Following this idea, given that a state of the world is made of statements,
it is necessary to introduce the principle that each of these statements may
provide or not a contribution for asserting a goal is satisfied. For instance if
the goal is to print and send a document, the statement printed(doc) could
produce a positive impact to the goal. According this observation, we state
two principles for comparing states of the world obtained by capability com-
position:

• the principle of convergence i.e. the more a state of the world con-
tains statements that provide a positive impact to a goal, the more the
solution is near to be complete for addressing it, according Equation 5;

• the principle of precision i.e. the more a state of the world contains
statements that does not provide a positive impact to a goal, the more
it is minimal for addressing it, according Equation 6;.

As a consequence we can specify the function as follows:

score(W
i

, g

target

) =
1 + num relevant statements(W

i

, g

target

)

num statements(W
i

)
(13)
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where, given a state W , num statements(W ) is the cardinality of W , i.e.
the number of statements contained inW , whereas num relevant statements(W, g)
is defined as the number of statements contained in W that positively con-
tribute to make TC

g

^FS

g

= true. For instance, ifW = {s1, s2, s3, s4, s5} and
g = hs2^s8, s4_s5i then num statements = 5 and num relevant statements =
3 because {s2, s4, s5} are relevant for g.

Figure 3 illustrates Function 13 plotted as a stacked line chart for high-
lighting the score trends. Making the num relevant statements constant,
the value increases when the total number of statements in W

i

decreases
(principle of precision). Therefore, a state of the world that contains fewer
statements is considered more promising than another that contains more
statements.

At the same time, making the num statements constant in the formula,
the value is higher the more the state is close to goal satisfaction (principle of
convergence). This means that a state of the world that contains statements
relevant for a goal is considered more promising than another that does not
contain relevant statements.
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Figure 3: Line chart of the score function highlights trends of the value when
making either num statements(W ) or num relevant statements(W, g) con-
stant.

The algorithm terminates when a pre-defined number of solutions has
been discovered, or after a maximum number of states of the world has been
explored.
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4 A General Architecture for Self-Adaptation

This section illustrates how the PMR Ability may be the basis for a domain-
independent self-adaptive software system. This section discusses the relation
between the approach presented in this paper and three fundamental char-
acteristics for self-adaptive system: system evolution, self-configuration and
self-healing [34, 17].

4.1 System Evolution

Software evolution is a discipline of software engineering that aims at modi-
fying existing software for ensuring its reliability and flexibility over time.

In particular we focus on adaptive maintenance [16] an aspect of software
evolution that refers to modification performed to keep software usable in a
dynamic environment. Real world changes continuously and therefore user
needs evolve over time. Software that runs in an environment is likely to
evolve continuously to adapt to varying requirements and circumstances in
that environment. This is translated into functional enhancement and/or into
the improvement of performances in order to reflect requirements evolution.

A prominent characteristic of the proposed architecture is to handle run-
time addition of new requirements and therefore to amount to system evo-
lution [55, 53]. The PMR Ability allows moving a step forward traditional
system defined for satisfying a fixed set of hard-coded requirements. It al-
lows adding or changing requirements during run-time (in the form of goal-
models). We called this mechanism Goal Injection [53]. The user may
specify new requirements to inject into the system at run-time and they be-
come a stimulus for modifying its behavior. It is responsibility of the system
via the PMR Ability to adapt itself to the new needs. The goal injection is
enabled by two components:

• on one hand, the system owns a goal injection monitor that waits for
goals from the user;

• on the other hand, user-goals are run-time entities, as well as other
environment properties. The system acquires goals from the user and
maintains knowledge of them thus to be able of reasoning on expected
results and finally conditioning its global behavior. Of course, existing
goals may be retreated as well.

Goal injection enables user-requirements to evolve over time [32] without
either user-management or restarting the system. This could be fundamen-
tal for some categories of domain in which continuity of service is central
(financial, service providing and so on).
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In addition it is possible to increase or enhance the functions of the system
just injecting a new set of requirements and updating the repository with
new domain-specific capabilities. Given that connections between goals and
capabilities are discovered on demand, the architecture is robust to capability
evolution and may be used for di↵erent problem domains without any other
specific customization.

4.2 Self-Configuration

Self-configuration is the ability of the system to automatically set up the
parameters of its components thus to ensure the correct functioning with
respect to the defined requirements [34, 12, 45].

This subsection shows a three-layer architecture that exploits the PMR
Ability for generating business logic for requirements fulfillment. In other
words the proposed architecture implements self-configuration intended as
the ability of as system to autonomously (without explicit management)
select and compose a subset of its capabilities to achieve user’s goals.

