

Consiglio Nazionale delle Ricerche
Istituto di Calcolo e Reti ad Alte Prestazioni

MEDITOMO: an high

performance software for SPECT
imaging

L. Carracciuolo - L. Antonelli -
L. D'Amore - A. Murli

RT-ICAR-NA-2007-1 01-2006

Consiglio Nazionale delle Ricerche, Istituto di Calcolo e Reti ad Alte Prestazioni (ICAR)
– Sede di Napoli, Via P. Castellino 111, I-80131 Napoli, Tel: +39-0816139508, Fax: +39-
0816139531, e-mail: napoli@icar.cnr.it, URL: www.na.icar.cnr.it

 I

Consiglio Nazionale delle Ricerche
Istituto di Calcolo e Reti ad Alte Prestazioni

MEDITOMO: an high

performance software for SPECT
imaging

L. Carracciuolo1 - L. Antonelli1 -

L. D'Amore2 - A. Murli2

Rapporto Tecnico N.:
RT-ICAR-NA-2007-01

Data:
01-2006

1 Istituto di Calcolo e Reti ad Alte Prestazioni, ICAR-CNR, Sede di Napoli, Via P. Castellino 111, 80131
Napoli
2 Università degli Studi di Napoli Federico II, Napoli

I rapporti tecnici dell’ICAR-CNR sono pubblicati dall’Istituto di Calcolo e Reti ad Alte
Prestazioni del Consiglio Nazionale delle Ricerche. Tali rapporti, approntati sotto
l’esclusiva responsabilità scientifica degli autori, descrivono attività di ricerca del
personale e dei collaboratori dell’ICAR, in alcuni casi in un formato preliminare
prima della pubblicazione definitiva in altra sede.

 II

MEDITOMO∗:
an high performance software package

for 3D SPECT imaging

L. Antonelli2 - L. Carracciuolo2 - L. D’Amore1 - A. Murli1

1. University of Naples Federico II, Naples, ITALY

2. Institute of High Performance Computing and Networking, ICAR-CNR, Naples,

ITALY

Abstract

We describe the parallel software library, named MEDITOMO, designed
for analysis of MEDIcal images obtained by SPECT (Single Photon Emis-

sion Computed Tomography) TOMOgraphic systems. The library has
been developed within a national research project carried out in collabo-
ration with the Clinic Physiopathology Department of University of Flo-
rence, the Physics Department of University of Genoa and the Institute of
High Performance Computing and Networking of CNR in Naples. MED-
ITOMO is the core library of the PSE (Problem Solving Environment)
MEDIGRID, oriented to medical imaging applications, that will be em-
ployed in a grid infrastructure involving such departments.

1 The SPECT imaging model equation

The role of accurate and efficient investigation and diagnosis in the management
of all disease is unquestionable. In last decades, central to the diagnostic process
are imaging techniques, medical imaging not only provides for diagnosis but also
serves to assist the treatment of malignant disease. Due to the huge amount of
data, the exploitation of high performance environments both for the storage
requirements and for their efficient elaboration, is mandatory. In particular,
here we are concerned with the SPECT imaging, mathematical description of a
SPECT analysis is based on the Blurred Radon Transform [12]:

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

u(x, z′)h(s − x · θ,x · θ⊥, z − z′)dxdz′ = g(s, φ, z) (1)

∗This work is partially supported by the FIRB Grid.it RBNE01KNFP national project
(2003-2005) within the activities of the WP9 Grid enables scientific libraries and by national
PRIN (2000-2002; 2002-2004 e 2004-2006) projects.

1

where x = {x, y}, θ = {cosφ, sinφ} and θ⊥ = {− sinφ, cos φ}. If t = x · θ⊥ is
the distance between the source and the detector, coordinates {s, t, z} refer to
the plane {s, t} which is rotated, with respect to the plane {x, y}, by the angle
θ. h(s, t, z) is the Point Spread Function (PSF) describing the blurring process,
while g(s, φ, z) represents the data acquired by the gamma camera at the angle
φ and u(x, y, z) refers to the radioisotope distribution.
Following [12] we assume:

h(s, t, z) = h0(s, t)h0(z, t) ,

where:

h0(a, b) =
1

σ(b)
√

2π
e
− a2

2σ2(b) ,

and

σ(b) = σmin − σmax − σmin

2r′
(b − r′) , (2)

σmin, σmax and r′ depends on the acquisition system (1). Equation (1) is said
to be the fully 3D model. If the PSF is separable:

h(s, t, z) = E(s, t)A(z) , (3)

then:
∫ ∞

−∞

A(z − z′)dz′
∫ ∞

−∞

∫ ∞

−∞

u(x, z′)h(s − x · θ, x · θ⊥)dx = g(s, φ, z) . (4)

Equation (4) is said to be the 2D+1 model [12].
Both the (1) and (4) can be written as:

g = Ku, (5)

where K is the integral operator.

The mathematics of computed tomography involves the reconstruction of
the unknown function u (usually a 3D surface) from its planar projections (g)
acquired at different values of φ . More precisely, we deal with the inverse
problem:

u = K−1g , (6)

which is a well known inverse and ill posed problem [10]. Reconstruction meth-
ods available in literature can be largely classified into two groups, namely those
based on Filtered Back Projection (FBP) and iterative methods. For a long time
there was much debate as to the relative superiority of one or another and in
particular whether one of the two was in some sense superior. Today, this de-
bate has largely subsided with the inevitable conclusion that each method has
its advantages, it being important to tailor the reconstruction algorithms to the

1Some details about values of σmin , σmax and r can be found in Section ??.

2

scanner design and to the physics of the imaging modality.
Both FBP and iterative methods can be related to regularization approaches.
Basic idea of regularization is to find the solution u of (6) as:

u∗ = arg min
u

F (u) = arg min
u

{‖ Ku− g ‖2} , (7)

where ‖ · ‖2 is the norm defined on L2(Ω), Ω ⊂ <3 is an open subset of <3 and
is the domain of the u and g functions.
If the noise affecting data is assumed to have a poisson distribution, solution is
find as:

u∗ = arg max
u

p (g|u) , (8)

where p (g|u) is the conditional probability2 of g given u [26].
Both in (7) and in (8) we introduce as regularization functional the Total

Variation seminorm, defined as:

TV (u) =

∫

|∇u| dxdydz =

∫ ∫ ∫

√

u2
x + u2

y + u2
zdxdydz , (9)

where ux, uy e uz are partial derivatives of u (x, y, z) with respect to x, y and
z. Then:

u∗ = arg min
u

F (u) = arg min
u

{

‖ Ku − g ‖2
2 +αTV (u)

}

(10)

and:
u∗ = argmax

u
{log p (g|u) + TV (u)} . (11)

In this paper we describe the design and development of the software library,
named MEDITOMO, collecting parallel algorithms implementing the TV-based
regularization for solving the SPECT imaging problem in high performance
computing environment. The paper is organized as follows, we start from the
description of the discretization of the problem in Section 2 and in Section 3
the basic algorithms underlying the parallel software are described: the Fixed
Point, the Conjugate Gradient and the Expectation Maximization; in Section 4
the analysis of the computational complexity of the algorithms is carried out and
in Section 5 how the parallelism has been introduced is discussed; in Section
6 main features of MEDITOMO are shown and, finally, in Section ?? some
numerical results are shown.

