
����������	
����
�����������������
������������
�������������
������
�����
������

����������	
�

����������	�������

�����

���������		

�����	���	�������� ������������

����
	
�����
���	����		���
�����������
������
���	��	�������
�����	����������
��
��������

��������
�����	
���
����������		
��� ���!∀# ∃ �����	
����%�	&�∋∃(!#∀) ∃(∗#∀��+�,&�∋∃(!

#∀) ∃(∗∃ ���!−�
	&�����	
.
��������
���/��&�������������������

mailto:sacca@icar.cnr.it

����������	
����
�����������������
������������
�������������
������
�����
������

����������	
��

����������	�������

�����

��������		

����������	
��
������

�����	���	��������

�����

������������

�����
������
���	��	�������
�����	����������
��
������!�����������
�����	
��0
����������		
���� ��∀# ∃ �����	

	
��������
 ������
����	�������
����
����������
�����	�������
��
�������

���
��
���
����������
��

���������
��������
���
�������
����
���������
����������
�����
 ����������
������������
������!���

����
�������
���������
�������
��
������
��
�������

��
�������������
����	����
��
������
����
��
��

!��∀���
����∀����
���∀�
����
������������
�!�������
��
�����
���
��

1

mailto:sacca@icar.cnr.it

Hands On

TAU: Tuning and Analysis Utilities

L. Antonelli

Abstract

This report will describe the use of TAU (Tuning and Analysis Utilities)
for software profiling. It was started within activities having as final aim
performance analysis of the reliable and efficient software for multicore
architectures(1). The report aims to collect experiences and helpful advice
for TAU using, but it is not exhaustive about profiler matter nor about
TAU for a specific application.

1 Introduction to software profiling

Software optimization doesn’t begin where coding ends: it is ongoing process that
starts at design stage and continues all the way through development.

A profiler tool traces and analyzes program performances. Profiling highlights
where the program spent its time and wich functions are the hotspots (2), and
might be candidates for rewriting to make the program execution faster.
Generally, profiling process is carried out at three stages:

1. Compiling and Linking program with profiling enabled (instrumentation);

2. Executing program to generate the file of profile data;

3. Using profiler tool to analyze the data profile (i.e. producing tables and/or
graphs).

2 Overview on TAU

TAU (Tuning and Analysis Utilities) Performance System [1] is the product of
eighteen years of development to create a robust, flexible, portable, and inte-
grated framework and toolset for performance instrumentation, measurement,

1PILTP project: Parallel Inverse Laplace Transform Package. The project is in collabo-
ration with Applied Science Department and with Statistic and Mathematic Department for
Economic Research at University of Naples Parthenope

2hotspots are the area in the program that take accounting for a long time.

1

Figure 1: Architecture of TAU Performance System: Instrumentation and Mea-
surement

analysis and visualization of large-scale parallel computer system and applica-
tion. TAU project represents the combined efforts of researchers at University
of Oregon, at the Research Centre Juelich and Los Alamos National Laboratory.
TAU runs on all HPC platforms and it is free (BSD style license).
TAU provides profiling and tracing toolkit for performance analysis of parallel
(and serial) programs written in Fortran, C, C++, Java, and Python:

• profiling shows how much (total) time was spent in each routine;

• tracing shows when the events take place in each process along a timeline.

The goal of the TAU project is developing program and performance analysis
technology that meets both the challenges of evolving scalable parallel com-
puting systems and the needs of programming methodologies used for next-
generation scientific applications. The technology should be able to target the
diversity of computing paradigms and machines while offering a framework of
portable and reconfigurable measurement and analysis components that can be
optimized and extended. While the tools and techniques implemented may ad-
dress specific needs of a language or execution environment, they should be
coherent, based on a unified analysis model and able to interoperate with other
framework components. The skeleton of TAU system is shown in Figure 1,
where you can see the three main components: instrumentation, measurement
and performance analysis.

2

3 How to use TAU for software profiling

Since TAU system can be customized and configured for several performance
experiment by composing specific modules and setting runtime control, you have
to set TAU scope before profiling your application. Then, you can instrument
your code and run it. Finally, you can analyze performance of your application
by means TAU visualization tools.

