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DEVELOPING PARALLEL LARGE EDDY SIMULATION
SOFTWARE WITH LIBRARIES FOR SPARSE MATRIX

COMPUTATIONS

ANDREA APROVITOLA† , PASQUA D’AMBRA‡ , FILIPPO MARIA DENARO§ ,

DANIELA DI SERAFINO¶, AND SALVATORE FILIPPONE‖

Abstract. We discuss the design and development of a parallel code for Large Eddy Simulation
(LES) by exploiting libraries for sparse matrix computations. Specifically, we show how a numerical
procedure for the LES of turbulent channel flows, based on an approximate projection method,
can be formulated in terms of linear algebra operators involving sparse matrices and vectors, and
can be implemented using general-purpose linear algebra libraries as building blocks. This approach
allows to pursue goals such as modularity, flexibility, accuracy and robustness, as well as easy and fast
exploitation of parallelism, with a relatively low coding effort. The parallel LES code developed in this
work, named SParC-LES (Sparse Parallel Computations for LES), is based on two parallel libraries:
PSBLAS, providing basic sparse matrix operators and Krylov solvers, and MLD2P4, providing a
suite of algebraic multilevel Schwarz preconditioners. The results obtained by using SParC-LES for
the simulation of an incompressible and homothermal flow in a plane channel at Reτ = 590 show
the effectiveness of this approach.

Key words. Large eddy simulation, turbulent channel flows, sparse matrix computations,
parallel software libraries.

AMS subject classifications. 76F65, 65F50, 65Y15, 65Y05.

1. Introduction. The study of the motion of incompressible flows in wall-
bounded domains finds its application in many scientific fields for which a decoupling
from the acoustic field is suitable, such as several geophysical flows, micro-device
flows, nano-fluidic flows and so on. For almost all of such flows, turbulence appears
as the normal regime of the motion. Turbulent flows are multi-scale flows where
main phenomena such as vortex stretching and pairing, energy production, cascade
and dissipation take place at different length scales, therefore an adequate description
of them imposes a resolution of all fluid spatial and temporal scales. However, the
Direct Numerical Simulation (DNS), which solves the Navier-Stokes (N-S) equations
without any arbitrary assumption, has (for homogeneous isotropic turbulence) a com-
putational cost depending on the cube of the Reynolds number, thus its application
results unfeasible for increasing Reynolds numbers in complex geometries [26, 28] .

A more feasible approach for the accurate numerical solution of turbulent flows
is Large Eddy Simulation (LES), born more than 50 years ago in the field of geo-
physics. The basic idea of LES consists in computing directly the dynamics of the
large, energetic flow scales, responsible for the inviscid energy transfer, while mod-
elling the dynamics of the small scales where the energy dissipation takes place. This

†Institute for Combustion Research (IRC), National Research Council of Italy (CNR), piazzale
V. Tecchio 80, I-80125 Napoli, Italy (andrea.aprovitola@irc.cnr.it).
‡Institute for High-Performance Computing and Networking (ICAR), National Research Council

of Italy (CNR), via P. Castellino 111, I-80131 Napoli, Italy (pasqua.dambra@cnr.it).
§Department of Aerospace and Mechanical Engineering, Second University of Naples, via

Roma 29, I-81031 Aversa, Italy, and ICAR-CNR, via P. Castellino 111, I-80131 Naples, Italy (filip-
pomaria.denaro@unina2.it).
¶Department of Mathematics, Second University of Naples, viale A. Lincoln 5, I-81100 Caserta,

Italy, and ICAR-CNR, via P. Castellino 111, I-80131 Naples, Italy (daniela.diserafino@unina2.it).
‖Department of Mechanical Engineering, University of Rome “Tor Vergata”, viale del Policli-

nico 1, I-00133, Roma, Italy (salvatore.filippone@uniroma2.it).

1



2 DEVELOPING PARALLEL LARGE EDDY SIMULATION SOFTWARE

scale separation is obtained by applying a filtering operator to the N-S equations,
thereby decomposing the nonlinear term in a resolved tensor and in an unresolved
one (see, e.g., [31]). Currently, LES is the state of the art in the numerical simula-
tion of turbulence for small/medium-scale problems where it is required to achieve
detailed information from the flow dynamics. Although the computational costs are
reduced with respect to the DNS approach, LES remains a computationally expensive
technique and its application to realistic flows is a usual context for high-performance
computing.

Projection methods are among the methods of choice for the filtered N-S equa-
tions. Their application requires the solution of large and sparse linear systems, which,
together with the flux computation, accounts for most of the execution time of the
LES codes (this is generally true for CFD codes, as pointed out in [21]). There-
fore, efficient solvers for sparse linear systems as well as efficient techniques for flux
computation are key issues for an effective application of LES.

In this paper we show that a numerical procedure for the LES of incompressible
flows, based on a projection method, can be formulated in terms of linear algebra
operators involving sparse matrices and vectors. Starting from this formulation, we
designed and developed a parallel code for the LES of incompressible and omother-
mal flows in a plane channel, relying upon open-source parallel libraries for sparse
matrix computations. This code, named SParC-LES (Sparse Parallel Computations
for LES), is based on two parallel packages: PSBLAS (Parallel Sparse BLAS) [19],
which implements basic sparse matrix and vector operators as well as sparse linear
system solvers, and MLD2P4 (Multilevel Domain Decomposition Parallel Precondi-
tioners Package based on PSBLAS) [9], which implements algebraic multilevel Schwarz
preconditioners to be used in conjunction with the PSBLAS solvers. A main goal in
designing SParC-LES was to obtain a modular and flexible code, where physical sub-
models or discretization schemes might be changed by only changing few modules
in the code and without affecting the overall numerical procedure. Furthemore, by
using general-purpose linear algebra libraries as building blocks, we wanted to make
available to the code a suite of linear solvers and preconditioners, so that the most
appropriate ones for the problem and the parallel machine under consideration could
be chosen. A notable feature of SPARC-LES is the direct inheritance of the efficiency,
portability and robustness of the packages PSBLAS/MLD2P4 on which it is based;
leveraging the two base packages allows an easy and fast exploitation of parallelism,
which is encapsulated in the computational routines and in the support routines for
building and managing distributed data structures, available in these libraries. It is
worth noting that this work also led to an analysis of the accuracy and reliability of
the LES procedure implemented in SParC-LES, in a complete turbulent channel flow
simulation. Actually, the whole procedure had been only tested, through a prototype
implementation, on a flow with Reτ = 180 [1].

The paper is organized as follows. In section 2 we briefly present the approximate
projection method which is at the basis of our LES approach. In section 3 we focus
on the main computational kernels of this method, providing a description of them in
terms of linear algebra operators, and in section 4 we show how SParC-LES has been
built by translating this description into the application of suitable data structures and
routines from PSBLAS and MLD2P4. In section 5 we discuss the results obtained with
SParC-LES on a typical test case for wall-bounded flows. Specifically, we first analyze
the results of a complete simulation, by comparing them with the data obtained with
other well-known LES codes as well as with DNS data, and then we analyze the
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parallel performance of our code. Finally, we give some conclusions in section 6.

