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Abstract

In this work we analyze the behaviour of multilevel Domain Decomposition pre-
conditioners, coupled with Krylov solvers, in the solution of linear systems arising
in the application of a projection-based method to the numerical simulation of un-
compressible wall-bounded turbulent flows. We consider a Large Eddy Simulation
(LES) approach, where a high-order filter is applied to the Navier-Stokes equations.
In this context, one of the main computational tasks is the solution of an elliptic
equation, leading to large and sparse linear systems to be solved at each time step
of a simulation. We show the effectivenes of the algebraic multilevel preconditioners
implemented in the MLD2P4 software package, in terms of efficiency and scalability,
for linear systems arising from a bi-periodical channel flow simulation. This work
is the first step towards the development of a scalable parallel code for the LES of
wall-bounded flows in real-world applications.

Key words: Parallel Sparse Linear Solvers, Algebraic Multilevel Preconditioners,
Computational Fluid Dynamics, Large Eddy Simulation
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1 Introduction

The hypothesis of fluid incompressibility is traditionally adopted for solving
problems in which acoustic waves propagate at a velocity much greater than
that of macroscopic advective transport of properties, which is the case of
low Mach number flows. This hypothesis remains essentially valid also for
flows governed by weak temperature gradients, such as buoyancy-driven flows.
Hence, even if the hypothesis of incompressibility leads to simplifying the
Navier-Stokes (N-S) equations, the mass-conservation law is reduced to the
constraint ∇ · v = 0 and the pressure only acts as a Lagrangian multiplier,
with no thermodynamic law driving the evolution. This complicates the task
of solving the discrete formulation of the governing equations [18]. This form of
the N-S equations was historically solved by means of classical methods, such
as artificial compressibility, pressure-correction methods or stream function-
vorticity formulations (see [16] for a review).

To reduce the computational effort in the solution of incompressible N-S equa-
tions, a numerical formulation decoupling the velocity and the pressure gradi-
ent, based on the Helmholtz-Hodge decomposition (HHD) theorem [9,13,20],
leads to the class of the so-called projection methods. A fundamental task of
the projection methods is to obtain a divergence-free velocity field in a dis-
crete sense, and the main computational effort is the solution of a discrete
elliptic operator which substitutes the continuity equation. This operator al-
lows to project a predicted velocity in the sub-space of divergence-free vector
fields. Projection methods may be used for both laminar and turbulent flow
simulations, but they are most commonly employed in simulating turbulence,
where the computational complexity reaches is highest and requires very high
performance solvers.

The study of the incompressible turbulence finds its application in a wide
range of scientific and engineering fields, such as oceanography, meteorology,
air quality, aircraft design and so on. Unfortunately, the numerical simulation
of real-world incompressible turbulent flows is still an open issue due to the
high computational effort required to adequately describe them.

As opposed to laminar flows, in which energy and momentum transfers are
essentially due to the molecular diffusion process, turbulent flows are charac-
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terized by the inertial transport of vortical structures of very different length
scales; these structures produce fluctuations in the velocity field at macro-
scopic level, increasing the energy and momentum mixing. Thus, kinetic en-
ergy is transferred inviscidly from larger scales, where it is produced, down to
smaller scales whereas it is finally dissipated. Since the energy production and
dissipation mechanisms take place at different length scales, an adequate de-
scription of this behavior, entails a resolution of all fluid spatial and temporal
scales [16,28], dramatically increasing the cost of a numerical simulation.