2 Discretization

2.1 Discretization of K

Let:

s ∈ [−r, r] , z ∈ [−R, R] , φ ∈ [0, 2π] , (12)

2The maximum of p (g|u) can equivalently be found as the maximum of log p (g|u)

3

Figure 1: A 4 × 4 grid for the discretization of g(s, φm, z). (*) means the center
of a cell.

and (3):

φm = m∆φ, ∆φ = 2π
M−1 , m = 0, . . . , M

sk = −r + k∆s, ∆s = 2r
J−1 , k = 0, . . . , J − 1

zl = −R + l∆z, ∆z = 2R
L−1 , l = 0, . . . , L − 1

be the discretization of domain Ω.

Let gkml indicate the value of g(s, φ, z) at (sk, zl, φm). Note that, at each m,
and thus at each φm, we have a 2D mesh made of J×L boxes, as shown in figure
1. The centers Ckml of each square box have coordinates (sk + ∆s

2 , φm, zl +
∆z
2).

Function u is discretized, by the same way, on a 3D mesh of size N × N × L′.
We discretize the integrals in (1) using a midpoint quadrature formula which
use the values of g at Ckml. Then, it is:

gkml =
L−1
∑

l′=0

N−1
∑

i=0

N−1
∑

j=0

kijl′

mkl · uijl′ , (13)

k = 0, . . . , J − 1; m = 0, . . . , M − 1; l = 0, . . . , L − 1.

Equations (13) lead to the following linear system

[g] = [K]3[u] , [g] ∈ <J×M×L , [u] ∈ <N×N×L′

(14)

where [u] is unknown.

3The values of J , M , L depend on the acquisition system. Typical values of M are 120,
60, and of J and L are 2l, l = 7, 8.

4

Definition 2.1 Matrix [K]3 ∈ <((J×M)×L×(N×N)×L′) is called the 3D projec-

tor. Elements of [K]3 are denoted by kijl
mkl. [K]3 is a block matrix.

[K]3, is sparse with about 95% of zeros, then a compact storage technique was
used.
Discretization of (4), leads to the following linear system:

gkml =
N−1
∑

i=0

N−1
∑

j=0

Eij
km

L′−1
∑

l′=0

Al
l′ · uijl′ , (15)

where
k = 0, . . . , J − 1; m = 0, . . . , M ; l = 0, . . . , L− 1.

whose matrix formulation is:

[g] = [K]3[u] , [K]3 = [E]2 ⊗ [A]1 , where [E]2 ∈ <((J×M)×(N×N))

(16)

and [A]1 ∈ <L×L′

, (17)

where:

[E]2 =





























E0,0
0,0 . . . E0,N−1

0,0 . . . E0,0
0,M−1 . . . E0,N−1

0,M−1
...

. . .
... . . .

...
. . .

...

EN−1,0
0,0 . . . EN−1,N−1

0,0 . . . EN−1,0
0,M−1 . . . EN−1,N−1

0,M−1
...

...
...

...
...

...
...

E0,0
J−1,0 . . . E0,N−1

J−1,0 . . . E0,0
J−1,M−1 . . . E0,N−1

J−1,M−1
...

. . .
... . . .

...
. . .

...

EN−1,0
J−1,0 . . . EN−1,N−1

J−1,0 . . . EN−1,0
J−1,M−1 . . . EN−1,N−1

J−1,M−1





























,

(18)
[A]1 is a Toeplitz matrix:

[A]1 =







α0 . . . αL′−1

...
. . .

...
αL−1 . . . α0






, (19)

where:

αl = (∆z)2
∫ 1

2

−1
2

∫ 1
2

−1
2

A[∆z(ζ − ζ ′ + l)]dζdζ ′ , (20)

Definition 2.2 [E]2 ∈ <(J×M)×(N×N) is called 2D projector. [E]2 is a block
matrix.

Using the commutative property of the Kronecker product in (16) it follows:

[g] = [K]3[u] = [E]2 ⊗ [A]1[u] = [A]1 ⊗ [E]2[u]

5

Figure 2: A 4 × 4 grid used for the discretization of u(x, y, z)

or:
[f] = [E]2[u] ,

[g] = [A]1 ⊗ [f] . (21)

[u] ∈ <(N×N)×L′

, [f] ∈ <(J×M)×L′

, [g] ∈ <(J×M)×L

2.2 Discretization of TV

The Euler Lagrange equations associated to the problem (10) are:

{

K∗(Ku− z) + α · Lu = 0 , (x, y) ∈ Ω

∂u
∂n = 0 , (x, y) ∈ ∂Ω

(22)

where Lu = div
(

∇u
|∇u|

)

L is discretized, on the same mesh of u and g (see fig. 2), using a 7-point stencil
(figura 3) [23], with step h = ∆x = ∆y = ∆z. We approximate first and second
partial derivatives of u (x, y, z) using the central finite differences:

∂u

∂x
≈ ui+1,j,l′ − ui−1,j,l′

2h
,

∂u

∂y
≈ ui,j+1,l′ − ui,j−1,l′

2h
,

∂u

∂z
≈ ui,j,l′+1 − ui,j,l′−1

2h
,

6

∂2u

∂x2
≈ ui+1,j,l′ + ui−1,j,l′ − 2ui,j,l′

h2
,

∂2u

∂y2
≈ ui,j+1,l′ + ui,j−1,l′ − 2ui,j,l′

h2
,

∂2u

∂z2
≈ ui,j,l′+1 + ui,j,l′−1 − 2ui,j,l′

h2
.

Discretization of L, leads to :

L([u]) = BT
h (Dh([u]))−1Bh ,

where Dh is a block diagonal matrix:

Dh =





Dx([u]) 0 0
0 Dy([u]) 0
0 0 Dz([u])



 ,

Bh[u] is the matrix where each row contains just two not zero elements equal
to 1. Dx([u]), Dy([u]), Dz([u]) are diagonal matrices of size (N − 1) × N × L′,
N × (N − 1) × L′, N × N × (L′ − 1) respectively.

Finally, discretization of (22) leads to the following non linear system:

([K∗]3[K]3 − αL([u]))[u] = [K∗]3[g] , (23)

Equation (23) represents the discrete problem corresponding to the TV-
based regularization problem describing the 3D SPECT imaging in case of ad-
ditive gaussian noise. In the following we describe discretization of the same
problem in case of a poisson noise.