2. A deconvolution-based approximate projection method for the LES
of turbulent channel flows. We are interested in the simulation of an incompress-
ible and homothermal flow in a plane channel, with periodic boundary conditions
assigned in the streamwise (x) and spanwise (z) directions, and no-slip boundary
conditions on the walls. We consider the Finite Volume (FV)-based LES approach
proposed in [1, 4], where a top-hat filter coupled with a differential deconvolution
operator is applied to the N-S equations in non-dimensional weak conservation form,
obtaining the following formulation of the continuity and momentum equations, re-
spectively: ∫

∂Ω(x)

ṽ · n dS = 0, (2.1)

A−1
x

(
∂ṽ

∂t

)
= fconv + fdiff + fpress + fsgs. (2.2)

In the above equations Ω(x) is a finite volume contained into the region of the flow, n is
the outward-oriented unit vector normal to ∂Ω(x), Ax is the differential deconvolution
operator, ṽ = Ax (v̄) is the deconvolved velocity field, where

v (x, t) =
1

|Ω (x)|

∫
Ω(x)

v (x′, t) dx′

is the top-hat filtered velocity field. Furthermore, fconv, fdiff and fpress are the
resolved convective, diffusive and pressure fluxes, respectively, and fsgs represents the
unresolved terms:

fconv = − 1

|Ω (x)|

∫
∂Ω(x)

ṽṽ · n dS ,

fdiff =
2

Re |Ω (x)|

∫
∂Ω(x)

(∇sṽ) · n dS,

fpress = − 1

|Ω (x)|

∫
∂Ω(x)

pn dS ,

fsgs =
1

|Ω (x)|

∫
∂Ω(x)

[
2

Re
(∇sv −∇sṽ) + (ṽṽ − vv)

]
· n dS,

where ∇s is the zero-trace symmetric part of the gradient operator, Re the Reynolds
number, and p the pressure term including the constant density. In our approach,
an implicit SubGrid-Scale (SGS) modeling is used, i.e., fsgs = 0, thus the unresolved
subgrid-scale terms do not appear explicitly in the equations. This choice is moti-
vated by two main reasons: the use of the deconvolution operator for recovering the
frequency content of the velocity field near the grid cutoff wavenumber, which, as
shown in [31], is equivalent to the adoption of an explicit scale-similar SGS model on
the filtered equation governing the top-hat velocity; and the adoption of an upwind
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discretization of the resolved fluxes, which has a local truncation error mimicking the
diffusive behaviour of an eddy-viscosity SGS model (see, e.g., [4, 22]).

For the numerical solution of equations (2.1)-(2.2), we consider a time-splitting
technique, based on the Approximate Projection Method (APM) described in [5].
APM allows to decouple the continuity and momentum equations by computing the
unknown velocity field ṽ, at each time step, through the Helmholtz-Hodge decompo-
sition:

ṽn+1 = v∗ −∆t∇φ, n = 1, 2, . . . (2.3)

where v∗ is an intermediate non-solenoidal velocity field, ∆t is the time-step size, and
φ is a suitable scalar field.

The intermediate velocity v∗ is obtained by solving the deconvolved momentum
equation (2.2), where the pressure term is neglected, with suitable Dirichlet boundary
conditions at the walls [12]. The time integration of this equation is performed by
applying the classical second order Adams-Bashforth/Crank-Nicolson (AB/CN) semi-
implicit scheme. Specifically, the explicit AB method is used for the convective and
diffusive terms in the x and z directions, while the implicit CN method is applied to
the diffusion terms along the y direction; the latter choice ensures a wider stability
range near the solid walls, where the grid used for the space discretization is finer, as
explained below. Therefore, v∗ is obtained by solving the following equation:(

A−1
x −

∆t

2Re
D2

)
v∗ =

(
A−1

x +
∆t

2Re
D2

)
ṽn+

∆t

2

(
3

(
1

Re
(D1 +D3)ṽn + fnconv

)
−
(

1

Re
(D1 +D3)ṽn−1 + fn−1

conv

))
,

(2.4)

with suitable Dirichlet boundary conditions in the y direction. The operators D1, D2

and D3 are the components of

D( ) =
1

|Ω(x)|

∫
∂Ω(x)

∇s( ) · n dS

along the coordinate directions, and fnconv and fn−1
conv are the convective fluxes at the

time steps n and n− 1, respectively.
The correction term in (2.3), needed to have a divergence-free velocity field ṽ, is

obtained by computing φ as the solution of the following Poisson-type elliptic equation:

(D1 +D2 +D3)φ =
1

∆t |Ω (x)|

∫
∂Ω(x)

v∗ · n dS . (2.5)

Non-homogeneous Neumann boundary conditions are prescribed in the wall-normal
direction, such that the compatibility condition is fulfilled [5, 11]. In this way, the
equation has a solution that is unique up to an additive constant. The above equation
is known as pressure equation since ∇φ is an O(∆t) approximation of the pressure
gradient. The time cycle of the APM procedure applied to the LES model of the
turbulent channel flow is sketched in Figure 2.1.

The spatial domain is discretized by using a structured Cartesian grid, with uni-
form grid spacings in the streamwise and spanwise directions, where the flow is as-
sumed to be homogeneous, and non-uniform grid spacing with refinement near the
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! Nsteps = total number of time steps

for n = 1, Nsteps do

compute convective and diffusive fluxes and deconvolved velocity to build rhs of (2.4)

compute v∗ by solving deconvolved momentum equation (2.4)

compute φ by solving pressure equation (2.5)

update ṽn+1 as in (2.3)

endfor

Fig. 2.1. APM procedure.

walls in the y direction, to adequately describe the boundary layer. A finite volume
method, with the velocity components co-located at the centers of control volumes, is
applied to equations (2.4)-(2.5). Such a choice is motivated by the simplicity in the
implementation of the multidimensional upwind method used for the discretization of
convective fluxes (see section 3.1). However, as a consequence of the grid co-location,
the continuity equation in APM cannot be driven to the machine zero, but it vanishes
according to the magnitude of the local truncation error associated with the time and
space discretization [16]. Thus, the continuity error must be small enough to ensure
that the kinetic energy does not increase in time [6].

The convective fluxes are discretized by a third-order multidimensional upwind
scheme, while the diffusive ones by a classical second-order central scheme; fourth-
order formulas are used for the discretization of the spatial derivatives involved in the
inverse differential deconvolution in (2.4) (more details are given in the next section).
The above space discretization leads to four sparse linear systems at each step of
the simulation procedure. Their dimensions depend on the number of grid cells and
hence increase with the Reynolds number, because of resolution needs. The solution
of these systems, as well as the computation of the discrete convective and diffusive
fluxes used to build their right-hand sides, are core tasks in the whole simulation
procedure, therefore we focus on them in the next section.