The most accurate way to simulate the dynamics of turbulent flows is to
solve the N-S equations without any approximations other than those de-
riving from the numerical scheme. This approach, called Direct Numerical
Simulation (DNS), can be considered equivalent to performing a realistic ex-
periment [16,29,30,34]. In a DNS it is assumed that all the fluid structures,
responsible of the production, transfer and dissipation of energy, are well re-
solved. This assumption implies that, in order to perform a DNS, the number
of computational grid points has to be of the order of L/η in each coordinate
direction, where L is the integral length scale corresponding to the measure
of the largest characteristic eddy size, and η is the smallest dissipative length
scale, also known as Kolmogorov scale. It is known [34,16,30,29] that this ratio
is proportional to Re3/4, Re being the Reynolds number of the flow. Another
requirement imposed by a DNS is that the time step used in the simulation
must be less than the time scale of the smallest resolved scale; therefore, since
the ratio of the integral time scale to diffusive time scales is also proportional
to Re3/4, the total computational cost for performing a DNS is of the order
of Re3. As the Reynolds number of most scientific and engineering applica-
tions is in the range [106, 109], the application of DNS is strongly limited by
its computational cost. Moin and Kim in a review article appeared on the
Scientific American Magazine in 1997 [29] estimated that for the simulation
of the turbulent flow near the surface of an aircraft for 1 second of flight time
with a 1 Tflops supercomputer several thousand years were needed.

A more affordable approach to accurate numerical simulations of turbulent
flows is Large Eddy Simulation (LES). The basic idea of LES is computing
only the dynamics of the flow scales which are responsible for the energy trans-
fer, while modelling the dynamics of the scales where the energy dissipation
takes place. This is achieved by applying a low-pass filtering procedure to the
N-S equations, thereby decomposing the velocity field into a mean field (re-
solved large scales) and a fluctuation field (unresolved small scales). In order
to describe the interaction between the resolved and the unresolved scales a
Subgrid Scales Model (SGS) has to be considered. Despite the strong reduc-
tion of the computational cost with respect to the DNS technique, the use
of LES in realistic applications is still limited by the resolution requirements
and it is feasible only through high-performance algorithms and software on
high-end supercomputers. Furthermore, LES is very expensive in the case of
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wall-bounded simulations, where the anisotropy of the flow results into larger
grids and shorter time steps [22].

The projection methods-based numerical integration of the filtered equations
requires the solution of large and sparse linear systems; together with the
SGS computations they account for most of the execution time of the simula-
tion codes. Therefore, the availability of efficient and reliable linear equation
solvers is a key issue for an effective application of LES [30]. The choice of
such solvers should be based on a tradeoff among high-performance, scalabil-
ity and accuracy criteria, since all these features have a strong impact on LES
simulations. As pointed out in [19], Krylov solvers with Domain Decomposi-
tion (DD) preconditioners, usually in a multilevel framework, are often the
methods of choice in large-scale CFD applications, because they fit naturally
in a parallel environment and exhibit good convergence properties.

The main focus of this paper is to analyze the behavior of multilevel Domain
Decomposition (DD) preconditioners, coupled with Krylov iterative solvers, in
the solution of linear systems arising from the application of an LES approach
in the numerical simulation of wall-bounded turbulent flows. In this study we
use algebraic multilevel DD preconditioners available in MLD2P4 (Multilevel
Domain Decomposition Parallel Preconditioners Package based on PSBLAS)
[7,10], coupled with Krylov solvers from PSBLAS [17]. These preconditioners
have been proven to be effective in the solution of large-scale linear systems
arising from model problems and real applications, and have been shown to
maintain good scalability properties [7,11].

As a first step in the development of a scalable parallel code for LES of wall-
bounded turbulent flows in real-world applications, we analyze here the be-
haviour of different multilevel preconditioners. We apply them to the linear
system arising at the first time step of a simulation; this is a valid approach
since the system matrix and the main numerical features of the linear systems
do not change during the temporal evolution.