3.1 Setting TAU scope

TAU analysis tools can be customized and configured for each performance
experiment, for instance, MPI parallel program, using OpenMP directives, etc.
This is the TAU scope.
TAU configuration generates several Makefile stubs as well as several libraries
to set TAU scope. A Makefile stub name is like Makefile.tau-options as
well as a library name is like libtau-options-a. Each Makefile stub defines a
suitable TAU scope to performance analysis and/or measurement of a selected
application.
To configure TAU for profiling experiments you have to follow these basic steps:

1. setting of TAU bin directory:

user@home:> export PATH=$PATH:/taurootdir/[arch]/bin/

(you can modify PATH variable in your bashrc or cshrc file);

2. choosing an appropriate Makefile stub in taurootdir:

user@home:> ls /taurootdir/[arch]/lib:

Makefile.tau-mpi-pdt

Makefile.tau-mpi-openmp-pdt

...

3. setting of TAU scope by means Makefile stub:

user@home:> export TAU MAKEFILE=/taurootdir/[arch]/lib/Makefile.tau-mpi-pdt

4. choosing a TAU compilers for your apllication: tau f90.sh, tau cxx.sh

or otau cc.sh for programs written in F90, C++ or C rispectively.

5. setting of TAU compiler options:

user@home:> export TAU OPTIONS=-optVerbose ...

A list of options for TAU compiler scripts can be found by tiping:

user@home:> tau compiler.sh -h

3

If your application has an own Makefile, you can modify it suitably inserting
the instructions described from 3 to 5 (see appendix A).

3.2 TAU instrumentation

In order to observe performance, additional instructions or probes are typically
inserted into a source code. This process is called instrumentation. Instru-
mentation can be introduced in a program at several levels of the transforming
process to generate executable code.
TAU provides three methods to instrument your application for performance
analysis:

i dynamic instrumentation: library interposition using tau exec;

ii compiler based instrumentation: compiler directives;

iii source based instrumentation: source transformation using PDT3 [5, 6].

The requirements for each method increase from i to iii.

3.2.1 Dynamic instrumentation: tau exec

Dynamic instrumentation (at runtime) is achieved through library preloading.
The library choosen for preloading determine the scope of instrumentation (sub-
stituting I/O, MPI and memory allocation/deallocation routines with instru-
mented calls). Several options are enabled by help command-line of tau exec,
for instance:

user@home:> tau exec

Usage: tau exec [options] [--] <exe> <exe options>

Options:

-v verbose mode

-qsub use qsub mode

-io track I/O

-memory track memory

-T <DISABLE,ICPC,MPI,PDT,PROFILE,PTHREAD,PYTHON,SERIAL>:

specify TAU option

-XrunTAUsh-<options>: specify TAU library directly

3Program Database Toolkit (PDT) is a framework for analyzing source code written in
several programming languages and for making rich program knowledge accessible to develop-
ers of static and dynamic analysis tools. PDT implements a standard program representation,
the program database (PDB), that can be accessed in a uniform way through a class library
supporting common PDB operations.
http://www.cs.uoregon.edu/Research/pdt/home.php

4

Since tau exec can be used on both uninstrumented code and strumented code,
different layers of instrumentation can be combined. In order to use tau exec

you have to insert this command before the executable program (and after the
usual command for execution). For instance, I/O instrumentation is required
for serial code:

user@home:> tau exec -io a1.out

and for parallel MPI code:

user@home:> mpirun -np 4 tau exec -io a2.out

3.2.2 Compiler based instrumentation

TAU provides these scripts: tau f90.sh, tau cc.sh and tau cxx.sh to com-
pile and instrument Fortran, C and C++ programs rispectively. Before usiningg
these scripts TAU makefile and/or options have to be set (see section 3.1). For
instance, C program compilation is shown:

user@home:> tau cc.sh -tau makefile=[pathTOmakefile]

-tau options= -optCompInst sampleCprogram.c

pathTOmakefile is the TAU distribution directory like /taurootdir/[arch]/lib,
where you can find several Makefile stubs for setting TAU scope. To use com-
piler based instrumentation you can also set TAU OPTIONS variable with
-optCompInst as described in step 5 of section 3.1, furthermore you can suit-
ably modify the Makefile of your application (see appendix A).
If you use C preprocessor directives (e.g. #include, #ifdef, #endif,...), you
will have to add also -optPreProcess to TAU options.