2.3 Discretization of (8)

We perform the discretization of Ω using the grid shown in fig. (2). Let us

denote the values of u at the center of the s-th voxel, where s = 1, . . . , S.
Consider the function J defined as:

J : (i, j, l′) 7→ s = (l′ − 1) ∗ N2 + (j − 1) ∗ N + i.

which maps (i, j, l′) onto s, s = 1, . . . , S. By the same way, we consider the
function g(s, φ, z) and suppose that the gamma camera acquires T values of g.
Let denote by gt, t = 1, . . . , T such values and:

u =







u1

...
uS






, (24)

g =







g1

...
gT






. (25)

7

Figure 3: The 7-point stencil used for discretization of L

The difference between the discretization technique used in section 2.1 and this
one is that in the first case function u is discretized at the points (i, j, l′), while
now the values of u are computed at the centers of the voxels.

Let kts be the probability that the radio isotope radiation emitted from the
generic voxel s = 1, . . . , S will be detected from the t-th (t = . . . , T) detector,
then:

g∗t =

S
∑

s=1

ktsus = E(g|u) (26)

is the average of the conditional statistic of gt. The probability p (gt|u) of gt

given u is:

p (gt|u) = Poisson

(

S
∑

s=1

ktsus

)

= e−(
P

S
s=1 ktsus)

gt

(

∑S
s=1 ktsus

)gt

gt!
. (27)

Replacing (26) in the (27) gives:

p (gt|u) = e−(g∗

t)gt (g∗t)gt

gt!
. (28)

then:

u∗ = argmax
u

{

T
∑

t=1

(

gt log
g∗t
gt!

− g∗t

)

+ log p (u)

}

, (29)

u∗ is solution of (??) if [35]:

8

us
∂l (u)

∂us

∣

∣

∣

∣

us=u∗

s

= 0, us > 0 (30)

∂l (u)

∂us

∣

∣

∣

∣

us=u∗

s

≤ 0 us = 0 (31)

where

l (u) =

T
∑

t=1

(

gt log
g∗t
gt!

− g∗t

)

.

then:

0 = us′

∂l (u)

∂us′

= us′

(

−
T
∑

t=1

kts′ +

T
∑

t=1

kts′gt
∑S

s=1 ktsus

)

, (32)

or:

us′

T
∑

t=1

kts′ = us′ .

T
∑

t=1

kts′gt
∑S

s=1 ktsus

. (33)

We now introduce the matrix:

[K]3 := (kts) t = 1, . . . , T
s = 1, . . . , S

then (34) gives:

u
(

[K]T3 [1]
)

= u

(

[K]T3
g

([K]3u)

)

(34)

0 = −u
(

[K]T3 [1]
)

+ u

(

[K]T
g

([K]3u)

)

(35)

0 = −u

{

(

[K]T3 [1]
)

+

(

[K]T3
g

([K]3u)

)}

(36)

where [1] ∈ <t is a vector with all elements equal to 1, and where operations
between vectors are intended component-wise.

3 The algorithms: Fixed Point and EM

We use two standard algorithms, the Fixed Point (FP) and the Expectation
Minimization (EM), suitably modified for solving (23) and (36).

If ω = ∇[u]
|∇[u]| , 23) can be written as:







F(u, ω) = [K∗]3([K]3[u] − [g]) + α∇ · ω = 0

ω = ∇[u]0√
(∇[u]0)2+β2

(37)

9

procedure PCG(K,K∗,M,f,g);
* Computation of the residual at the zero step.

r(0) = g ;
* Preconditioning at the zero step.

z(0) = M−1 r(0);
* Search direction at the zero step.

p(0) = z(0);
γ0 = 0;
for k=1, maxit do

* I. Computation of γk

γk = ‖r(k−1)‖2
2;

* II. Computation of βk

βk = γk−1 / γk;

* III. Update of the vector p(k)

p(k) = r(k) + βkp(k−1)

* IV. Update of the vector q(k)

q(k) = K∗M−1K p(k);
αk = γk/‖q(k)‖2

2;

* V. Update of the solution f (k)

f(k) = f(k−1) + αkp(k);
* VI. Update of the residual r(k)

r(k) = r(k−1) - αkq(k);
endfor

end procedure PCG.

Figure 4: PCG algorithm.

10

Elimination of ω from the first equation leads to:

[K∗]3([K]3[u] + [g]) + α∇ ·





∇[u]
√

(∇[u])
2

+ β2



 = 0 . (38)

If [u]0 = [g] as in [13], we have:

[K∗]3[K]3[u]m+1 − [u]0 + α∇ ·





∇[u]m+1

√

(∇[u]m)
2

+ β2



 = 0 . (39)

The iterative scheme (39) has a linear convergence [22].
The FP, shown in fig. 5, is made of two nested loops where the main operations
are:

1. I loop: construction of the matrices in (39)

1.a computation of [K]3;

1.b computation of [K∗]3;

1.c computation of Lm([u]m);

2. II loop: solution of a linear system, by using the PCG :

The diagonal preconditioner is described in [29]. PCG is shown in fig. 4.

From (36) it follows the iterative scheme for computing the approximation u∗

of (11) is:

um+1 =
[1]

[K]T3 [1]
um[K]T3

g

[K]3um
m = 1, 2, (40)

which is known as the EM algorithm.

Theorem 3.1 The iterative scheme (40) converges to the solution u∗ of the
problem (??) [35].

The explicit form of the EM algorithm is:

um+1
s′ = um

s′

1
∑T

t=1 kts′

T
∑

t=1

gtkts′

∑S
s=1 ktsum

s

(41)

The EM (40) has a slow convergence rate [30], then the accelerated version,
called EMOSn (Expectation Maximization Ordered Subset)[30] has been used.
Let Ξ = {Ωi : i = 1, . . . , n} be a partition of the set Ω = {1, . . . , T}, that is:

Ξ = {Ωi}i=1,...,n , (42)

Ωi ⊆ Ω,
n
⋃

i=1

Ωi = Ω,

Ωi

⋂

Ωj = �, ∀i 6= j

11

begin procedure FP
{
Construction of the matrix F ;

F = [K∗]3[g];

* Fixed Point Iteration

for i = 1, · · · , maxit do

Computation of the matrix Lm ([u]m);

Solution of the system ([K∗]3[K]3 + αLm ([u]m)) [u] = F
by the PCG method (nested cycle);

endfor

}end procedure FP

Figure 5: FP algorithm.

The partition Ξ leads to a row-block formulation of [K]3:

[K]3 =







[K1]3
...

[Kn]3






, [Ki]3 ∈ <T

n
×S (43)

[Ki]3 is a restriction of the operator [K]3 to Ωi. In the 2D+1 model, each block
[Ki]3 can be factorized as (16):

[Ki]3[u] = ([A]1 ⊗ [E]2)i[u] i = 1, . . . , n . (44)

In fig. 6 we show the EMOSn algorithm.