The operative hypothesis is to consider the system owns a repository of
capabilities. This set is redundant i.e. in order to solve the same problem
the system may exploit di↵erent combinations of capabilities. Some of these
capabilities have input/output parameters that are to be configured in order
to concretely use them.

The proposed architecture is made of three layers (Figure 4): the goal
layer, the capability layer and the business layer.
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calendar(luca,lucas76)
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Figure 4: Overview of the three layers architecture with for Self-
Configuration.
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The uppermost layer of this architecture is the Goal Layer in which
the user may specify the expected behavior of the system in terms of high
level goals, according to Definition 2. Goals are no hard-coded in a static
goal-model defined at design time. The goal injection phase allows the intro-
duction of user-goals defined at run-time. Goals are interpreted and analyzed
and therefore trigger a new system behavior.

The second layer is the Capability Layer , based on the problem of
Proactive Means-End Reasoning. It aims at selecting capabilities and con-
figuring them as a response to requests defined at the top layer. This corre-
sponds to a strategic deliberation phase in which decisions are made accord-
ing to the (incomplete) system knowledge about the environment. However
this layer does not reason on concrete data and it does not consider possible
changes in the environment because it would be very costly from a compu-
tational perspective.

Algorithm 2 is explicitly built for self-configuration, indeed, in the mean-
while a Configuration solution is discovered, it searches for dependencies
among the capabilities that are selected and it also resolves these depen-
dencies by connecting their input/output ports. The consequent output is
a concrete business process obtained by instantiating capabilities into task
and data into data objects. In this phase the procedure also specifies depen-
dencies among tasks and how data items are connected to task input/output
ports.

The third layer is the Business Layer that executes the business pro-
cess generated at the second layer. This layer consists of atomic blocks of
computation for acquiring and analyzing real data from the environment and
to act for producing the desired state of the world. This layer may easily be
implemented by the MAPE-K model [46, 15], well known in literature. It
requires i) a Monitoring component that acquires information from the en-
vironment, and it updates the system knowledge accordingly; ii) an Analyze
component that uses the knowledge to determine the need for adaptation
with respect to expected states of the world or capabilities failure; iii) a Plan
component that uses the acquired knowledge to synchronize the available ca-
pabilities according the goal hierarchy and, finally, iv) an Execute component
that modifies the environment by using the appropriate capability.

4.3 Self-Healing

Self-healing is the ability of the system to automatically discover whenever
requirements fail to be fulfilled and to work around encountered problems,
thus to restore fulfillment of the requirements and to grant continuous func-
tioning with respect to the defined requirements [34, 33].
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Figure 5: Graphical representation of the Self-Healing Loop.

In the previous section we have adopted the MAPE-K model [46, 15] for
implementing the business layer of the presented architecture. According
the roadmap of self-adaptive systems [17], one of the principles for imple-
menting self-healing is to explicitly focus on the ‘control loop’ as an internal
mechanism for controlling the system’s dynamic behavior. The most famous
control architecture is the MAPE-K model and we propose to place the PMR
Ability on top of the MAPE-K architecture in order to generate a macro-loop
for self-healing, as shown in Figure 5. The macro activities of the resulting
architecture are: monitor goal injection, proactive means-end reasoning and
MAPE-K loop.

In the Goal Injection phase the user communicates her requirements to
the system. The system reacts to the injection of new goal by activating
the PMR Ability in order to assemble a solution for addressing the whole
goal model and if at least one solution is discovered, then the system selects
the highest scored Configuration and instantiates the corresponding busi-
ness process, reserving proper resources for its execution. At this stage it is
impossible to predict all possible changes in the environment conditions.

Therefore the agent activates a sub-cycle of monitoring, analyzing, plan
and execution driven by the knowledge of the environment (MAPE-K ). If
everything goes as planned, the goal will eventually be addressed. How-
ever, given that the Algorithm 1 and Algorithm 2 do not consider exogenous
changes of the state of a↵airs, it is possible that unexpected events occur
in the environment, during the execution. When system’s monitors capture
an unexpected state of the world, and the capabilities in the Configuration

are not su�cient to deal with that, then the system recognizes a situation of
failure for one of the requirements. This raises a need for adaptation event
and the PMR Ability executes again with a di↵erent W

I

(the current one).
The result will be a di↵erent Configuration (if possible) for overcoming the
unexpected state. The self-adaptation cycle also considers cases in which
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the execution of a capability terminates with errors. In this case the PMR
Ability is re-executed with the shrewdness to mark the capability that failed
as ‘unselectable’.