N.B. Before of the compilation process, it is possible to insert TAU instruc-
tions into the source code for performance measure (this is the the manual
instrumentation of source code). Since TAU measurement API are written in
C++, the (instrumented) source code have to be compiled with a C compiler
script (tau cc.sh) and linked with a C++ linker script (tau cxx.sh). More-
over, at the beginning of each instrumented source file, you have to include the
following header:

#include <TAU.h>

3.2.3 Source based instrumentation

The TAU framework for automatic source instrumentation uses the Program
Database Toolkit (PDT). PDT consists of the DUCTAPE (C++ program Database

5

Figure 2: PDT System

Utilities and Conversion Tools APplication Environment) [8] and the IL (Inter-
mediate Language) Analyzer [7]. The PDT system is shown in Figure 2. The
compiling process based on source instrumentation follows these steps:

1. Parsing Source Code: IL Analyzer parses the source and produces an inter-
mediate language file. The IL Analyzer processes this IL file, and creates a
“program database” (PDB) file consisting of the high-level interface of the
original source (i.e. the first step produces from file.c --> file.pdb).
The use of the DUCTAPE library then makes the contents of the PDB
file accessible to TAU applications.

2. Instrumenting Source Code: based on the analysis of PDB file, TAU instru-
mentor produces an instrumented source (i.e. the second step produces
from file.pdb --> file.inst.c).

3. Creating Object(s): a suitable script compiler of TAU produces the object
code (i.e. the third step produces file.inst.c --> file.o) and then
the executable program.

In source based instrumentation, the TAU makefile with “pdt” in the name
(e.g. Makefile.tau-mpi-openmp-pdt) have to be used. Moreover, it is use-
ful to set TAU OPTIONS both -optKeepFiles for preserving instrumented source
file(s) (see section 6.2 and -optVerbose for visualizing overall for visualizing
overall of the instrumentation and compilation processes.

6

Figure 3: TAU Execution Model

You can see in appendix A an example of the source instrumentation via Make-
file.

4 Running (instrumented) application

After compiling process, you have to continue with (usual) execution phase
of your application. The run of your instrumented application will produce the
usual output as well as data profile file(s). The name of data profile file(s) follows
the HPC++ convention(4) [1], so it will be like: profile.<node>.<context>.<thread>
(e.g. profile.0.0.0 for sequential run). A node is a shared-memory multi-
processor (SMP), having a coherent shared-address space that can be read and
modified by any of its processors. A context refers to a virtual address space
on a node that may be accessible to several different threads of control; for ex-
ample, a Unix process is a context. It is possible to have more than one context
per node. Multiple threads, both system and user level, may exist within a con-
text; threads within a context share the same virtual address space. Threads in
different contexts on the same node can interact via interprocess communica-
tion facilities, while threads in contexts on different nodes communicate using
message passing libraries (e.g. MPI) or network IPC (see Figure 3).

5 TAU profiling

Once profile data are produced, TAU provides several analysis and visualization
tools to process them. It provides simple command line reporting tools as well

4The library’s interface evolved from the High Performance C++ Consortium, a collection
of research groups from university, industry and government laboratories

7

as GUI analysis tools and a performance data management system.

5.1 Flat profiling

The most basic and standard type of profiling is called flat profiling. It shows
tabular output of the wall clock time and the fraction of total time. The com-
mand for processing profile data in order to produce the flat profile is pprof. For
example, we carried out an automatic source instrumentation via Makefile (see
appendix A) on the example code described in appendix B. The flat profiling
obtained is the following:

user@bladehpzmaster:$ pprof profile.0.0.0

Reading Profile files in profile.*

NODE 0;CONTEXT 0;THREAD 0:

%Time Exclusive Inclusive #Call #Subrs Inclusive Name

msec total msec usec/call

100.0 1,870 1,873 1 10 1873573 int main() C

0.1 2 2 5 0 520 void matvet() C

0.0 0.019 0.019 5 0 4 void maxvet() C

The profile above are generated using the default profiling library. The functions
are ordered in according to tree call of the program. Function name are shown
in the last column of table, Name, furthermore:

%Time - the percentage of the “total” time spent in this function and its children.