3. Computational kernels in the APM procedure. As in many CFD codes,
the most computationally expensive tasks at each step of the APM procedure are the
following:

• computation of the convective and diffusive fluxes and deconvolution of the
velocity field,

• solution of the deconvolved momentum equation,
• solution of the pressure equation.

They account for almost all the computing time (details are given in section 5.2),
and hence the effectiveness and the efficiency of the whole simulation is strongly
dependent on their implementation. To clarify the rationale for our implementation
choices we provide a description of these tasks in terms of linear algebra operators.
Henceforth we assume that Nx, Ny and Nz are the numbers of grid nodes in the x,
y and z directions, respectively; taking into account the boundary conditions, the
total number of grid nodes where the velocity components and φ have to be actually
computed is N = Nx(Ny − 1)Nz.
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 Fig. 3.1. Multidimensional upwind criterion applied to the flux section corresponding to the
west face of the (i, j, k)th control volume: Lagrangian simplex in case of negative velocity components
(left) and local coordinate system (ξ, η, ζ), centered in i if ṽr is positive, or in i− 1 if ṽr is negative
(right).

3.1. Computation of the fluxes and the deconvolved velocity. As men-
tioned in section 2, the convective fluxes at the time steps n and n− 1, which are in
the right-hand side of equation (2.4), are discretized by using the third-order upwind
scheme proposed in [1]. This scheme applies a multidimensional upwind criterion,
based on the interpolation of the velocity components over a Lagrangian simplex.
We note that for strong multidimensional unsteady flows, such as those computed
by LES, using a fully three-dimensional polynomial appears more suitable than using
a factorized interpolation along the three coordinate directions. Furthermore, the
interpolation over a Lagrangian simplex ensures the uniqueness of the polynomial
over each of its faces, while such property is not guaranteed by classical factorized
Lagrangian interpolations.

The filtered velocity component ṽr along the rth coordinate axis (r = 1, 2, 3), at
a point of the flow domain, is approximated through a quadratic polynomial inter-
polation over 10 grid points suitably chosen on a local three-dimensional Lagrangian
simplex, which is built taking into account the velocity direction (see Figure 3.1, left).
This approximation can be expressed as

ṽr (ξ, η, ζ) ∼= (p (ξ, η, ζ))
T

cṽr (3.1)

where the triple (ξ, η, ζ) represents the point in a local coordinate system depending
on the velocity direction (see Figure 3.1, right), and

p (ξ, η, ζ) =
[
1, ξ, η, ζ, ξη, ξζ, ηζ, ξ2, η2, ζ2

]T
, cṽr = A−1 qṽr ;

here qṽr ∈ R10 is the vector containing the values of ṽr in the interpolation nodes and
A ∈ R10×10 is a nonsigular matrix depending on these nodes.
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The convective flux across the surface of a control volume is obtained by adding
the convective fluxes across the faces of the volume. Let us consider, for example, the
control volume identified by its center (xi, yj , zk). By using (3.1), the rth component
of the flux across the “west” face x ≡ x−i = xi −∆x/2, where ∆x is the FV spacing
in the x direction, is approximated as

1

|Ωi,j,k|

z+k∫
z−k

dz

y+j∫
y−j

(ṽ1ṽr)|x−
i
dy ∼=

1

∆x∆yi∆z

(
qṽ1W
)T

MW qṽiW , (3.2)

where y±i = yi ±∆yi/2, z±i = zi ±∆z/2, ∆yi and ∆z are the FV spacings in the y
and z directions, respectively, W refers to the west face, and

MW =

z+k∫
z−k

dz

y+j∫
y−j

mW mT
W dy, mT

W = pTW A−1
W .

The same technique can be applied to the remaining faces of the control volume,
obtaining the following approximation of the rth component of the convective flux:

frconv
∼=

1

∆x∆yi∆z

[(
qṽ1E
)T

ME qṽrE −
(
qṽ1W
)T

MW qṽrW

+
(
qṽ2N
)T

MN qṽrN −
(
qṽ2S
)T

MS qṽrS (3.3)

+
(
qṽ3U
)T

MU qṽrU +
(
qṽ3L
)T

ML qṽrL

]
,

where W , E, N , S, U and L identify the six faces of the control volume. We note
that only the matrices MW , MS , ML are actually needed, since the FV scheme is
flux-conservative and hence (ME)i,j,k = (MW )i+1,j,k, (MN )i,j,k = (MS)i,j+1,k, and
(MU )i,jk, = (ML)i,j,k+1. Furthermore, these matrices are independent of the time
step.

The contribution of the operator Dr to the component of the diffusive flux along
the rth coordinate direction is discretized by using a classical second-order centered
finite-volume scheme [1, 5], leading to three-point stencils in each coordinate direction.
Since the operators Dr appear in the left- and right-hand side of the deconvolved
momentum equation (2.4) and in the left-hand side of the pressure equation (2.5), it
is convenient, for reuse, to build the matrices Dr ∈ RN×N , r = 1, 2, 3, that represent
the discrete operators on the overall computational domain. By assuming a natural
ordering of the grid cells, i.e., first along x, then along y, and finally along z, these
matrices can be written as

D1 = INz ⊗ INy−1 ⊗Dx, D2 = INz ⊗Dy ⊗ INx , D3 = Dz ⊗ INy−1 ⊗ INx ,

where Dx ∈ RNx×Nx , Dy ∈ R(Ny−1)×(Ny−1), Dz ∈ RNz×Nz represent the discrete
counterparts of D1, D2, D3 along the x, y, z directions, INx

, INy−1, INz
are the

identity matrices of dimensions Nx, Ny − 1, Nz, and ⊗ is the Kronecker product.
It is immediate to see that the matrices D1 and D3 are symmetric, while D2 is
nonsymmetric, but has a symmetric sparsity pattern; furthermore, each matrix has
only three nonzero diagonals, i.e., the main diagonal plus two diagonals whose distance
from the main one depends on the coordinate axis associated with the matrix itself.
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The computation of the right-hand side of equation (2.4) requires also the appli-
cation of the inverse deconvolution operator A−1

x to the velocity vector ṽn. To get
an accurate representation of the spectral content of the numerical solution, A−1

x is
discretized by using a fourth-order centered scheme [23]:

A−1
x ṽn ∼= αjṽ

n
i,j,k + β

(
ṽni−1,j,k + ṽni+1,j,k + ṽni,j,k−1 + ṽni,j,k+1

)
− γ

(
ṽni−2,j,k + ṽni+2,j,k + ṽni,j,k−2 + ṽni,j,k+2

)
+

2∑
s = −2
s 6= 0

αj+sṽ
n
i,j+s,k,

where the coefficients αl are all dependent on ∆yj . Therefore, the inverse of the
discrete deconvolution operator can be represented as a matrix Ā ∈ RN×N that has
only 13 nonzero non-adjacent diagonals and a symmetric sparsity pattern, but is
unsymmetric in the values, due to the non-uniform grid spacing in the y direction.
It can be verified that the matrix Ā is diagonally dominant and its sparsity pattern
contains the sparsity patterns of the diffusion matrices Dr.