The remaining of the paper is organized as follows: in Section 2 we briefly
describe the equations for incompressible flows in the framework of a LES ap-
proach. In Section 3 we outline the numerical discretization of the equations,
introducing the large and sparse linear systems to be solved at each time step of
a computer simulation. In Section 4 we describe the multilevel domain decom-
position preconditioners coming from a software package for high-performance
solution of unstructured linear systems on parallel and distributed computers.
In Section 5 we discuss preliminary results on performance behaviour of differ-
ent preconditioners, coupled with non-symmetric linear solvers, in the solution
of the main computational kernel of a LES for a model problem. Finally, in
Section 6 we draw our conclusion and outline future work.
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2 Mathematical model

The motion of an incompressible and homothermal flow in a bounded do-
main V is described by an initial, boundary-value problem for the set of N-S
equations. According to an integral approach, the mass and momentum con-
servation laws, written in non-dimensional form for each Finite Volume (FV)
Ω(x) ⊆ V , are:

∫

∂Ω(x)

v · n dS = 0 (1)

∂v̄

∂t
= −

1

|Ω (x)|

∫

∂Ω(x)

F(v) · n dS, (2)

where v̄(x, t) defines the local volume average of the field v(x, t) over Ω(x),
n is the outward-oriented unit vector normal to the boundary ∂Ω(x), and F

the flux function defined as:

F(v) = vv + Ip −
2

Re
∇sv,

p being the pressure term, Re the Reynolds number and ∇sv the zero-trace
symmetric part of the gradient velocity. The governing equations are associ-
ated to suitable initial and boundary conditions.

In the LES approach, the velocity field v is decomposed in two contributions
[34]:

v(x, t) = v̄(x, t) + v′(x, t),

where v̄ is the resolved, or large scale, field and v′ is the non-resolved, or small
scale, field. The scale separation is obtained by means of a filtering procedure
which is mathematically defined by the convolution product [34]:

v̄(x, t) =
∫

R3

G (x − x′; ∆)v(x′, t)dx′ ≡ G ∗ v,

where G is the convolution kernel and ∆ the filter width.

Since the volume average operator is mathematically equivalent (for uniform
filter width) to the so called top-hat filter [14], the equations (1) and (2) can
be considered as filtered model equations. The top-hat filter belongs to the
class of smooth filters [14]; therefore it does not produce a sharp separation
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between wavenumbers component of the numerical solution [34]. Furthermore,
the top-hat filter is not invertible because of the reducibility of the transfer
function Ĝ (k). A generalized regularization procedure based on Taylor series
expansion [14] can be applied in order to obtain an approximate inversion of
a filter, as well as a more reliable filtered variable ṽ [2,14,21]. This variable
is defined by means of a m-th order differential deconvolution operator A(m)

x
,

applied to the volume averaged variable v̄:

ṽ (x, t) = A(m)
x

v̄ = A(m)
x




1

|Ω (x)|

∫

Ω(x)

v (x′, t) dx′


 ≡ G

(m)
inv ∗ v.

Let us observe that for non-uniform filter width, the deconvolution oper-
ator and the integrals do not commute; to avoid commutation terms, the
deconvolution-based equations can be written as [14,21]:

∫

∂Ω(x)

ṽ · n dS = s, (3)

[
G

(m)
inv

]
−1

∗
∂ṽ

∂t
= fconv + fdiff + fpress + fsgs, (4)

where

fconv = −
1

|Ω (x)|

∫

∂Ω(x)

ṽṽ · n dS

fdiff =
2

Re |Ω (x)|

∫

∂Ω(x)

(∇sṽ) · n dS

fpres = −
1

|Ω (x)|

∫

∂Ω(x)

pn dS

fsgs =
1

|Ω (x)|

∫

∂Ω(x)

[
2

Re
(∇sv −∇sṽ) + (ṽṽ − vv)

]
· n dS

In the following, we disregard the source term s, fix m = 2 and write A(2)
x

= A.
The vector fsgs represents the unresolved terms that can be either disregarded,
in case of an implicit LES, or explicitly modelled by means of a SGS model.
For details we refer the reader to [14,21,34].
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3 Numerical simulation procedure