5 Evaluation and Discussion

The architecture presented in Section 4 has been implemented in MUSA,
a Middleware for User-driven Service Adaptation [21]. MUSA is built as a
multi agent system and developed in JASON [11], a declarative programming
language based on the AgentSpeak language [49] and the BDI theory [13].
The state of an agent together with its knowledge of the operative envi-
ronment is modeled through its belief base, expressed by logical predicates.
Self-awareness is supported by translating high-level goals’ and capabilities’
specifications into agent’s beliefs [52]. This enabled the development of the
agent PMR Ability for reasoning on Goals and Capabilities as first class
entities [51, 21]. Additional details on MUSA are provided in Appendix.

The rest of this section presents and discusses an evaluation benchmark
for MUSA in the context of self-configuration and self-healing.

5.1 Evaluating Self-Configuration

The proposed architecture relies on the couple of algorithms for analyzing the
goal model and exploring the space of solutions for composing capabilities.
This latter algorithm incrementally builds a state transition system where
each edge is generated through the evolution function of a capability and each
node is a possible state of the world. The state transition system takes the
form of a tree where each branch is a di↵erent partial/complete configuration
for the fulfillment of a given goal. Exploring the whole space of solutions
would take an exponential time to complete, however the score function has
been designed to drive the order of exploration, thus exploring first most
promising directions.

Here we present the methodology we adopted to generate sequences of
stress test to evaluate the algorithms with respect of self-configuration and
self-healing.

1. Random generation of a working context: this step consists in randomly
extracting a fixed number of statements from a repository. That con-
text represents the dictionary of terms describing an abstract working
context.
Example: Dictionary = [b(e), q(u), l(a), g(a), v(o), z(u), r(u), z(a), v(i), d(e)].
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2. Random generation of goals to satisfy: each goal is generated by ran-
domly selecting terms from the dictionary.
Example: goal(”g38”, condition(not(z(u))), condition(z(a))) triggers when
the state of the world does not contain the statement z(u) and it is ad-
dressed when the state of the world does contain z(a).

3. Random generation of the current state of the world: picking an ar-
bitrary number of statements from the dictionary generates a random
W

I

. Example: world([r(u)]).

4. Finally, random generation of a repository of capabilities. Each capa-
bility is produced by selecting couples of terms from the dictionary.
The first term is the pre-condition and the second term is the post-
condition. The evolution function is built consequently.
Example: cap(”c1”, evo([remove(r(u)), add(z(u))]), condition(r(u)), condition(z(u))).

For operating a comparative benchmark we selected: (i) the couple of
algorithms presented in Section 3 in which capabilities are filtered (see Equa-
tions 11 and 12) and WTS nodes are scored (thereafter “score-driven search”)
, and (ii) the same algorithms where the score function is replaced with a
breath-first strategy (thereafter “exhaustive search”).

Therefore we run series of tests with an incremental growth of number
of capabilities, starting from 20, till 70. Each test executes both the score-
driven search and the exhaustive search with the same input. We measured
the number of visited nodes in the WTS, and the number of discovered
solutions. Charts of Figure 6 reports the results obtained by repeating the
test 120 times, starting from 20 capabilities and increasing of 10 after every
20 runs. We used a paired t-test for verifying that visited nodes (obtained
through the two methods) are significantly di↵erent (p-value=0.01 ).

Table 1: Analysis of means (t-test) of Visited States of World obtained by
the two methods.

name mean median sd p.value e↵ect.size
1 Score 128.23 200 86.04
2 Breath 148.80 201 83.76
3 Di↵erence -20.57 -1 49.50 0.01 -0.42

As it can be seen, the number of visited nodes (and therefore the time-
to-complete) is polynomial with respect to the number of capabilities both
for the score-driven search and for the exhaustive search (see ‘visited states
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Figure 6: Data obtained by comparing the algorithms presented in Section 3
with a breath-first strategy. Configurations are the result of 120 executions
with random input and increasing of 10 the number of capabilities every 20
runs.

of world’ in Figure 6). To some extent this was surprising because we ex-
pected an exponential time, given the algorithm is in the class of combinato-
rial search. A deeper analysis shows that the activity of capability filtering
(Equations 11 and 12), done at each step of the algorithm, greatly reduces
the space of evolution and therefore state explosion is limited.

Figure 6 reveals that the exhaustive search represents an upper boundary
for the score-driven algorithm for what concerns performance. Indeed the
score-driven search provides better results both from the point of view of
the number of visited nodes and for what concerns the number of discovered
solutions.

We also noted that, taking in consideration only those setting in which at
least one solution exists, the average number of visited nodes visited through
the score function is definitively better than a exhaustive search strategy (see
‘scenario with solutions’ in Figure 6).