3.1 Introduction of Total Variation inside EM.

Introducing TV in (36) leads to the following scheme [34]:

um+1
s = um

s

1
∑T

t=1 kts + α (L (um) um)s

T
∑

t=1

gtkts
∑S

s=1 ktsum
s

m = 1, 2, . . . (45)

TV-based EMOSn, is shown in figure 7. EMOSn-TV is made of two loops which
perform the following operations:

1. I loop (EM): definition of matrices in (??):

12

procedure EMOSn

1. m = 0

2. Let ûm be a constant and positive value

3. repeat until to the ûm convergences

(a) u1 = ûm

(b) m = m + 1

(c) for each OS level i = 1, . . . , n

i. compute the product µi = [Ki]3u
i

µi
t =

∑

s=1,...,S

ktsu
i
s, t ∈ Ti

ii. compute ui+1 = [1]

[K]T3 [1]
ui[Ki]

T
3

g
µi

ui+1
s = ui

s

1
∑T

t=1 kts

∑

t∈Ti

gtkts

µi
t

, s = 1, . . . , S

(d) ûm = un+1

4. u = ûm

end procedure EMOSn

Figure 6: The EMOSn algorithm

13

procedure EMOSn-TV(input: K, g ; output: u)

1. m = 0

2. Let ûm be a constant and positive value

3. repeat until to the ûm convergence

(a) u1 = ûm

(b) m = m + 1

(c) computation of Lm
(

u1
)

(d) For each OS level i = 1, . . . , n

i. compute the product µi = [Ki]3u
i

µi
t =

∑

s=1,...,S

ktsu
i
s, t ∈ Ti

ii. computation of ui+1 = [1]

[K]T3 [1]+αLm(u1)ui u
i[Ki]

T
3

g
µi

ui+1
s = ui

s

1
∑T

t=1 kts + (Lm (u1) ui)s

∑

t∈T

gtkts

µi
t

, s = 1, . . . , S

(e) ûm = un+1

4. u = ûm

end procedure EMOSn-TV

Figure 7: TV-based EMOSn algorithm.

1.a construction of [K]3;

1.b construction of [K∗]3;

1.c construction of Lm([u]m);

2. II loop (OS):

2.a computation of µi = [Ki]3u
i;

2.b computation of Lm([u]m)ui.

4 Performance analysis

Main difficulty of the development of efficient algorithms is the capability to
analyze and predict their performance. MEDITOMO library has been designed
with the aim of providing the most efficient algorithms. To this aim, first step is

14

the performance analysis of the basic algorithms. We now estimate the flops of
CG and EMOSn (4) considering the number of floating-point operations NcgXX

of one CG’s step, and the number of floating-point operations Nem2d+1 (5) of
one EM’s step. We will use the following notations:

nsez L number of sections
kdim J size of each projection
nang M number of angular views
nsez L′ number of projections
ndim N size of each section
nos n number of subset

kos M
n number of angular views contained in each subset

nmat - size of working area

nmat is the number of points inside the square inscribed circle with diameter
equals to ndim, then

nmat ≈ π

(

ndim

2

)2

.

One step of CG requires:

1. 2 scalar products between vectors;

2. 3 axpy operations(6);

3. two matrix-vector operations(7).

In case of the fully 3D model, steps 1. and 2., are performed using vectors of
length nmat× nsez, than they require:

N1 = 12× nmat× nsez flops. (46)

Step 3. requires 8:

N2 = nang× nsez× (24 + 12× ndim+ 505× nmat+ 45 × kdim) . (49)

4Looking at the algorithms in fig. 5, it follows that the flops of one FP’s step should
be obtained summing the operations of one CG’s iteration, the construction of Lm([u]m) at
each step m, the product Lm([u]m)[u]m+1 at each step m. Numerical experiments show that
the computational complexity of last two operations (matrix product and construction) is
negligible. By the same way, the computational cost of one TV-based EMOSn’s step (see
figure 7) is equivalent to one EMOS n’s step.

5Estimate is given only for the 2D+1 model.
6We denote by axpy, the operation

y ← y + αx .

7The cost of such operations is of O((J ×M)× L× (N ×N)× L′), but the sparsity reduces
it to of about 95%.

8If we don’t consider the sparsity of [K]3, then the (49) should be:

Ñ2 = 2× nsez2 × nang× kdim × ndim2 . (47)

15

and:

Ncg3d = 12× nmat× nsez+

+ nang× nsez× (24 + 12 × ndim+ 505× nmat+ 45 × kdim) .

(50)

In case of the 2D+1 model, steps at 1 and 2, are performed using vectors of
length ndim2 × nsez, and they require:

N1 = 12× ndim2 × nsez+ 1 flops. (51)

Step 3. requires [8]9:

N2 = nsez× (nang× (106× ndim2 + 61 × kdim)) . (53)

and:

Ncg2d+1 = 12 × ndim2 × nsez+ 1 +

+ nsez× (nang× (106× ndim2 + 61 × kdim)) . (54)

4.1 Floating Point operations in EMOSn.

At each iteration of EMOSn , the following operations are performed:

1. 2 scalar products between vectors;

2. 2 matrix-vector operations (9).

Using the scheme shown in figure 6, step 1. is performed nos times, with
vectors of length ndim2 × nsez, then it requires:

N1 = 2 × ndim2 × nsez flops. (55)

If we assume that nsez = 25, nang = 120, kdim = ndim = 128 we have:

N2 ∼ 7× 109 , fN2 = 335× 109 ⇐⇒
fN2

N2

= 2% (48)

(48) confirms that the cost of both matrix-vector operations, at each iteration, reduces of
about 98%[7].

9If we don’t consider the sparsity of the matrix [K]3, then the (53) should have the value
of (47). If we suppose that nsez = 25, nang = 120, kdim = ndim = 128, we have:

N2 ∼ 4× 109 , fN2 = 335 × 109 ⇐⇒
N2

fN2

= 1, 5% flops. (52)

52) confirms that cost of both matrix-vector operations, at one CG step, reduces of about
98.5%.

16

The matrix-vector product at 2. requires 10 the following computational cost
[8]:

N2 = 2 × nsez× (nang× (48 × ndim2 + 31× kdim)) . (57)

and:

Nem2d+1 = 2 × nos× nsez× ndim2 +

+ 2 × nsez× (nang× (48 × ndim2 + 31 × kdim)) . (58)

If we compare (54) and (58), and suppose nos ≈ 6, then Ncg2d+1 ≈ Nem2d+1.

5 Parallelism into 3D SPECT algorithms

Starting the the performance analysis, parallelism has been introduced to reduce
the exexution time of the most expensive operation:

z = [K∗]3[K]3u . (59)

where (59) is the projection/backprojection operation.

5.1 Parallelization of the fully 3D model

The most suitable communication topology is a 1D periodic grid of size 1×Nproc,
where Nproc is the number of processors. We use a cyclic column block distri-
bution for [K]3 and a cyclic row block distribution for [K∗]3(

11) Each processor
loads r = J × M/Nproc rows and c = N × N columns of [Ei]2 and loads
r = N × N rows and c = J × M/Nproc columns of [Ei]

∗
2. The operations in

(59) are performed as follows:

1. projection : fip =
∑L′−1

j=0 [E(j+i−1,modL′)]2 · uj , i = 0, . . . , L − 1;

2. backprojection : zi
p =

∑L′−1
j=0 [E∗

(j+i−1,modL′)]2 · fjp, i = 0, . . . , L − 1;

3. collective sum : zi =
∑Nproc−1

p=0 zi
p , i = 0, . . . , L − 1;

In figure 8 we show the parallel algorithm.