3.1 Computational grid

The computational domain V is partitioned by means of a structured Carte-
sian grid. We assume that the flow is homogeneous along the x (stream-wise)
and z (span-wise) directions, so that volume averages of the variables are in-
variant for any translation of the set (x1,x2, ...,xn). Along the homogeneous
directions, the centers of the control volumes in which V has been decomposed
are uniformly distributed as:

xi =
(
i −

1

2

)
∆x , (i = 2, . . . Nx + 1) ,

zk =
(
k −

1

2

)
∆z , (k = 2, . . . Nz + 1) ,

where ∆x = Lx/Nx and ∆z = Lz/Nz are the spatial discretization step sizes,
and Nx and Nz the number of control volumes along x e z directions. Along di-
rection y we used a non-uniform grid refined near the wall, following a stretch-
ing cosine-law. The coordinate of the centers of the control volumes along this
direction are yj =

(
y−

j + y+
j

)/
2. In the following the coordinates of the control

volume faces are written in terms of the coordinates of the cell centers.

x−

i = xi − ∆x/2 , x+
i = xi + ∆x/2

y−

j = yj − hy (j) /2 , y+
j = yj + hy (j) /2

z−k = zk − ∆z/2 , z+
k = zk + ∆z/2 .

so the control volume Ω (x) will be defined as:

Ω (xi, yj, zk) ≡ Ωijk =
[
x−

i , x+
i

]
×
[
y−

j , y+
j

]
×
[
z−k , z+

k

]
,

|Ωijk| = ∆xhy (j) ∆z

where hy (j) = y+
j − y−

j is the discretization step along y. Let us remark that
this construction of the computational grid is associated to a co-location of
the flow variables at the centers of each FV.
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3.2 Time-splitting methodology

In this study we adopt an implicit LES modelling by assuming fsgs = 0. As
recognized in [21,34], this approach corresponds to supplying an Approximate
Deconvolution Model (ADM) for the top-hat based governing equations.

The time integration of equation (4) is performed by applying the classical sec-
ond order Adams-Bashforth/Crank-Nicolson (AB/CN) semi-implicit scheme
[16]. The implicit CN integration is applied for solving diffusion terms along
the y direction, in order to obtain wider stability range near the solid walls
where a non-uniform grid is used. The explicit AB method is used to solve
the convection and diffusion terms in the x, z homogeneous directions. The
complete set of the continuity and deconvolved momentum equation is split
in time by means of an Approximate Projection Method (APM) [1,3,18,31].
The APM method is obtained by decoupling the velocity from the pressure in
the momentum equation. According to the Helmholtz-Hodge Decomposition
(HHD) theorem [9,13,20], the unknown velocity field ṽ at each time step can
be evaluated through a prediction-correction approach based on the following
decomposition:

ṽn+1 = v∗ − ∆t∇φn+1, (5)

where an intermediate velocity vector field v∗ (prediction field) and a potential
scalar field ∇φ (correction field) have to be obtained by solving two different
equations.

The equation for the intermediate field v∗ is obtained by performing the
AB/CN integration of equation (4), while disregarding the pressure term [2].

The second (projection) step of the APM procedure consists in computing the
correction field ∇φn+1 needed to obtain a divergence-free velocity field ṽ in
discrete sense. For this purpose we write the elliptic equation:

(D1 + D2 + D3)φ =
1

∆t |Ω (x)|

∫

∂Ω(x)

n · v∗ dS , (6)

for which a solution is guaranteed to exist, up to an additive constant, by
prescribing non-homogeneous Neumann boundary condition on ∂V , fulfilling
the compatibility condition.

Note that it is possible to derive a relation between the pressure p and the field
φ, showing that ∇φ results in an O(∆t) approximation of the actual pressure
gradient [13,21]. This is the reason why equation (6) is often referred to as the
pressure equation.
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3.3 Discretization of the pressure equation

In this Section we address the details of the discretization of the elliptic equa-
tion (6) in the APM procedure. This task requires careful examination, since
a very large fraction (usually more than 60%) of the run time of a projection-
based LES code is spent in the solution of the resulting linear system.