Exclusive msec - the cumulative, exclusive time (milliseconds) summed over all the invo-
cations of the functions. Exclusive time refers to the total time spent in
the function minus any time spent in other profiled functions called from
it.

Inclusive msec - the time spent from the entry point to the exit, summed over all the
function invocations.

#Call - number of function invocations.

#Subrs - number of invocated functions (multiple invocations are accounted).

Inclusive usec/call - the inclusive time for call (microseconds).

8

5.2 Callpath profiling

Flat profiling keeps track of time spent in each function, but does not keep track
of the relationship between functions. For instance, a flat profile will be able
to tell you that your program spent 25.2 seconds executing function A, but will
not be able to tell you that A ran for 10.5 seconds when called from B and 14.7
seconds when called from C. In other words, a flat profile records time spent
with respect to functions rather than to function callstacks. Generating a path
profile (or callpath profile) involves another method of collecting profile data in
which statistical information is kept with respect to function callstacks. Call-
path profile tracks time spent in function paths rather than time spent in each
function(5).
Note that TAU uses a slightly different definition of the callpath profile that is
the distribution of performance along the dynamic routine calling path of an
application. The depth of a callpath is the maximum recorded number of invo-
cated functions. A callpath of depth 1 is a flat profile.
You can enable callpath profiling by setting the environment variable TAU CALLPATH(6):

user@home:> export TAU CALLPATH=1

user@home:> export TAU CALLPATH DEPTH=2

In this mode, TAU will record each event callpath to the depth set by the
TAU CALLPATH DEPTH environment variable (default is 2).
For example, you can see the different tabular output obtained profiling the
same example C code (see appendix B) when the callpath is enabled.
In the Name column, “a() => b()” describes the time spent (exclusive/inclusive)
in routine “b()” when it is called by routine “a()”.

user@bladehpzmaster:$ pprof profile.0.0.0

Reading Profile files in profile.*

NODE 0;CONTEXT 0;THREAD 0:

%Time Exclusive Inclusive #Call #Subrs Inclusive Name

msec total msec usec/call

100.0 3,291 3,294 1 10 3294210 int main() C

0.1 2 2 5 0 528 int main() C => void matvet(

0.1 2 2 5 0 528 void matvet() C

0.0 0.053 0.053 5 0 11 int main() C => void maxvet(

0.0 0.053 0.053 5 0 11 void maxvet() C

5It is important to point out that a flat profile can be constructed from a path profile, but
not vice versa.

6Default value is 0, callpath profiling is disabled.

9

Figure 4: Snapshot of ParaProf

Because instrumentation overhead will increase with the depth of the callpath,
you should use the shortest call path that is sufficient.

N.B. Note that in order to use callpath profiling feature, you have to configure
TAU with the -PROFILECALLPATH option.

5.3 Parallel profiling

The TAU performance measurement system is capable of producing parallel
profiles for thousands of processes consisting of hundreds of events by means
ParaProf profile analysis tool. In order to get an example of analysis that
ParaProf displays, Figure 4 shows the snapshot of flat profile for the example
code proposed in appendix B.

6 TAU Custom Profiling

6.1 Selectively profiling

TAU allows you to customize the instrumentation of a program by using a selec-
tive instrumentation file. This facility is only available when using source-level
instrumentation (PDT). The instrumentation file is used to manually control
which parts of the application are profiled and how they are profiled. If you are
using one of the TAU compiler wrapper scripts to instrument your application
you can use the -tau options=-optTauSelectFile=<file> option to enable
selective instrumentation.