10If we don’t consider the sparsity of the matrix [K]3, than the (57) should have the value
of (47). If we suppose that nsez = 25, nang = 120, kdim = ndim = 128, we have:

N2 ∼ 2× 109 , fN2 = 335 × 109 ⇐⇒
N2

fN2

= 0, 5% flops. (56)

(56) confirms that computational cost of both matrix-vector operations, at one EMOSn iter-
ation, reduces, of about 99.5%.

11For the matrix [K∗]3 can be used a block form as in (??).

17

procedure [K∗]3[K]3u

Cycle on the number of processors.

for p = 0, Nproc − 1

Compute the partial product: fi
p ∈ <J·M/Nproc

step 1. for i = 0, . . . , L

fip = Ei(p · (J · M/nproc) : (p + 1) · (J · M/Nproc) − 1; :) · ui;

Compute the partial product: zi
p ∈ <N ·N

step 2. for i = 0, . . . , L

zi
p = E∗

i (:, p · (J · M/nproc) : (p + 1) · (J · M/Nproc) − 1) · fip;

endfor

Collective sum operation.

zi =
∑Nproc−1

p=0 zp

end procedure

Figure 8: Parallel algorithm for z = [K∗]3[K]3u in the fully 3D problem.

5.2 Parallelization of the 2D+1 model

The operation (59) has a block formulation also in the 2D+1 model. Indeed,
from the (15) each component gl of [g], of size J × M , can be computed per-
forming L′ products using [E]2 and summing the resulting vectors multiplied
by the αl′−l, that is:











g0

g1

...
gL−1











=











α0[E]2 α1[E]2 . . . αL′−1[E]2
α−1[E]2 α0[E]2 . . . αL′−1[E]2

...
...

. . .
...

α1−L [E]2 α2−L [E]2 . . . α0[E]2





















u0

u1

...

uL
′−1











.

(60)
If the partition (42) holds then the (60) is valid for each [Ki]3, that is:













(

g0
)

i(

g1
)

i
...

(

gL′−1
)

i













=











α0 ([E]2)i α1 ([E]2)i . . . αL′−1 ([E]2)i
α−1 ([E]2)i α0 ([E]2)i . . . αL′−2 ([E]2)i

...
...

. . .
...

α1−L′ ([E]2)i α2−L′ ([E]2)i . . . α0 ([E]2)i





















u0

u1

...

uL′−1











i = 1, . . . , n .

(61)
We introduce two parallelization approaches for computing the product (61).

18

procedure [Ki]3u
step 1. for j = p ∗ Lloc + 1, . . . , (p + 1) ∗ Lloc

p = ([E]2)k fj
for i = 0, 1, 2, . . . , L − 1

(

gi
)

k
=
(

gi
)

k
+ αj−ip

endfor

endfor

step 2. for i = 0, 1, 2, . . . , L − 1
Collective sum operation

gi =
∑Nproc

p=0 (gi)p

end procedure

Figure 9: Parallel algorithm for g = [Ki]3 u in the 2D+1 model (First Strategy).

5.2.1 First strategy

Each processor p loads Lloc = L/Nproc blocks of columns of the matrix [Ki]3,
then operation (61) requires:

1. projection:
((

gj
)

i

)

p
=
∑

k=p∗L
′

loc
+1,...,(p+1)∗L

′

loc
αj−k ([E]2)i u

k j = 0, . . . , L − 1;

2. sum: gj =
∑Nproc

p=0 ((gj)i)p , j = 0, . . . , L− 1.

In figure 9 we show the algorithm. The parallel algorithm for computing u =
[K∗

i]3 g is designed analogously.

5.2.2 Second strategy

Processor p loads L′
loc = L′/Nproc vectors uj , Lloc = L/Nproc vectors

(

gi
)

k
and

L′
loc blocks of columns of [Ki]3. For each pair (p, q) of processors we introduce

the set:

Eq
p =

{

i ∈ Iq : Aj
i 6= 0 , ∀j ∈ Jp

}

, (62)

where Ip and Jp denote the set of the indices of the vectors
(

gi
)

k
and uj re-

spectively assigned to processor p. Then Eq
p contains the indices of

(

gi
)

k
, which

is assigned to processor q. Vectors uj , given to processor p contribute to the
the computation of

(

gi
)

k
.

Computation of (61), can be performed by the following two steps:

1. projection:

1.a Computation of
(

gi
)

k
of Ip:

(

gi
)

k
=
∑

j∈Jp

αi−j ([E]2)k uj , ∀i ∈ Ip

19

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

Figure 10: Representation of the sparsity pattern of the matrix [A]1, with L = 68
and L′ = 82 .

0
10

20
30

40
50

60

0

20

40

60

80
0

0.2

0.4

0.6

0.8

1

Figure 11: Elements of [A]1, with L = 68 and L′ = 82.

20

1.b Contribution to
(

gi
)

k
by Eq

p :

((

gi
)

k

)

p
=
∑

j∈Jp

αi−j ([E]2)k uj , ∀q : Eq
p 6= ∅

2. sum between the neighborhood processors:

2.a send
((

gi
)

k

)

p
to processor q, ∀i ∈ Eq

p .

2.b receive
((

gi
)

k

)

q
from processor q, ∀q : Ep

q 6= ∅
2.c local sum:

(

gi
)

k
=
(

gi
)

k
+

∑

q:Ep
q 6=∅

((

gi
)

k

)

q
, ∀i ∈ Ep

q

In figure 12 we describe the parallel algorithm.
Parallel algorithm for computing u = [K∗

i]3 g has been designed by the same
way.

5.2.3 Performance comparison

We compare the strategies described above in terms of Ncalc, Ncom and speed-
up. Processors are logically organized in a 2D mesh of size 1 × Nproc. In step
1 of the first strategy, each processor p contributes to the computation of the
L components of g (or equivalently of (gi)k, i = 1, . . . L). This computation
requires a block matrix-vector which requires O((L×Lloc)×(J×M)×(N×N))
flops (12), then the computational cost is:

N
(1.F irst)
calc = O(Nproc × (L × Lloc) × (J × M) × (N × N)) . (63)

Step 2 requires a collective sum which requires (13

N
(2.F irst)
calc = O(Nproc × log2(Nproc) × (J × M) × L) flops, (64)

and uses NFirst
com communications(14) where:

NFirst
com = O(Nproc × log2(Nproc) × (J × M) × L) , (65)

because the Nproc processors, in couples, send one to each other ((g)k)p vectors
of length L × (J × M).

12Matrix-vector product uses local matrix and vector of size, respectively, L × (J ×M) ×
(N ×N)× Lloc and (N ×N) × Lloc.