The surface integrals in (6) are approximated by using the mean value formula
and second order central interpolation. Having collocated the velocity field and
the φ field at the center of the FV, the velocity components normal to the flux
sections must be expressed in term of the values at the center of the volume.
This can be done by means of a linear interpolation, obtaining the following
discrete equation for the φ field:

−φn+1
i,j,k

[
2

∆x2
+

2

∆z2
+

1

hy

(
1

∆yj+1
+

1

∆yj

)]
+

φn+1
i+1,j,k + φn+1

i−1,j,k

∆x2
+

+
φn+1

i,j,k+1 + φn+1
i,j,k−1

∆z2
+

φn+1
i,j+1,k

hy∆yj+1

+
φn+1

i,j−1,k

hy∆yj

=
u∗

i+1,j,k − u∗

i−1,j,k

2∆t∆x
+ (7)

+
Nnorth

j+1 v∗

i,j+1,k +
(
Nnorth

j − N south
j

)
v∗

i,j,k − N south
j−1 v∗

i−1,j,k

hy∆t
+

w∗

i,j,k+1 − w∗

i,j,k−1

2∆t∆z
,

where the terms N south
j−1 , N south

j , Nnorth
j and Nnorth

j+1 are the linear shape func-
tions along the non uniform directions y. The existence of the solution to the
(7) is ensured by prescribing the boundary condition

∂φ

∂y

∣∣∣∣∣

n+1

i,jbnd,k

=
1

∆t

(
v∗

i,jbnd,k − ṽn+1
i,jbnd,k

)
.

Having prescribed the directional derivative of φ along the normal to the upper
and lower boundary of the domain, the resulting linear system is formally
singular. The elliptic problem is built to satisfy the following compatibility
condition, which is both necessary and sufficient to obtain a solution:

∫

Ω

∇2φn+1dΩ =
1

∆t

∫

∂Ω

∇ · v∗dS.

This condition is verified in discrete sense too. We also note that R(A) ∩
N(A) = {0}, where A is the linear system matrix and R(A) and N(A) are
its Range Space and Null Space, respectively. This property is useful in the
choice of the linear equation solver (see Section 5). The coefficient matrix A is
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banded, and because of the non uniform discretization along the y direction,
it is non-symmetric.

Note that for a fixed computational grid the linear system matrix is constant
throughout the simulation; therefore it is possible to build it just once, as well
as to spend a substantial amount of time in computing an efficient precon-
ditioners, given that these preprocessin steps will be amortized over a large
number of time steps.

4 Multilevel Domain Decomposition Preconditioners

The main idea of this work is to investigate the behaviour of multilevel DD
preconditioners, coupled with Krylov methods, in the solution of the pressure
equation arising from a LES model. The basic, i.e. one-level, preconditioners
considered here are the the Additive Schwarz (AS) ones, that decompose the
system matrix A into overlapping submatrices Ai, corresponding to different
subdomains, and solve separate linear systems involving these matrices. More
precisely, the application of the AS preconditioner MAS to vector r, formally
v = M−1

ASr, is carried out by solving systems of the type Aivi = ri, and by
combining the solutions vi to get v. The ri vectors are obtained from r by
using suitable restriction operators, while v is obtained by prolongating and
adding the vi vectors.

Among the AS preconditioners, the variant known as Restricted AS (RAS) is
the most efficient on systems coming from elliptic problems, in terms of both
convergence rate and execution time [8,15]. A detailed description of these
preconditioners is outside the scope of this work; see [35] for more details.
Here we only note that the AS preconditioners can be formulated in terms of
numerical linear algebra kernels, and hence can be implemented in an efficient,
reliable and portable way by using such kernels [6].