5.2 Evaluating Self-Healing

For evaluating this property we have added other three items to the previous
methodology for testing.

5. Execute the PMR Ability with the input obtained at previous steps
and select one output configuration.

6. Simulate the execution of the configuration and randomly generating
an adaptation event.

7. Update the initial state of the world to the current situation at the
moment of failure and execute again point 5.
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Therefore we run a sequence of tests with a fixed number of 40 capabilities,
measuring the number of solutions discovered: i) at the first run of self-
configuration and ii) after the self-healing.
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Figure 7: Result of the sequence of tests for self-healing. The dark grey area
represents the size of the space of solutions discovered at the first run of self-
configuration for each scenario. The light grey area represents the additional
space of solutions built as a result of self-healing.

Figure 7 represents as filled areas the space of configurations obtained by
executing the PMR Ability before and after the self-healing event. Among
the 13 scenarios, only in three cases (scenarios 3,4 and 13) the adaptation
failed because the available capabilities were not enough to repair the failure.
In all the other cases the procedure performed well, increasing the space of
configuration just enough to allow the correct goal fulfillment.

As a final note we calculated that new configuration, obtained for over-
coming a failure, in average reuses the 72.25% of capabilities used in the first
configuration.

5.3 Related Works

To date we identified a semantic gap exists between requirement specifica-
tions defined at design-time [58, 48] and the concept of goal used at run-
time [9]. This represents a limitation especially in the development of self-
adaptive and evolving systems.

Morandini et al. [41, 40] propose to extend the operational semantics
of goal models by characterizing the behavior of run-time goals thus to be
directly implemented. The solution is that of enriching the definition of
goal by specifying their dynamics and maintaining the flexibility of using
di↵erent goal types and conditions. Dalpiaz et al. [22] propose a new type
of goal model, called runtime goal model (RGM) which extends the former
with annotation about additional state, behavioral and historical information
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about the fulfillment of goals, for instance explaining when and how many
instances of the goals and tasks need to be created. The common element of
these couple of approaches is that the behavior of the system is wired into
tasks that in turn are wired to goals of the model. Therefore even if the
system may select many alternative OR decomposition relationships, it can
adapt its behavior but it can not evolve over the pre-defined tasks.

SAPERE [63] (Self-Aware Pervasive Service Ecosystems), is a general
framework inspired from natural self-organizing distributed ecosystems. SAPERE
does promote adaptivity by creating a sort of systemic self-awareness. As
well as our approach, their components have, by design, an associated se-
mantic representation. These live semantic annotations are similar to service
descriptions and enable dynamic unsupervised interactions between compo-
nents.

Baresi et al. [5] introduce the concept of adaptive goals as means to
conveniently describe adaptation countermeasures in a parametric way. An
adaptive goal is described as an objective to be achieved, a set of constraints
and a sequence of actions to fulfill the aforementioned objective. The same
author proposes A-3 [4], a self-organizing distributed middleware aiming at
dealing with high-volume and highly volatile distributed systems. It focuses
on the coordination needs of complex systems, yet it also provides designers
with a clear view of where they can include control loops, and how they
can coordinate them for global management. As well as our approach they
consider requirements as run-time entities even if they do not propose a
dynamic execution model in which their goals are injected at run-time. In
addition they introduce fuzzy goals for expressing the satisfaction degree of
requirements that is a possible future direction for extending our definition
of goal.

Gorlick et al. [29] present an approach to manage runtime change called
Weaves. A weave is an arbitrary network of tool fragments that communicate
asynchronously. Similar to our concept of capability, a tool fragment is a
small software component that performs a single, well-defined function and
may retain state.

Blanchet et al. [10] present the WRABBIT framework that supports
self-healing for service orchestration through conversation among intelligent
agents. Each agent is responsible for delivering services of a participating
organization. Globally they are able of discovering when one agent’s work-
flow changed unilaterally because it may incur conversation errors with other
agents. An agent also recognizes mismatches between its own workflow model
and the models of other agents.The limit of such approach is that it is domain
oriented, since the possible errors must be defined at design-time. Extending
the WRABBIT’s approach for handling unexpected not-understood situa-
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tions could be an interesting direction for our work.
Kramer and Magee [35] propose a three-layer architecture for self-adaptation

inspired from robotics. The architecture includes (i) a control layer, a re-
active component consisting of sensors, actuators and control loops, (ii) a
sequencing layer which reacts to changes from the lower levels by modifying
plans to handle the new situation and (iii) a deliberation layer that consists
in time consuming planning which attempts to produce a plan to achieve a
goal. The main di↵erence with our architecture is that we introduce a layer
for handling goal evolution.