6.2 Manual and automatic instrumentation

In this section, we discuss about TAU instrumentation comparing the main
two methods: compiler instrumentation and source instrumentation. The first
one is named also manual instrumentation, because it is used when the TAU
measurements are inserted directly in the code by user, while the second one is
also named automatic instrumentation, because TAU measurement are inserted
by means PDT. Both methods produce an instrumented object code as we
described in section 3.2.2 and 3.2.3, but they use different TAU levels because
they operate on different compiling phases. The manual method instruments

10

the source code during the compilation, producing an instrumented object code
(files .o), while automatic method operates before the compilation producing the
instrumented source code (i.e. files .inst.c) and then produces the instrumented
object code (files .o). Both methods can produce the same profile data.
At user level, the automatic instrumentation could be more helpful, expecially
when the source code is long and complicated. The option -optKeepFiles

allows to save the instrumented source files, so you can see and/or modify them
as you prefer (i.e. moving TAU measurements towards critical sections). If you
have modified the instrumented source files, you can recompile them by means
compiler instrumentation. (In this way, you use for compiling before automatic
instrumentation and after the manual). This artifice allows to avoid a (time
consuming) manual instrumentation of your source code as well as to modify it.
So, you have realized a “personal” and quick custom profiling.

6.3 Reducing overhead with TAU THROTTLE

To reduce overhead and increase accuracy, it is recommended that some func-
tions not be intrumented, those that are short running functions and are called
many times. A good rule of thumb is to exclude those functions that have
less than 10 microseconds per call inclusive time, and are called more than
100,000 times (numcalls > 100,000 & usecs/call < 10)). By default, the
TAU measurement system will throtthle these functions at runtime (and these
functions will appear in a flat profile with “THROTTLED” marker). A throt-
tled function will still have hooks into the measurement system, but those hooks
will be disabled, reducing, but not eliminating the overhead. Throttling may
be turned off by setting:

user@home:> TAU THROTTLE 0

To change the values of numcalls and usecs/call you can set the following
environment variables:
user@home:> TAU THROTTLE NUMCALLS 200,000

user@home:> TAU THROTTLE PERCALL 5

7 Helpful Advice for TAU

7.1 Bug on Generating data profile

TAU can be built in many ways to precisely suit your application and runtime
system used. If your application don’t make any MPI calls (MPI Init()/MPI Finalize())
and it linked in the MPI libraries then profiling execution causes the mismatch
and the profile.-1.0.0 file. In general, if your application makes no MPI
calls, you will have to choose a stub makefile that does not have a -mpi in its
name.

11

A fix for this bug is described in:
http://www.nic.uoregon.edu/pipermail/tau-users/2007-June/000106.html

Otherwise, you can rename the file profile.-1.0.0 in profile.0.0.0 before
profiling it.

7.2 Helpful Links

• http://www.ruyk.com/tech/?p=49

• http://www.psc.edu/general/software/packages/tau/

• http://acts.nersc.gov/tau/documents/usingTAU.html

• http://www.cs.uoregon.edu/Research/tau/docs/newguide/bk05rn01.html

• https://modelingguru.nasa.gov/docs/DOC-1646

• http://www.cs.uoregon.edu/Research/paraducks/proj/doe2000/pi00 report.html

• http://www.cs.uoregon.edu/Research/paracomp/tau/tautools/docs/instr.html

12

Appendix

A Source instrumentation via Makefile

If the application that you have to profile has an its ownn Makefile, you can
use it changing suitably the instructions. For example, we compile a C program
described in appendix B composed by three functions written in three files:
main.c, matvet.c and max.c (for details see section B.1 in appendix B).

#Begin Makefile

OUTDIR=.

INTDIR=.

--------------- TAU directory and options --------------------

TAUROOTDIR = /usr/local/tau-2.20.2/

TAU_OPTIONS = -optPreProcess -optKeepFiles -optVerbose

LIBS = $(TAU_LIBS) -lmpich -lmpl -L/usr/local/lib

--------------- Compile and link commands --------------------

CFLAGS = $(TAU_INCLUDE) $(TAU_DEFS)

CC = tau_cc.sh -tau_makefile=./TAU.Makefile -tau_options=$(TAU_OPTIONS)