AS preconditioners exhibit an intrinsic parallelism, since different submatri-
ces can be processed in parallel; on the other hand, the convergence rate of
the preconditioned solvers usually deteriorates as the number of submatri-
ces increases. In order to reduce the dependency of the number of iterations
on the degree of parallelism, a multilevel approach can be applied, where a
coarse matrix is used to introduce a global coupling among the subsystems.
We consider algebraic multilevel preconditioners, which build a sequence of
coarser matrices and the related transfer operators by exploiting only the fine
grid linear system, i.e. without explicitly using any information on the phys-
ical domain, and hence relieve the user from the burden of generating coarse
grids and corresponding matrices. In the algebraic case, a coarse matrix AC

is usually built with a Galerkin approach, i.e. AC = RCART
C , where RC is
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a suitable restriction operator from the fine to the coarse linear space. The
coarse space and the restriction operator can be obtained by using a classical
AMG approach [32,37] or an aggregation technique [4,39]. A comparison of
geometric and algebraic multilevel preconditioners based on aggregation, on
different CFD problems, has shown that the algebraic are not worse than the
geometric ones, even for problems defined on simple geometries [27].

In this work we use the algebraic multilevel preconditioners implemented in the
package MLD2P4 [10]. This package makes available different versions of mul-
tilevel preconditioners of Schwarz type, where the coarse matrices and transfer
operators are obtained by using a smoothed aggregation technique [39]. The
coarse space is built by grouping the vertices of the adjacency graph of the ma-
trix, and the prolongator RT

C is obtained by applying a smoother to a piecewice
constant interpolation operator from the coarse to the fine space, in order to
remove spurious oscillatory components from the range of the prolongator.

The construction and the solution of the coarse matrix system as described
above is sequential; therefore parallel variants of the aggregation and solution
algorithms have been considered to preserve the scalability of the one-level
DD algorithms. In MLD2P4 a decoupled aggregation technique [38] is used to
build a coarse matrix AC distributed among the processors, and parallel block-
Jacobi iterations, with incomplete or complete LU factorization on the blocks
of AC , are available to (approximately) solve the coarse system. A distributed
solution of the coarse system can be obtained also by using the distributed
sparse LU factorization provided by SuperLU-DIST [26]. The coarse matrix
may be also replicated on the processors and solved by the UMFPACK se-
quential LU factorization [12]. More details on the multilevel preconditioners
available in MLD2P4 can be found in [11]. An analysis of the performance
and scalability of the various versions of two-level Schwarz preconditioners
implemented in MLD2P4 is reported in [7,11].

5 Numerical experiments

We have applied RAS and the RAS-based two- and three-level preconditioners
available in MLD2P4, coupled with Krylov solvers from the PSBLAS library
[17], to the pressure system arising in a LES of a bi-periodical channel flow.
The Reynolds number of this flow, referred to the shear velocity, is Reτ =
180; a Poiseuille flow, with a random Gaussian perturbation, is assumed as
initial condition. The computational grid, which is non-uniform only in the
y direction, has 140 × 32 × 45 nodes, leading to a nonsymmetric pressure
system matrix with dimension 201600 and 1398600 nonzero entries. The time
step ∆t in the numerical integration is set to 10−4, in order to meet stability
requirements.
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Even though this test is based on a model problem, it provides useful indi-
cations on the behaviour of algebraic multilevel Schwarz preconditioners in a
more general LES context. Therefore, the present study is a first step towards
a deeper understanding of the impact of such preconditioners in the LES of
realistic problems.

We discuss here the results obtained by solving the pressure system at the first
time step of the simulation procedure. Indeed, the matrix of this system does
not change during the whole flow simulation. On the other hand, we have not
observed significant differences in the behaviour of the preconditioned solvers
during the first 20000 time steps of numerical integration.