Finally, we note that the matrices Dr and Ā do not depend on the time step and
can be computed just once, before the APM procedure starts.

3.2. Setup and solution of the momentum and pressure equations. The
discretization of the left-hand side of equation (2.4) is obtained as a byproduct of the
discretization of the diffusive flux and deconvolved momentum operators. The discrete
deconvolved momentum equations consists of three linear systems, henceforth referred
to as velocity systems: (

Ā− ∆t

2Re
D2

)
(v∗)r = (w)r, (3.4)

where (v∗)r, r = 1, 2, 3, is the component along the rth coordinate axis of the dis-
crete intermediate velocity v∗ and (w)r is the discretization of the right-hand side
of the corresponding component of (2.4), obtained as explained in the previous sec-
tion. Since the sparsity pattern of Ā includes the sparsity pattern of D2, the matrix
Ā − ∆t

2ReD2 has at most 13 nonzero entries per row, distributed over as many non-
adjacent diagonals (see Figure 3.2, left). Furthermore, it is diagonally dominant and
well conditioned. Therefore, a natural choice for the solution of (3.4) is a nonsymmet-
ric Krylov method such as GMRES [30], possibly coupled with a simple preconditioner
such as Jacobi or block-Jacobi. As for the matrices involved in the flux computation,
the matrix in 3.4 can be built before the beginning of the APM procedure.

The discretization of the left-hand side of the pressure equation results from the
discretization of the three diffusion operators Dr, outlined in section 3.1. A small
modification must be applied to the discretization of D2, to take into account the
Neumann boundary conditions in the wall-normal direction; the corresponding ma-
trix is denoted by D̄2. The right-hand side is discretized by approximating the integral
through a centered scheme, involving the velocity components on the faces of the finite
volumes, which are obtained through linear interpolation over the volume centers [1].
At the walls, the exact normal component of the velocity is used, thus the boundary
value problem is equivalent to a problem with homogeneous Neumann boundary con-
ditions and a modified source term. In this way the compatibility condition is ensured
and the spatial accuracy of the discretized pressure equation is of second order. The
resulting linear system has the form(

D1 + D̄2 + D3

)
ϕ = g, (3.5)
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Fig. 3.2. Sparsity patterns of the matrices of the velocity (left) and pressure (right) systems.

where ϕ denotes the discrete approximation of φ and the right-hand side g also
includes the boundary conditions. In the following, this system is referred to as
pressure system. The matrix D = D1 + D̄2 + D3 has at most seven entries per row,
distributed over seven non-adjacent diagonals plus four diagonals arising from the
periodicity in the x and z directions; it is nonsymmetric, because of the non-uniform
spacing along the y direction, but has a symmetric sparsity pattern (see Figure 3.2,
right). Again, it can be computed before the beginning of the APM procedure.

Note that D is singular; furthermore, it can be verified that D has the following
property:

R(D) ∩N (D) = {0}, (3.6)

where R(D) and N (D) are the range space and the null space of D. Thus, the GM-
RES method is able to compute a solution of the pressure system before a breakdown
occurs [36]. This allows to use a standard GMRES implementation. The application
of an effective preconditioner is required to achieve a sufficiently accurate solution
with a small number of iterations. Multilevel Schwarz preconditioners are known to
be optimal in the solution of linear systems arising from the discretization of elliptic
partial differential equations, in the sense that the preconditioned solvers can achieve
convergence with a number of iterations independent of the problem size [32, 34].
These preconditioners may result very efficient in a parallel computing setting, pro-
vided that a suitable balance between scalability of implementation and optimality is
achieved [2].

4. SParC-LES: a parallel code for LES. SParC-LES is a novel parallel code
which implements the LES approach described in the previous sections, by exploiting
the formulation of the numerical methods in terms of computational kernels. A driv-
ing principle in designing the code has been the use of portable, robust and efficient
numerical building blocks, whenever possible. Since the main kernels of the APM pro-
cedure involve sparse matrix computations and the solution of sparse linear systems,
the code development has been based on the PSBLAS library and on the relevant
parallel preconditioners package MLD2P4. PSBLAS and MLD2P4 are written in
Fortran 95, using an object-based approach and a modular design that favour flexibil-
ity and extensibility, implemented through the language features for data abstraction
and functional overloading. Special attention is devoted to memory management and
performance issues, to obtain runtime efficiency; furthermore, portability is ensured
through the use of MPI [33] as message-passing environment. A very short description
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of the PSBLAS and MLD2P4 functionalities is given next. For details the reader is
referred to [8, 9, 10, 17, 18, 19].

PSBLAS provides the basic operators needed to implement iterative solvers for
the solution of sparse linear systems on distributed-memory parallel computers. It
includes parallel versions of most of the Sparse BLAS computational kernels pro-
posed in [15], as well as implementations of many popular Krylov subspace solvers
for systems of linear equations. It also provides functionalities for sparse matrix man-
agement, e.g., for the setup and storage of distributed sparse matrices and for the
implementation of data communication patterns typically involved in sparse matrix
computations. An interesting feature of PSBLAS is the decoupling of the internal
storage format from the application structure: an application code based on PBLAS
can be easily adapted to different machine architectures by plugging in the appropri-
ate internal formats and computational kernels. Moreover, the storage formats can
be changed at runtime to be adapted to the different needs of the various applica-
tion phases. In this way we are moving towards a higher-level design of scientific
application codes, as advocated by multiple authors (see, e.g., [7, 29]).

MLD2P4 implements a suite of parallel multilevel Schwarz preconditioners that
can be used with the Krylov solvers available in PSBLAS. It is built on the top of PS-
BLAS, thus exploiting the above-mentioned PSBLAS functionalities. The MLD2P4
preconditioners work in an algebraic way, i.e., exploiting only information on the ma-
trix and not on the geometry of the problem from which it originates; to build coarse-
level corrections they use the smoothed aggregation technique [35]. MLD2P4 provides
the Jacobi and block-Jacobi preconditioners, the basic additive Schwarz precondition-
ers, and multilevel preconditioners combining the previous one-level preconditioners
with coarse-level corrections, in an additive or multiplicative framework. Note that
by making available different solvers and preconditioners to an application code, we
can easy experiment with different methods within the code, in order to select the
most approprite ones. In SParC-LES we tested the GMRES method with several
preconditioners for the solution of the velocity and pressure systems, to select the
most efficient ones (see section 4.3).