13We assume that collective sum between vectors (g)p (of length (J×M)×L) is performed
by Nproc processors using a tree communication topology where with depth log2Nproc. At
each level processors, organized in couples, communicate each other and update, using a sum
operation, own vector (g)p. Therefore, at each level, Nproc sum between vectors of length
(J ×M)×L are performed (MPI function MPI ALLREDUCE used to perform the collective sum
uses such topology)

14At each level Nproc communications are performed, therefore the total number of com-
munications performed during the collective sum operation is Nproc × log2Nproc.

21

procedure ([K]3)kf (. . .)
for each j ∈ Jp

begin for each

Computation of the 2D projections

tu = ([E]2)k uj

Computation of contribution of the weights

αi−j to projections

for each i ∈ Ip

begin for each

(gi)k = (gi)k + αi−jtu

end for each

end for each

send operation involving ((gi)k)p

for each q ∈ {1, . . . , Nproc} such that Eq
p 6= ∅

begin for each

for each j ∈ Jp

begin for each

tu = ([E]2)k fj
for each i ∈ Eq

p

begin for each

((gi)k)p = ((gi)k)p + αj−itu

call Send
(

((gi)k)p , q
)

end for each

end for each

end for each

Receive operations involving ((gi)k)q

for each q ∈ {1, . . . , Nproc} such that Ep
q 6= ∅

begin for each

for each i ∈ Ep
q

begin for each

call Receive
(

((gi)k)q , q
)

Local sum operation

(gi)k = (gi)k + ((gi)k)q

end for each

end for each

end procedure

Figure 12: Parallel algorithm for computing g = [Ki]3 u of 2D+1 problem (Sec-
ond Strategy).

22

At first step of the second strategy, each processor p calculates |J p| (15)
components of g, i.e. calculates (gi)k where i ∈ Jp, and contributes to the
computation of the other |Eq

p | components of g, i.e. to the other projections

(gi)k where i ∈ Eq
p , by using a block matrix-vector operations, with a cost of

O((|Jp| + |Eq
p |) × (J × M) × (N × N)) flops. |Jp| = Lloc, then the cost is:

N
(1.Second)
calc = O(Nproc×((Lloc+|Eq

p |)×L
′

loc)×(J×M)×(N×N)) flops. (66)

Second step of the second strategy requires a sum between at most |Eq
p | neigh-

borhood processors with a cost of:

N
(2.Second)
calc = O(Nproc × |Eq

p | × (J × M) × |Eq
p |) flops, (67)

and a number of communications:

N (Second)
com = O(Nproc × |Eq

p | × (J × M) × |Eq
p |) , (68)

because, at each communication, processors p and q where |Eq
p | 6= 0, exchange

sub-vectors of length |Eq
p | × (J × M) of (g)k.

If L = L′, that is Lloc = L′
loc:

Lloc is at most |Eq
p | = |Jq | and:

L × Lloc =
L2

Nproc
> 2

L2

N2
proc

= (Lloc + |Eq
p |) × Lloc) ,

then:

N
(1.F irst)
calc > N

(1.Second)
calc

(69)

If Nproc increases also log2Nproc increases, and Lloc decreases, then:

N
(2.F irst)
calc > N

(2.Second)
calc

(70)

From N
(2.F irst)
calc = N

(First)
com and N

(2.Second)
calc = N

(Second)
com , and from (70) it

follows:

N
(First)
com > N

(Second)
com

(71)

Let us now consider the speed-up SNproc
:

SNproc
=

T1

TNproc

=
N × tcalc

Ncalc × tcalc + Tcom × tcom
, (72)

15|I| denotes the cardinality of the set I.

23

where T1 and TNproc
denote the execution time respectively on one and Nproc

processors, N and Ncalc denotes the number of floating point operations per-
formed respectively by one and by Nproc processors, tcalc is the execution time
of one floating point operation, and tcom is the execution time of one communi-
cation between two processors.
The Product (61) requires:

Ncalc = O((L × L) × (J × M) × (N × N)) flops, (73)

therefore:

T1 = [(L × L) × (J × M) × (N × N)] × tcalc . (74)

If, for the sake of simplicity, we assume J = M = N then (74) can simplified as
follow:

T1 = [L2 × N4] × tcalc . (75)

and:

T
(∗)
Nproc

= [N
(1.∗)
calc + N

(2.∗)
calc] × tcalc + [N (∗)

com] × tcom , (76)

where the symbol “*” means “First” or “Second”.

Substituting (63), (64) and (65) in (76) gives:

T
(First)
Nproc

= [Nproc × (L × Lloc) × (J × M) × (N × N) +

+ Nproc × log2(Nproc) × (J × M) × L] × tcalc +

+ [Nproc × log2(Nproc) × (J × M) × L] × tcom .

(77)

If tcom = 2tcalc and J = M = N , then (77) can be simplified as follows:

T
(First)
Nproc

= [(N2 × L) + (N2 × L + 3Nproc × log2Nproc)] × tcalc , (78)

then:

SFirst
Nproc

=
L2 × N4

L2 × N4 + L × N2 × 3Nproc × log2Nproc
=

=
L × N2

L × N2 + 3Nproc × log2Nproc
. (79)

From (79) it follows that, if N and L are fixed and Nproc increases, speed-up
degrades.

24

Substituting (66), (67) and (68) in (76) gives:

T
(Second)
Nproc

= [Nproc × ((Lloc + |Eq
p |) × L′

loc) × (J × M) × (N × N) +(80)

+ Nproc × |Eq
p |) × (J × M) × |Eq

p |] × tcalc +

+ [Nproc × |Eq
p | × (J × M) × |Eq

p |] × tcom .

If tcom = 2tcalc, and J = M = N , and L = L′, since Lloc is at the most
|Eq

p | = |Jq |, (80) can simplified as follows:

T
(Second)
Nproc

= [2 × L2

Nproc
× N4 + 3

L2

Nproc
× N2] × tcalc , (81)

then:

SSecond
Nproc

=
L2 × N4

2 × L2

Nproc
× N4 + 3 L2

Nproc
× N2

=

=
N2 × Nproc

2(N2 + 3)
. (82)

Observe that if N and L are fixed and Nproc increases, also the speed-up in-
creases, and the parallel algorithm scales with the processors number.

Second Strategy shows a better speed up. Other results are in [16].