------------------- Program name -----------------------------

PROG = myprog_tau.exe

.SUFFIXES: .c.o

--------------- object list ---------------------------------

OBJS= \

$(INTDIR)/main.o \

$(INTDIR)/matvet.o \

$(INTDIR)/max.o

--------------- Object files creation rules -------------------

main.o : main.c

$(CC) $(CFLAGS) -c main.c

matvet.o : matvet.c

$(CC) $(CFLAGS) -c matvet.c

max.o : max.c

$(CC) $(CFLAGS)-c max.c

----------------"all" rule-------------------------------------

all: $(PROG)

$(OUTDIR)/$(PROG): $(OBJS)

13

$(CC) $(CFLAGS) -o $(OUTDIR)/$(PROG) $(OBJS) $(LIBS) -lm

clean:

/bin/rm -f ./$(PROG)

/bin/rm -f ./*.o ./*.inst.c ./*.pdb

#End Makefile

14

B The example C code

B.1 Original source

In this appendix is shown the source code used in this report as example (see
section 5.1). It is C program composed by three functions saved in three different
files named: main.c, matvet.c and max.c rispectively. The program carries
out five matrix-vector product and the corresponding maximum value of vector
product.

============================== main.c ========================

int main()

{

double *A,*x,*y,max;

int i,j,c,m,n,calls;

m = 100;

n=500;

calls = 5;

A = (double*)calloc(m*n,sizeof(double));

x = (double*)calloc(n,sizeof(double));

y = (double*)calloc(m,sizeof(double));

for (c=1; c<=calls; c++)

{ for (i=0; i<m; i++)

{

for (j=0; j<n; j++)

{

*(A+j+i*n) = (double) c*((j+1)*n);

}

}

for (j=0; j<n; j++)

*(x+j) = (double)c*j;

matvet(A,x,y,m,n);

printf(" *** --- *** \n");

printf("MATRIX VECTOR PRODUCT n. %d \n", c);

printf("INPUT DATA: \n");

printf("\n");

for (i=0; i<m; i++)

{

for (j=0; j<n; j++)

{

printf("A(%d,%d)=%5.2f\t",i,j, *(A+j+i*n));

}

printf("\n");

}

printf("\n");

for (j=0; j<n; j++)

printf("x(%d)=%5.2f\t",j,*(x+j));

15

printf("OUTPUT DATA: \n");

for (j=0; j<n; j++)

{

printf("y(%d)=%5.2f\t",j, *(y+j));

}

printf("\n");

maxvet(y,n,&max);

printf("\n MAXIMUM VALUE %5.2f \n",max);

printf(" *** --- *** \n");

}

return 0;

}

======================== matvet.c ========================

void matvet(double *A, double *x, double *y, int m, int n)

{

int i,j;

for (i=0; i<m; i++)

{

*(y+i)=0.;

for (j=0; j<n; j++)

{

*(y+i) += *(A+j+i*n)* *(x+j);

}

}

return;

}

======================== max.c ========================

void maxvet(double *vet, int n, double *max)

{

int i;

*(max) = *(vet);

for (i=1; i<n; i++)

{

if (*(vet+i) > *(max))

{

*(max) = *(vet+i);

}

}

return;

}

16

B.2 Instrumented source

In this section is shown the instrumented version of the example code in ap-
pendix B produced by means the Makefile reported in appendix A. In or-
der to preserve instrumented source file you have to set TAU options with
-optKeepFiles.

======================== main.inst.c ========================

#include <Profile/Profiler.h>

#include <stdlib.h>

#include <stdio.h>

#include <math.h>

int main()

{

TAU_PROFILE_TIMER(tautimer, "int main() C [{main.c} {5,1}-{62,1}]", " ", TAU_DEFAULT);

#ifndef TAU_MPI

#ifndef TAU_SHMEM

TAU_PROFILE_SET_NODE(0);

#endif /* TAU_SHMEM */

#endif /* TAU_MPI */

TAU_PROFILE_START(tautimer);

{

double *A,*x,*y,max;

int i,j,c,m,n,calls;

m = 100;

n=500;

calls = 5;

A = (double*)calloc(m*n,sizeof(double));

x = (double*)calloc(n,sizeof(double));

y = (double*)calloc(m,sizeof(double));

for (c=1; c<=calls; c++)