Parallelism is introduced in SParC-LES by a domain decomposition approach
at the discrete level, i.e, by partitioning the computational grid into subgrids and
assigning a subgrid to each available processing unit. In order to obtain the best
computation-to-communication ratio, we implement a 3D block decomposition of the
computational grid that produces the well-known surface-to-volume effect, i.e., mini-
mizes the surface area of each partition (data to be communicated) for a given volume
(data to be locally computed) [20]. Suitable MPI functionalities are used to define a
virtual 3D Cartesian topology of running processes that matches the decomposition of
the computational grid. We implicitly assume that the number of processes is equal to
the number of available processing units, although this is not required to run our code.
The grid decomposition results into a a general row-block distribution of the matrices
involved in the computation, managed through suitable PSBLAS functionalities, as
explained in section 4.1.

Next, we provide some details on the use of PSBLAS and MLD2P4 in the devel-
opment of SParC-LES.

4.1. Parallel deconvolution and diffusion operators. The first phase of the
parallel computation is the definition of the basic discrete operators involved in the
APM procedure, i.e., the inverse deconvolution matrix Ā and the three diffusion ma-
trices Dr described in Section 3.1. In SParC-LES each matrix is represented through
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a corresponding PSBLAS distributed data structure. Each data structure has a set
of associated methods, and thus, using the computer science language, it is consid-
ered an “object”. The necessary data structure is actually split into a sparse matrix
data structure, containing the part of the operator assigned to a given process in the
row-block distribution, and a communication descriptor data structure, containing
the information needed for handling all necessary data exchanges.

As discussed in [9, 19], each application of a matrix operator, i.e., each computa-
tion of a matrix-vector product, requires a specific data exchange among all processes,
according to a scheme that is implicitly defined by the sparsity pattern of the ma-
trix itself and by the assignment of its rows to the available processes. Thus, the
construction of the communication descriptor requires the knowledge of the sparsity
pattern of the matrix, in turn determined by the grid and the stencil chosen to dis-
cretize the PDE under consideration, and of the partitioning of the computational
domain among the various processes. Therefore, the communication descriptors of
the discrete deconvolution operator Ā and the diffusion operators Dr are determined
by the Cartesian discretization grid, using a natural numbering of the grid cells, and
by its 3D partitioning.

In Figure 4.1 we report a pseudo-code showing the main steps for building the
sparse matrix data structures D1, D2 and D3 holding D1, D2 and D3, respectively,
and the associated communication descriptor desc_d. Note that we define a single
descriptor including the combined sparsity patterns of the three operators because
they will be used via their sums/differences. A similar pseudo-code describes the
construction of the sparse matrix DEC and the communication descriptor desc_dec for
the operator Ā. Once the mapping between the grid decomposition and the processes
has been performed and the list of indices assigned to each process, vl, has been
identified, the communication descriptor and the sparse matrix data structures are
allocated by using psb_cdall and psb_spall, respectively. Then, the entries of the
diffusion operators are inserted into the sparse matrix structure row by row, through
psb_spins. Finally, the descriptor and the sparse matrices are assembled through
psb_cdasb and psb_spasb, to make them ready for use by the other PSBLAS and
MLD2P4 routines.

Then, the basic discrete operators are used for computing the matrices of the
velocity and pressure systems. The sparse matrix data structure corresponding to the
coefficient matrix of system (3.4) can be obtained as the difference between DEC and
D2, the latter suitably scaled. Analogously, the sparse matrix holding the coefficient
matrix in (3.5) can be computed by adding up D1, D2 and D3, after a suitable small
change to D2 to take into account the Neumann boundary conditions in the wall-
normal direction. We also note that the computation of the right-hand side of (3.4)
requires the sum of DEC and D2, with the same scaling as above, and the sum of D1 and
D3 (see (2.4)). In all these cases we use the sparse matrix sum routine psb_sp_add,
which computes

Z = αV + βW,

where Z, V, and W are distributed sparse matrices and α and β are scalars. The
corresponding pseudo-code is reported in Figure 4.2, where D2BAR holds the modified
diffusion operator, MATD and MATV hold the coefficient matrices of the pressure and
velocity systems, and DD and AD2 the matrices in the right-hand sides of the discrete
momentum equations.
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< choose a map between (X,Y,Z) and (i=1,...,N) >

< choose a distribution of the grid to the processes >

< generate the list of indices, vl, for current process >

call psb cdall(ictxt,desc d,info,vl=vl(1:lenvl))

call psb spall(D1,desc d,info)

call psb spall(D2,desc d,info)

call psb spall(D3,desc d,info)

do i = 1, N

if ( <index i belongs to me> ) then

nz = < number of nonzeros in i-th row >

irow(:) = (/ < i repeated nz times >/)

icol(:) = (/ <list of nonzero column indices in the row >/)

val1(:) = (/ <coefficients of D1 in i-th row> /)

val2(:) = (/ <coefficients of D2 in i-th row> /)

val3(:) = (/ <coefficients of D3 in i-th row> /)

call psb spins(nz,irow,icol,val1,D1,desc d,info)

call psb spins(nz,irow,icol,val2,D2,desc d,info)

call psb spins(nz,irow,icol,val3,D3,desc d,info)

endif

enddo

call psb cdasb(desc d,info)

call psb spasb(D1,desc d,info)

call psb spasb(D2,desc d,info)

call psb spasb(D3,desc d,info)

Fig. 4.1. Setup of diffusion operators.

< modify D2 to get D2BAR >

alpha = 1.0

beta1 = 1.0

beta2 = deltat/(2.0*Re)

call psb sp add(alpha,D1,beta1,D3,DD,info)

call psb sp add(alpha,DD,beta1,D2BAR,MATD,info)

call psb sp add(alpha,DEC,-beta2,D2,MATV,info)

call psb sp add(alpha,DEC,beta2,D2,AD2,info)

Fig. 4.2. Computation of the matrices of the velocity and pressure systems.

4.2. Parallel computation of the convective and diffusive fluxes. At each
time step of the APM procedure, the convective and diffusive fluxes and the decon-
volved velocity field must be computed to build the right-hand sides of the velocity
systems (3.4).

For each component of the intermediate velocity field, the computation of the
corresponding discrete convective fluxes at two subsequent time steps is required (see
(2.4)). In this case, the 10×10 matrices involved in the flux computations, as specified
in (3.3), are not explicitely constructed because of their very small size, and the
corresponding operations are directly implemented in Fortran 95. This phase requires
that each process exchanges the velocity values in two layers of grid cells with the
processes holding the adjacent subgrids; the data exchange is implemented through
the basic send and receive PSBLAS routines, i.e., psb_snd and psb_rcv.