6 The MEDITOMO library

In table 1 we list the software modules of the library (16):

• fully 3D

– fan collimator

∗ Conjugate Gradient (3dtomo fan cg)

∗ Fixed Point (3dtomo fan fp+tv)

∗ EMOSn (3dtomo fan em)

∗ TV regularizated EMOSn (3dtomo fan em+tv)

– parallel collimator

16XXtomo YYY ZZ is the name of each software:

• XX denotes the model (3d or 2d+1);

• YYY denotes the geometry of the acquisition system (parallel par o fan fan);

• ZZ denotes the algorithm (conjugate gradient cg, expectation maximization em or fixed
point fp+tv);

25

MEDITOMO Library

Acquisition Models

Fully 3D 2D+1

Reconstruction Algorithms Reconstruction Algorithms

? FP (TV) ? FP (TV)
? CG ? CG
? EMOS ? EMOS
? EMOS-TV

Table 1: MEDITOMO library

∗ Conjugate Gradient (3dtomo par cg)

• 2D+1

– fan geometry

∗ Conjugate Gradient (2d+1tomo fan cg)

∗ Fixed Point (2d+1tomo fan fp+tv)

∗ TV-based EMOSn (2d+1tomo fan em+tv)

Parallel software use the Message Passing Interface (MPI) communication
library for the message passing operations. We compare results obtained using:

1. 3dtomo fan cg and 3dtomo fan fp+tv;

2. 3dtomo fan em and 3dtomo fan em+tv;

3. 2d+1tomo fan em and 2d+1tomo fan cg.

Tests are performed on synthetic images and on real data:

• synthetic data obtained “blurring” the Hoffman phantom; in fig. 14, a
projection for a fixed angle (a) and a sinogram (b) are shown. Projections
data set is obtained simulating the acquisition system, where the matrix
[K]3 is computed by using a Gauss function [9]. The values of (2) consid-
ered are σmin = 3, σmax = 8, r = 192. We generate 120 sinograms of size
128× 128, where 120 is the number of angular views in [0, π).

• in-vivo data(17).

In figure 16 we show the Restoration Error:

RE =
‖ [u]true − [u∗] ‖2

‖ [u]true ‖2
. (83)

In figure 20 we show results for different iterations. Results refer to TV-based
algortithms in figure 7 (a) and to the standard EMOSn (b).

17The data are courteously granted by the Careggi Hospital in Florence (Italy).

26

Figure 13: An Hoffman phantom section.

(a)

(b)

Figure 14: A projection section (a) and a sinogram (b) examples

27

Figure 15: Results using 3dtomo fan cg of the Hoffmann phantom. Number of
steps are 7, 21, 63.

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

1 10 20 30 40 50 60

R
E

Iterations

Restoration Error

Total Variation α=70.0
Total Variation α=110.0
Total Variation α=150.0

Unregularizated

Figure 16: RE for 3dtomo fan cg and 3dtomo fan fp+tv. We plot RE at dif-
ferent values of the regularization parameter α.

28

(a) (b) (c)

Figure 17: Results of 3dtomo fan fp+tv on the Hofmann phantom, at step
m = 1 (a), m = 3 (b) and m = 9 (c) of FP. CG steps is 7 (the total number of
iterations considered is than 7, 21and63 respectively). α = 70 at the first row
and α = 150 at the second row.

29

0

50

100

150

200

250

300

0 20 40 60 80 100 120 140

Regularization parameter α=110.0 #Internal iterations 7

Original
CG10
CG60

TV1
TV5
TV9

Figure 18: Profiles obtained by 3dtomo fan fp+tv and 3dtomo fan cg.

30

(a) (b) (c)

(d) (e) (f)

Figure 19: Reconstruction of the Hoffman phantom, by 3dtomo fan em module,
at I step (a), VI step (b) and X step (c) of EM. Reconstruction of Hoffman
phantom, by 3dtomo fan em+tv, with α = 0.04, at I step (d), VI step (e) and
X step (f) of EM.

31

0

50

100

150

200

250

300

0 20 40 60 80 100 120 140

P
ix

el
 V

al
ue

s

Pixel

Pixel Values α=0.04 OS 10

Original Image
EM 1
EM 2
EM 3
EM 4
EM 5
EM 6
EM 7
EM 8
EM 9

EM 10

(a)

0

50

100

150

200

250

300

0 20 40 60 80 100 120 140

P
ix

el
 V

al
ue

s

Pixel

Pixel Values α=0.0 OS 10

Original Image
EM 1
EM 2
EM 3
EM 4
EM 5
EM 6
EM 7
EM 8
EM 9

EM 10

(b)

Figure 20: Cross section of images obtained by 3dtomo fan em+tv (a) and
3dtomo fan em (b) respectively, for different steps of EM.

32

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

R
E

Iteration

Restoration Error EM 10 OS 10

Unregularized
Total Variation α=0.01
Total Variation α=0.03
Total Variation α=0.04

Figure 21: RE for 2d+1tomo fan em and 2d+1tomo fan em+tv.

33

 2

 2.5

 3

 3.5

 4

 4.5

 5

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

R
E

Iteration

Restoration Error

CG
EM

Figure 22: RE relatively to 2d+1tomo fan cg and 2d+1tomo fan em modules.
The values of RE is plotted for different iterations of OS.

34

6.1 Conclusions

1. CG and EM appear to be semiconvergent: the RE, after reaching a min-
imum then grows while the TV-based algorihms show a more stable be-
haviour even with different values of α.

2. itopt is 10 and 6 for CG and EM respectively.

3. TV-regularization provides results of better quality.

4. Choice of α and β:

4.a Suitable values of α are α = 70 for FP and α = 0.04 for EM;

4.b parameter β in (??) has been fixed to 0.01 and 0.001 for the CG
and EM. The value of β in EM is smaller because EM works with
normalized values of the brightness.

5. EM is more accurate than CG. Accuracy increases as the number n of the
subset grows. Optimal value of n is about 15-20 for EM and 10 for CG.

6. MEDITOMO has been tested on MIMD distributed memory parallel sys-
tems. In figures 24, 25 and 26 we show perfomance, in terms of time,
speed-up and efficiency, of the 3dtomo fan fp+tv running the software on
a Beowulf system made of 18 nodes, each whit 1.5 Ghz Pentium IV pro-
cessor with a Fast Ethernet 10/100 MBit network card. Execution time
of one iteration decreases from 10 to 1 minute. Efficiency of the most
expensive code is at least of 60%.

7 Acknowledgements

We thank prof. Mario Bertero for his suggestions. We thank Andreas Robert
Formiconi end Piero Calvini which gave us the prototype software and collabo-
rate at the development of MEDITOMO.

We thank Careggi Hospital in Florence which gave data used in numerical
experience. We also thank Careggi Hospital for the help of its doctors in nuclear
medicine.

The authors

35

(a) (b) (c)

Figure 23: First row: sections of human brain obtained by 3dtomo fan cg. it-
eration number: 5, 15 45 ; second and third rows: sections of human brain
obtained by 3dtomo fan fp+tv with α = 50, 70 at step m = 1 (a), m = 3 (b)
and m = 5 (c) of FP, and with CG steps 5 (Total number of iterations equals
to 5, 15 45 respectively).

36

 0

 100

 200

 300

 400

 500

 600

 700

 1 2 4 6 8 10 12 14 16 18

E
xe

cu
tio

n
T

im
e

(s
ec

s.
)

Processors

Execution Time (secs.)