{ for (i=0; i<m; i++)

{

for (j=0; j<n; j++)

{

*(A+j+i*n) = (double) c*((j+1)*n);

}

}

for (j=0; j<n; j++)

*(x+j) = (double)c*j;

matvet(A,x,y,m,n);

printf(" *** --- *** \n");

printf("MATRIX VECTOR PRODUCT n. %d \n", c);

printf("INPUT DATA: \n");

printf("\n");

for (i=0; i<m; i++)

17

{

for (j=0; j<n; j++)

{

printf("A(%d,%d)=%5.2f\t",i,j, *(A+j+i*n));

}

printf("\n");

}

printf("OUTPUT DATA: \n");

for (j=0; j<n; j++)

printf("x(%d)=%5.2f\t",j,*(x+j));

printf("OUTPUT: \n");

for (j=0; j<n; j++)

{

printf("y(%d)=%5.2f\t",j, *(y+j));

}

printf("\n");

maxvet(y,n,&max);

printf("\n MAXIMUM VALUE %5.2f \n",max);

printf(" *** --- *** \n");

}

{ int tau_ret_val = 0; TAU_PROFILE_STOP(tautimer); return (tau_ret_val); }

}

TAU_PROFILE_STOP(tautimer);

}

======================== matvet.inst.c ========================

#include <Profile/Profiler.h>

void matvet(double *A, double *x, double *y, int m, int n)

{

TAU_PROFILE_TIMER(tautimer, "void matvet(double *, double *, double *, int, int) C [{matvet

TAU_PROFILE_START(tautimer);

{

int i,j;

for (i=0; i<m; i++)

{

*(y+i)=0.;

for (j=0; j<n; j++)

{

*(y+i) += *(A+j+i*n)* *(x+j);

}

}

{ TAU_PROFILE_STOP(tautimer); return; }

}

TAU_PROFILE_STOP(tautimer);

}

18

======================== max.inst.c ========================

#include <Profile/Profiler.h>

void maxvet(double *vet, int n, double *max)

{

TAU_PROFILE_TIMER(tautimer, "void maxvet(double *, int, double *) C [{max.c} {2,1}-{16,1}]"

TAU_PROFILE_START(tautimer);

{

int i;

*(max) = *(vet);

for (i=1; i<n; i++)

{

if (*(vet+i) > *(max))

{

*(max) = *(vet+i);

}

}

{ TAU_PROFILE_STOP(tautimer); return; }

}

TAU_PROFILE_STOP(tautimer);

}

19

References

[1] S.S. Shende, A.D. Malony: The TAU parallel performance system, The
International Journal of High Performance Computing Applications, Vol.
20, n. 2, pp. 287-311, 2006

[2] TAU Homepage URL: http://www.cs.uoregon.edu/Research/tau/home.php

[3] S. Shende A.D. Malony, J. Cuny, K. Lindlan, P. Beckman, S. Karmesin:
Portable Profiling and Tracing for Parallel, Scientific Application ising
C++, Proceeding of SPDT 98: ACM SIGMETRICS Symposium on Par-
allel and Distributed Tools, 1998

[4] S. Shende: Hands-on Practical Parallel Application Performance Engineer-
ing using PAPI, PerfSuite, Scalasca, Vampir and TAU (slides) Supercom-
puting 10 Conference, New Orleans, Louisiana, USA, November 15, 2010

[5] PDT (Program Database Toolkit) Homepage,
URL:http://www.acl.lanl.gov/pdtoolkit

[6] Advanced Computing Laboratory, Los Alamos National Laboratory: PDT:
Program Database Toolkit, Supercomputing ’99 flyer, Los Alamos National
Laboratory Publication LALP-99-204, November 1999.

[7] K. Lindlan, J. Cuny, A. D. Malony, S. Shende, P. Beckman: An IL Con-
verter and Program Database for Analysis Tools, Proceeding of 2nd SIG-
METRICS Symposium on Parallel and Distributed Tools, p.153, 1998

[8] B. Mohr: DUCTAPE. Poster, International Symposium on Computing in
Object-Oriented Parallel Environments (ISCOPE’98), December 1998

20