Once the convective fluxes have been computed, the right-hand sides of the three
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do ia = < loop on all locally owned indices >

< map index ia onto triple (i,j,k) >

bval = < convective flux in (i,j,k) at time step n >

call psb geins(1,(/ia/),(/bval/),b,desc dec,info)

end do

call psb geasb(b,desc dec,info)

alpha1 = 1.0

alpha2 = 1/Re

beta1 = deltat/2.0

beta2 = 3.0

beta3 = 1.0

call psb spmm(alpha1,AD2,v,-beta1,b0,desc dec,info)

call psb geaxpby(-alpha1,v0,beta2,v,desc dec,info)

call psb spmm(alpha2,DD,v,beta3,b,desc d,info)

call psb geaxpby(alpha1,b0,beta1,b,desc d,info)

Fig. 4.3. Computation of the right-hand side of one of the three velocity systems.

velocity systems, i.e., the discretizations of the components of the right-hand side of
(2.4), are obtained by applying the PSBLAS computational kernel implementing the
following sparse matrix by vector operation:

y = αVx + βy,

where V is a distributed sparse matrix, x and y are vectors distributed according
to the matrix V, and α and β are scalars. This operation is implemented in the
psb_spmm routine, as a special case of the sparse matrix by dense matrix product.
Specifically, in order to obtain the discretization of the first term in the right-hand
side of (2.4), we compute the sparse matrix by vector products between the sparse
matrix stored in AD2, mentioned at the end of the previous section, and each of the
intermediate velocity vectors (v∗)r. The remaining terms in the right-hand sides of
the velocity systems, stemming from the discretization of the x and z components
of the diffusive fluxes, are obtained through the sparse matrix by vector product
involving the matrix in DD and the vectors 3(ṽn)r − (ṽn−1)r. Then, the right-hand
sides are obtained by adding up the results of the previous computations, by using
the psb_geaxpby routine, which computes

Y = αX + βY,

where X and Y are distributed dense matrices (including vectors as a special case)
and α and β are scalars.

The pseudo-code for the computation of the right-hand side of any of the three
velocity systems is given in Figure 4.3 (some redundancy has been introduced in the
pseudo-code to ease its readability). In this case, before psb_spmm and psb_geaxpby

are called, v and b contain the velocity component along the selected coordinate axis
and the corresponding flux at time step n, while v0 and b0 contain the same vectors
at time step n−1. Note that only b is built, through psb_geins (insertion of entries)
and psb_geasb (vector assembly), at the beginning of the current time step, since the
other vectors result from the computations at the previous time step. Finally, after
the calls to psb_spmm and psb_geaxpby, the right-hand side of the velocity system is
in b.
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call mld precinit(PV,’JACOBI’,info)

call mld precbld(MATV,desc dec,PV,info)

.......................................

call psb krylov(’RGMRES’,MATV,PV,b,x,tol,desc dec,info, &

& itmax,iter,err,itrace,irst,istop)

Fig. 4.4. Solution of a velocity system: setup of the Jacobi preconditioner and application of
the preconditioned RGMRES.

The right-hand side of the pressure system, arising from the discretization of the
right-hand side of equation (2.5), is obtained by simple linear combinations of velocity
components defined on classical seven-point stencils. As for the discrete convective
fluxes, this requires the exchange of the velocity components in two layers of grid
points among nearest-neighbour processes, that are managed through the psb_snd

and psb_rcv data communication routines.

4.3. Parallel solution of the velocity and pressure systems. The veloc-
ity and pressure systems are solved using the GMRES implementation provided by
PSBLAS; several preconditioners are available from MLD2P4 to accelerate the con-
vergence.

As observed in section 3.2, the matrix of the velocity systems is diagonally dom-
inant and well conditioned, thus no preconditioner or very simple preconditioners,
such as the Jacobi and block-Jacobi ones, are expected to work well. Figure 4.4
shows the setup and the construction of the Jacobi preconditioner for the matrix un-
der consideration, through the MLD2P4 routines mld_precinit and mld_precbld;
no preconditioner or the block-Jacobi preconditioner can be selected by specifying
’NOPREC’ or ’BJAC’ instead of ’JACOBI’ in the call to mld_precinit. Note that,
by default, the block-Jacobi preconditioner is applied by using the ILU(0) factor-
ization of the blocks; different solvers can be chosen for the blocks, by specifying
them through a suitable routine, named mld_precset. The preconditioned GMRES
is applied via the routine psb_krylov, which provides an interface for all the Krylov
methods implemented in PSBLAS (see [17] for details). Actually, the restarted GM-
RES (RGMRES) method is applied, with restart parameter irst; in our simulations
we choose irst=30, which makes GMRES equal to RGMRES because of the small
number of iterations performed (see section 5.2). Of course, since the matrix of the
velocity systems does not change during the APM procedure, the preconditioner is
setup only once, before the time cycle starts, and is reused at each system solution.

As explained in section 3.2, an appropriate choice for the solution of the pressure
system is GMRES with a multilevel Schwarz preconditioner. MLD2P4 provides sev-
eral multilevel preconditioners, obtained by choosing the multilevel framework (i.e.,
additive or multiplicative), the number of levels, the smoother at each level, the
coarsest-level solver, etc., as explained in [10]. To provide an example, in Figure 4.5
we show the setup of a 4-level multiplicative (V-cycle) preconditioner, using 1 block-
Jacobi sweep as pre- and post-smoother, and 4 block-Jacobi sweeps as coarsest-level
(approximate) solver; the ILU(0) factorization is applied to the blocks within the
block-Jacobi method. A threshold equal to 0.01 is set in the aggregation algorithm,
to perform the matrix coarsening at each level. Actually, most of these choices are the
default ones, but they are explicitly done via psb_precset for illustration purposes.
As in the case of the velocity systems, the preconditioner for the pressure equation is
only built once before the start of the APM procedure.
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call mld precinit(PD,’ML’,info,nlev=4)

call mld precset(PD,mld ml type ,’MULT’,info)

call mld precset(PD,mld smoother pos ,’TWOSIDE’,info)

call mld precset(PD,mld smoother type ,’BJAC’,info)

call mld precset(PD,mld smoother sweeps ,1,info)

call mld precset(PD,mld sub solve ,’ILU’,info)

call mld precset(PD,mld sub fillin ,0,info)

call mld precset(PD,mld coarse mat ,’DISTR’,info)

call mld precset(PD,mld coarse solve ,’BJAC’,info)

call mld precset(PD,mld coarse sweeps ,4,info)

call mld precset(PD,mld coarse subsolve ,’ILU’,info)

call mld precset(PD,mld coarse fillin ,0,info)

call mld precset(PD,mld aggr thresh ,0.01,info)

call mld precbld(MATD,desc d,PD,info)

Fig. 4.5. Setup of a 4-level V-cycle preconditioner for the pressure system.

We note that the choice of the parameters defining the multilevel preconditioner
usually affects the performance of the preconditioned solver; therefore, we tested
different combinations of parameters in order to identify the best one for the test
problem considered in this paper on the available parallel machines. This issue was
also discussed in [2, 3].