Figure 24: Execution time of 3dtomo fan fp+tv versus the number of proces-
sors.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 1 2 4 6 8 10 12 14 16 18

S
pe

ed
-U

p

Processors

Speed-Up

Speed-up
Ideal Speed-up

Figure 25: Speedup of 3dtomo fan fp+tv versus the number of processors.

37

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 6 8 10 12 14 16 18

E
ffi

ci
en

cy

Processors

Efficiency

Efficiency

Figure 26: Efficiency of 3dtomo fan fp+tv versus the number of processors.

References

[1] L. Alvarez, F. Guichard, P.L. Lions, J.M. Morel ,Axioms and
fundamental equations of image processing, Arch. Rational Mechanics,
123, (1993).

[2] L. Antonelli, Un software parallelo basato sul metodo dei minimi quadrati
con vincoli, Degree Thesis, (1999).

[3] L. Antonelli, L. Carracciuolo, M. Ceccarelli, L. D’Amore, A.

Murli, High Performance Edge Preserving Restoration in 3D SPECT
Imaging, Parallel Computing Special Issue “Parallel and Distribuited
Image and Video Processing” (to appear).

[4] L. Antonelli, L. Carracciuolo, M. Ceccarelli, L. D’Amore, A.

Murli, Total Variation Regularization for Edge Preserving 3D SPECT
Imaging in High Performance Computing Environments Lecture Notes in
Computer Science, (2002).

[5] L. Antonelli, L. Carracciuolo, L. D’Amore, A. Murli, Il fun-
zionale di Totale Variazione nella ricostruzione di dati 3D SPECT
mediante l’algoritmo di EMOSn, ICAR-CNR technical report, TR-02-01,
(2002)

[6] L. Antonelli, Sulla risoluzione numerica di un problema inverso mal
posto in ambiente di calcolo ad alte prestazioni, PhD Thesis, (2003).

[7] L. Antonelli, L. Carracciuolo, L. D’Amore, A. Murli, Stima teor-
ica e validazione sperimentale del nucleo computazionale per la ri-
costruzione di dati SPECT 3D basato sull’algoritmo del Gradiente Coniu-
gato, ICAR-CNR technical report, TR-04-15, (2004).

38

[8] L. Antonelli, Stima teorica e sua validazione sperimentale delle
prestazioni degli algoritmi CG ed EM alla base della ricostruzione di dati
SPECT, ICAR-CNR technical report, TR-05-4, (2005).

[9] D. Baldini, P. Calvini, A.R. Formiconi, Image reconstruction with
conjugate gradient algorithm and compensation of the variable system re-
sponse for an annular SPECT system, Physic Medica, vol 14, (1998).

[10] M. Bertero, P. Boccacci, Introduction to Inverse Problems in Imaging,
Institute of Physics Publishing, Bristol (1998).

[11] M. Bertero, P. Bonetto, L. Carracciuolo, L. D’Amore, A.R.

Formiconi, M.R. Guarracino, G. Laccetti, A. Murli, G. Oliva,
MedIGrid: a medical image application for computational Grid, 17th In-
ternational Parallel and Distributed Processing Symposium, IPDPS-2003
(2003).

[12] P. Boccacci, P. Bonetto, P. Calvini, A. Formiconi, A simple
model for the efficient correction of collimator blur in 3D SPECT imaging,
Inverse Problems 15 (1999).

[13] P. Blomgren, T. Chan, P. Mulet, C. Wong, Total Variation image
restoration: numerical methods and extensions, IEEE International Con-
ference on Image Processing (1997).

[14] C. Byrne, Accelerating the EMML algorithm and related iterative algo-
rithms by rescaled block-iterative methods, IEEE Transactions on Image
Processing 7, (1998).

[15] C. Byrne, Notes on block-iterative or ordered subset methods for image
reconstruction, University of Massachusettes technical report, MA01854,
(2000).

[16] L. Carracciuolo, L. D’Amore, A. Murli, Sviluppo di software paral-
lelo per la ricostruzione di dati 3D SPECT basato sull’algoritmo EMOSn,
ICAR-CNR technical report, TR-02-02, (2002).

[17] D. Casaburi, Un software parallelo basato sul metodo di Newton, Degree
Thesis, (2002).

[18] Y. Censor, Row-action methods for huge and sparse systems and their ap-
plications, SIAm Review 23 (1981).

[19] T. Chan, P. Mulet, Iterative methods for Total Variation image restora-
tion, SIAM Journal on Applied Mathematics, (1995).

[20] T.F. Chan, G.H. Golub, P. Mulet, A non linear Primal-Dual Method
for Total Variation-Based Image Restoration, Lecture Notes in Control and
Information Sciencies, (1996)

39

[21] L. D’Amore, V. De Simone, A. Murli, The Wiener Filter and Regular-
ization Methods for Image Restoration Problems, Proceedings of the Inter-
national Conference on Image Analysis and Processing, IEEE Computer
Society Publisher, (1999).

[22] D. Dobson, C. Vogel Convergence of an iterative method for Total Vari-
ation, SIAM Journal on Numerical Analysis, (1997)

[23] R.E. Ewing, J. Shen, A multigrid algorithm for the cell-center finite dif-
ference scheme, 6th Copper Mountain Conference Multigrid Methods, Im-
perial College Press, (1993)

[24] A. Formiconi, Geometrical response of multihole collimators, Physics in
Medicine and Biology 43 (1998).

[25] E. Giusti, Minimal Surface and Function of Bounded Variation,
Birkhauser, (1984)

[26] P.J. Green, Bayesian reconstruction from emission tomography data using
a modified EM algorithm, IEEE Transactions on Medical Imaging 9, (1990).

[27] P.J. Green, On use of the EM algorithm for penalized likelihood estima-
tion, Journal of the Royal Statistical Society B 52, (1990).

[28] C.W. Groetsch, Inverse problems in the mathematical sciences, Vieweg
Verlag, Wiesbaden, (1993).

[29] R.H. Huesman, G.T. Gullberg, W.L. Greenberg, T.F. Budinger,
User’s Manual; Donner Algorithms for Reconstruction Tomography,
Lawrence Berkeley Laboratory, University of California (1977).

[30] H. Hudson, R. Larkin, Accelerated image reconstruction using ordered
subsets of projection data, IEEE Transactions on Medical Imaging 4, (1994).

[31] M. Oman, C. Vogel, Iterative method for Total Variation denoising, SIAM
Journal on Scientific and Statistical Computing (1996).

[32] M. Oman, C. Vogel, Fast robust Total Variation-based reconstruction of
noisy, blurred images, IEEE Transactions on Image Processing 7 (1998).

[33] M. Oman, C. Vogel,Continuation method for Total Variation denoising
problem SIAM Journal on Applied Mathematics (1995).

[34] V. Y. Panin, G.L. Zeng, G.T. Gullberg ,Total Variation Regulated
EM Algorithm, IEEE Transactions on Nuclear Science 6, (1999).

[35] L. Shepp, Y. Vardi, Maximum likelihood reconstruction for emission to-
mography, IEEE Transactions on Medical Imaging 4, (1982).

40