Gomaa and Hashimoto [28], in the context of the SASSY research project,
look into software adaptation patterns for Service-Oriented applications. Their
intuition is that dynamic reconfiguration can be executed by assembly archi-
tectural patterns. The objective is to dynamically adapt distributed trans-
actions at run-time, separating the concerns of individual components of the
architecture from concerns of dynamic adaptation, using a connector adap-
tation state-machine. As well as our approach, SASSY provides a uniform
approach to automated adaptation software systems, however to date, goal
evolution is out of the scope of their work.

Souza et al. [57] focus on evolution requirements, that play an important
role in the lifetime of a software system in that they define possible changes
to requirements, along with the conditions under which these changes apply.

Ghezzi et al. [27] propose ADAM (ADAptive Model-driven execution) a
mixed approach between model transformation techniques and probability
theory. The modeling part consists in creating an annotated UML Activity
diagram whose branches can have a probability assigned, plus an annotated
implementation. Then an activity diagram becomes a MDP (Markov Deci-
sion Process). It is possible to calculate the possible values for the di↵erent
executions and to thus navigate the model to execute it.
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5.4 Strengths, Weakness and Future Works

The main strengths of the proposed architecture are summarized below.
Reusability : capabilities support the paradigm of Full-Reuse [6]. Capa-

bilities are atomic, self-contained and created for being composable. They
must be designed for being usable in several contexts and parameters are the
key to achieve a finer tuning for a specific problem. Self-configuration is ob-
tained by handling any change by reusing available capabilities. In practice
capabilities are the key element of reuse.

Support for Evolution: the approach relies on the idea that goals, ca-
pabilities and their links are not hard-coded. Indeed goals and capabilities
are decoupled and goals are injected at run-time. The dynamic connection
between capabilities and goals must be discovered at run-time. In addition
the repository of capability can be evolved without restarting the system.

Domain Independence: working at the knowledge level, the problem is
modeled through those features of the environment that are relevant for the
execution (elements to monitor and to manipulate). The adopted solution is
to enclose all the necessary semantics into goals and capabilities. The PMR
Ability does not require further information for producing a configuration.
The proposed architecture exploits general representation of knowledge for
reasoning about capabilities that is independent of the particular application
that is driving it [47]. Therefore it is possible to translate from a domain
to another one just injecting a new set of requirements and updating the
repository with new domain-specific capabilities.The same architecture may
serve di↵erent problem domains, even at the same time, without any other
specific customization.

Concluding, a critical analysis of the approach highlights some issues that
could be the starting point for improving the proposed architecture.

In this approach, as well in state-change models [26], actions are instan-
taneous and there is no provision for asserting what is true while an action is
in execution. Such systems cannot represent the situation where one action
occurs while some other event or action is occurring [3]. As a future work we
intend to extend this state-of-world based model towards one that includes
times, events and concurrent actions [3]. For instance it will be possible to
add temporal operators and to test a predicate over some time interval [2, 36].

Another point of discussion concerns the real degree of decoupling be-
tween Capabilities and Goals. The authors have introduced the use of an
ontology for enabling semantic compatibility between these two elements
during the Proactive Means-End Reasoning.

We already employed MUSA in 5 research projects with heterogeneous ap-
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plication contexts, from dynamic workflow [53] to a smart-travel system [54].
However, in our in-vitro evaluation, the same development team created both
Capabilities and Goals thus the ontology commitment was ensured. Our
experimental phase is based on the assumption that the ontology is built
correctly, thus allowing the system to properly work.

Another interesting aspect to consider is the impact of the maintenance
phase over the ontology, and as a direct consequence, the degree of degrada-
tion of capabilities. We experienced that even changing the definition of a
single predicate in the ontology has a detrimental impact over the reliability
of the system in using its capabilities.

6 Conclusion

We have presented a theoretical framework for specifying the problem of
Proactive Means-End Reasoning in terms of states of the world, goals and ca-
pabilities. Solving the problem at the knowledge level provided us the oppor-
tunity to define a general architecture for system evolution, self-configuration
and self-healing. This architecture is based on the idea that a user, at run-
time, may inject a new goal model without specifying the description of how
to address it. The proposed architecture is responsible for configuring and re-
configuring its business layer as the result of reasoning and deductions made
at the knowledge level. System evolution is the result of a process of goals
management, self-configuration is obtained through the ability of solving the
proactive means-end reasoning and finally self-healing is obtained by closing
the loop between self-configuration and execution. The strengths of the pro-
posed architecture is to be domain independent and to support reusability
across many application contexts.
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