5. Numerical experiments. In this section we analyze the results obtained
with SParC-LES in the simulation of a turbulent flow in a plane channel at Reτ =
590, for which a DNS database widely accepted in the literature is available [27]. The
channel height is H = 2δ, the streamwise length Lx = 2πδ and the spanwise length
Lz = πδ. The turbulent flow, assumed to be periodic in the x and z directions,
is sustained in the streamwise direction by a driven force provided by a suitable
constant pressure gradient. The non-dimensional lengths are defined by using the
channel half-height δ, while the non-dimensional velocity is defined by means of the

shear velocity uτ =
√

∆p0δ
ρ0Lx

, where ∆p0 is the forcing pressure gradient and ρ0 is the

homogeneous density. In this way, a forcing non-dimensional pressure gradient equal
to 1 is obtained. An initial parabolic velocity profile with a superimposed Gaussian
perturbation field is assigned along the streamwise direction. More details on this test
case can be found, e.g., in [27, 31].

The numerical experiments were carried out with the double aim of assessing
the numerical results obtained with SParC-LES in a complete LES simulation and of
analysing the parallel performance of the code on modern architectures.

5.1. Analysis of a complete simulation. A complete LES simulation was
performed by using a computational grid with Nx = Nz = 48 nodes uniformly dis-
tributed in the homogeneity plane (x, z); a trigonometric stretching law was applied
in the wall-normal direction y, with Ny = 100 nodes, corresponding to a resolved
boundary layer. The time step was set as ∆t = 10−5 and the run was executed until
an energy equilibrium was achieved, after which 15 samples of the velocity field were
dumped for computing time-averaged statistics. The complete simulation corresponds
to 100 time units, for a total number of 107 time steps. The GMRES method and the
preconditioners were set as in the experiments reported in section 5.2. The simula-
tion was carried out on 64 processors of a HP XC 6000 Linux cluster operated by the
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Fig. 5.1. SParC-LES vs available LES data: averaged streamwise velocity profiles (left) and
RMS of the fluctuations of the streamwise streamwise velocity components (right).

Naples branch of ICAR-CNR, using PSBLAS 2.4.0, MLD2P4 1.2.1., HP MPI 2.01,
and the GNU 4.6.1 Fortran compiler.

In Figure 5.1 (left) we compare the SParC-LES time-averaged streamwise velocity
profile with the corresponding DNS results from [27] and with other LES velocity
profiles provided by the LESinItaly Initiative [25]. All the quantities are in wall units,
i.e., y+ = uτy/ν and u+ = u/uτ , where ν is the kinematic viscosity, and, for the LES
results, u denotes the averaged streamwise component of the velocity. As usual, we
also plot the linear low and the logarithmic low, which are the reference models for
u+ in the viscous sublayer (y+ < 5) and in the log-layer region (y+ > 30) [31]. We
note that, among the data available for our test case in the LESinItaly database, we
selected only those obtained with widely used codes based on FV formulations (Fluent,
OpenFOAM, TransAT, Code Saturne), where second-order-accurate schemes both in
space and time and an eddy-viscosity closure for the subgrid terms were used. These
data come from simulations on a finer grid than the one used in our experiments,
i.e., a Cartesian grid where Nx = Nz = 64 and Ny = 100, with a trigonometric
stretching law along y; nevertheless, they are useful to assess the “quality” of the
solution computed by SParC-LES.

We see that the SParC-LES solution exhibits a good agreement with both the
DNS and LES results in the viscous sublayer, up to the beginning of the buffer layer,
i.e., of the region 5 < y+ < 30; a departure from the DNS and other LES data is
observed in the log-layer region. Several considerations can be made to explain this
behaviour. First, the horizontal grid used for the SParC-LES simulation is coarser
than for the other LES codes. This corresponds to different filtered width and filtered
velocity. As noted in [24], in the LES literature there is evidence that the turbulent
structures originating along the spanwise direction (streaks), and responsible of tur-
bulent energy production, are particularly sensitive to the spanwise grid resolution.
Therefore, the coarser grid used by SParC-LES drives toward a worse description of
such flow structures. Owing also to the stretching law in the y direction, the grid
appears quite coarsened near the channel centerline and thus the contribution of the
implicit subgrid model becomes relevant. Such a contribution is due the implicit dis-
sipative nature of the local truncation error associated with the polynomial upwind
scheme, whose magnitude depends on the cell size. As a consequence, a smaller shear
velocity uτ is computed by SParC-LES, and the non-dimensional variable u+ is larger,
driving to a shift in the log-layer region. However, it is worth noting that a similar,
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Fig. 5.2. SParC-LES vs available LES and DNS data: streamwise energy spectra at y+ = 590.

although less pronounced, behaviour is observed in the other LES solutions.

The previous conclusions are confirmed by the root mean square (RMS) of the
fluctuations of the streamwise component of the velocity along the channel height (see
Figure 5.1, right). For SParC-LES the peak of turbulence intensity of the solution
is displaced farther from the wall than for the other LES codes, thus indicating that
the stronger turbulent fluctuations obtained with our simulation result in a thickened
boundary layer.

We also compare SParC-LES with the other codes in terms of the energy spec-
trum of the averaged streamwise velocity component at y+ = 590 (see Figure 5.2).
The energy content of the streamwise velocity shows an interesting feature. At low
wavenumbers, which correspond to the largest energy containing turbulent structures,
the spectral components obtained with SParC-LES fit the DNS ones better than the
spectral components from the other LES codes. This good recovering of the energy
content can be ascribed to the deconvolution procedure implemented in SParC-LES.
As pointed out in [14], the deconvolution operator has the effect of making the fil-
tered velocity field closer to a spectral-like resolution. This good behaviour is relevant
when thinking about practical applications in the simulation of turbulence where large
structures are responsible of important effects and must accurately resolved. For in-
stance, in non-premixed combustion computations, the flame behaviour is governed
by the large-scale turbulent motions, which set the rate at which fuel and oxidant
mix. Hence, an accurate description of such flow scale is fundamental to describe the
flame stabilization mechanism.

On the other hand, the results of SParC-LES, as well as of the other codes, show
a strong decay of the high-wavenumber energy content, typical of the use of filters
that are smooth in the wavenumber space. For SParC-LES this is due to the artifi-
cial dissipation implicitly introduced by the upwind scheme, which can be considered
comparable with a central discretization scheme plus an explicit eddy-viscosity con-
tribution. It is useful to remark that several CFD codes can employ an artificial
dissipation to stabilize the numerical computation of the convective fluxes. In our
comparison, FLUENT uses a second-order central bounded scheme for the convective
fluxes, while OpenFOAM uses a second-order unbounded scheme. Without bound-
ing, FLUENT does not achieve convergence, whereas the SParC-LES computation
is stable, although exhibiting a sort of oscillation on the high-frequency components,
similarly to the OpenFOAM solution.
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Finally, we note that the approach used to develop SParC-LES allows to easily
change the discretization scheme used for the convective fluxes. For instance, high-
order central methods coupled with an explicit SGS model, such as a dynamic scale-
similar model, could be implemented in the future, with the aim of better correlating
the energy content in the inertial range and reducing the dissipation.

5.2. Analysis of parallel performance. A performance analysis of SParC-
LES on the selected test problem was carried out by running the code on the Hopper
supercomputer, a Cray XE6 operated by the National Energy Research Scientific
Computing Center in Berkeley, CA. Hopper has 6384 compute nodes made up of 2
twelve-core AMD processors for a total of 153216 cores, and uses the Cray “Gem-
ini” interconnect for inter-node communication; it has a peak performance of 1.28
Petaflops/sec. and is ranked the eighth in the November 2011 TOP 500 list (see
http://www.top500.org/). In our experiments we used PSBLAS 2.4.0 and MLD2P4
1.2.1, installed on the top of the xt-mpich2/xt-shmem 5.4.0 MPI implementations.
The software was compiled with the GNU 4.6.1 Fortran compiler.

We considered a Cartesian grid with Nx = Nz = 64 and Ny = 100; the resulting
dimension of the velocity and pressure matrices is N = 405504, with 5263360 nonzero
entries for the velocity matrix and 2826430 for the pressure one. Taking into account
the grid size, we used from 1 to 64 cores to analyze the strong scalability of our code.
We run the code for 1000 time steps only, because we had previously observed that
the behaviour of the linear solvers in such a number of steps is representative of the
behaviour in a complete simulation. On the velocity systems we tested GMRES with
no preconditioner and with the Jacobi and block-Jacobi preconditioners, while on the
pressure systems we tested several multilevel Schwarz preconditioners. The iterations
were stopped when the 2-norm of the relative residual was lower than 10−7. For each
velocity or pressure system, the solution obtained at the previous time step was used
as starting guess, except at the first time step where the zero vector was considered.
On the velocity systems the smallest execution times were obtained by using GMRES
with no preconditioner. On the pressure systems the most efficient preconditioners
generally were the 2-level and 3-level V-cycle preconditioners, with 1 block-Jacobi
sweep as pre- and post-smoother, 4 block-Jacobi sweeps as coarsest level approximate
solver, and ILU(0) to factorize the blocks. Specifically, the 3-level preconditioner led
to the smallest times when using 1 to 16 cores, while the 2-level one was the best on
32 and 64 cores. With both preconditioners, a threshold equal to 10−2 was chosen
by numerical experiments in the aggregation algorithm. For the sake of space, here
we show only the results concerning the 2-level preconditioner. In this case, the size
of the coarse matrix ranges from 48108, on a single core, to 52752, on 64 cores; this
variability is due to the uncoupled aggregation implemented in MLD2P4 [9].

To better understand the overall parallel performance of SParC-LES, resulting
from the performances of its different tasks, we first analyze the execution profile of
the code on 1 core (Figure 5.3). The computation of the convective fluxes and the
computation of the deconvolved velocity and diffusive fluxes account for about 52%
of the total execution time; they have almost the same weight in the overall run, i.e.,
26.5% and 25.4%, respectively. The solution of the velocity and pressure systems
requires about 45% of the total time, with the pressure systems having a weight of
17.4% and the velocity ones of 28%. The remaining part of the code, which also
includes the velocity updates (2.3) and the computation of the right-hand sides of the
pressure systems, accounts for less than 3% of the execution.

Now we analyze the parallel performance of SParC-LES in the solution of the
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Fig. 5.3. Profile of a sequential SParC-LES run.

velocity and pressure systems; the corresponding execution times and speedups are
shown in Figure 5.4. For both types of systems we see a similar time decrease, which
leads to a speedup of 20 on 64 cores for both types of systems, corresponding to an
efficiency of about 31%. We report that the mean number of GMRES iterations for
solving a single velocity system is about 9; for a single pressure system it ranges from
4 to 6, thus confirming the effectiveness of the multilevel preconditioner. Taking into
account the size and the sparsity pattern of the matrices, we can conclude that the
performance of SParC-LES in the solution of the linear systems is satisfactory.

In Figure 5.5 we depict the execution time and the speedup of the code for building
the fluxes and the deconvolved velocity. In this case, a stronger time reduction than in
the case of the linear solvers is obtained in going from 1 to 64 cores. The reason is that
this part of SParC-LES mainly performs operations having a smaller communication-
to-computation ratio than GMRES and the multilevel preconditioners. On 64 cores,
the speedup is about 32 for the computation of the convective fluxes, and it is about
46 for the computation of the diffusive fluxes and the deconvolved velocity; the overall
speedup of this phase is about 37.

Finally, in Figure 5.6, we show the overall execution time and speedup of the
SParC-LES code. To provide a single picture of the performance of the whole code
and its phases, we also display the time and the speedup for the linear solvers and
the flux computations, already depicted in the previous figures, as well as for the
remaining part of SParC-LES. The latter has a modest scalability, with a speedup of
about 13 on 64 cores, because it includes some communication-bounded tasks. We see
that SParC-LES is able to achieve a satisfactory overall performance, with a speedup
of about 26 on 64 cores, corresponding to a decrease of the execution time from about
78 minutes, on 1 core, to 3 minutes, on 64 cores (note that a complete simulation,
with 107 time steps, would take more than 20 days on 64 cores). Therefore, we can
conclude that using PSBLAS and MLD2P4 in the development of SParC-LES allowed
an effective explotation of parallelism with a relatively low coding effort.
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Fig. 5.4. Parallel performance of the linear solvers in SParC-LES.

Fig. 5.5. Parallel performance of the computation of the fluxes and the deconvolved velocity in
SParC-LES.

Fig. 5.6. Parallel performance of SParC-LES and its tasks.
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6. Conclusions. We presented the design and the development of SParC-LES,
a parallel code for the LES of turbulent channel flows, which uses as building blocks
general-purpose numerical libraries implementing sparse matrix operators, Krylov
solvers and algebraic multilevel preconditioners. The key issue in building SParC-
LES was the formulation of the main tasks of the numerical simulation procedure in
terms of sparse linear algebra kernels, to exploit the computation and data manage-
ment functionalities provided by PSBLAS and MLD2P4. This approach resulted in
a modular and flexible code, where accuracy, robustness and parallel efficiency are
committed to the library framework.

SParC-LES was run to simulate a turbulent flow in a plane channel at Reτ = 590,
not only to evaluate its parallel efficiency, but also to assess the overall numerical
procedure implemented in it, which, before this work, was only applied to a turbulent
channel flow with Reτ = 180. The parallel performance of the code is more than
satisfactory and shows that our approach is able to exploit the computational power
offered by modern parallel computers at a relatively moderate coding effort. The
analysis of the simulation results show the strengths and drawbacks of the numerical
procedure, thus allowing to identify possible modifications to improve the quality of
the solution, that can be easily applied thanks to the design methodology used for
SParC-LES.
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