All the preconditioners have been applied, as right preconditioners, with RGM-
RES(30), i.e. Restarted GMRES with restarting parameter equal to 30, and
with BiCGSTAB. The null vector has been chosen as starting guess and the
Krylov solvers have been stopped when the ratio between the 2-norms of the
residual and of the right-hand-side is smaller than 10−7. A maximum number
of 3000 iterations has been set. A row-block decomposition of the pressure
equation matrix has been considered, with a conformal distribution of the
right-hand side and solution vectors. The number of submatrices used in RAS
has been set equal to the number of processors.

We note that the choice of GMRES has been made by taking into account that
this method is able to compute a solution of a singular system Ax = b, if the
system is consistent and R(A)

⋂
N(A) = {0}, where R(A) and N(A) are the

Range Space and the Null Space of A [5]. As already observed in Section 3, the
pressure system satisfies these requirements. Conversely, BiGSTAB has been
considered even if, in our knowledge, a study of its convergence behaviour in
the case of singular systems is not available.

All the experiments have been carried out on the spaci parallel machine op-
erated by the Naples branch of ICAR-CNR. This machine is a HP XC 6000
Linux cluster with 64 bi-processor nodes. Each node is an Intel Itanium 2
Madison with 1.4 Ghz, running the HP Linux for High Performance Comput-
ing, based on Red Hat Enterprise Linux AS 3 with Kernel 2.4.21. Each single
node is equipped with 4 GB of RAM. The main interconnection network is
Quadrics QsNetII Elan 4, which has a sustained bandwidth of 900 MB/sec.
and a latency of about 5 µsec for large messages. The GNU Compiler Col-
lection version 4.2 and the HP MPI implementation, version 2.01, have been
used. MLD2P4 and PSBLAS have been installed on top of the BLAS imple-
mentation provided by ATLAS 3.6.0 and of BLACS 1.1.

In the following we analyze the results of the numerical experiments in terms
of performance, scalability and accuracy. We focus on the two-level and three-
level preconditioners which, at the coarsest level, build a distributed linear
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system and apply to it four block-Jacobi sweeps, with ILU(0) on the blocks.
RAS, with ILU(0) on the local sub-matrices, is used as fine-level smoother.
Indeed, on our test problem, these preconditioners generally achieve the best
tradeoff between performance and scalability among the various versions of
multilevel preconditioners available in MLD2P4. These two- and three-level
preconditioners are referred to as 2LDI4 and 3LDI4, respectively. RAS with
ILU(0) is also considered as reference one-level preconditioner.

In Tables 1 and 2 we report the number of iterations performed by BICGSTAB
and RGMRES (Iterations), and the times, in seconds, to setup the precondi-
tioner (Tprec) and to solve the preconditioned system (Tsolve). We also report
the 2-norms of the residuals corresponding to the computed solutions. These
results have been obtained using np = 1, 2, 4, 8, 16, 32 processors and overlap
ov = 0, 1, 2 in the RAS smoother.

We observe that, for all preconditioners, the residuals of the solutions com-
puted with RGMRES(30) and BiCGSTAB are of the same order of magnitude.
Furthermore, a comparison with a reference solution obtained by running se-
quential SOR until the ∞-norm of the residual has been driven to double-
precision machine accuracy, has shown that the solutions from the Krylov
methods differ from the SOR one only by an additive constant, in agreemenbt
with the Neumann and periodic boundary conditions prescribed on the flow
domain.

Looking at the performance data, we see that in the case of the multilevel
preconditioners the setup time accounts for a large part of the total time, while
for RAS it is often negligible. On the other hand, the multilevel setup phase
shows a good scalability, especially for ov = 0, confirming the appropriateness
of the choice of distributing the coarsest-level matrix.

Since, as already mentioned, the matrix of the pressure system does not change
during the whole flow simulation, the preconditioner has to be built only once
and its setup time becomes negligible in a typical simulation requiring about
108 time steps. For this reason we focus our analysis on the solution phase of
the preconditioned system.

Let us consider first the results obtained with RGMRES. From Table 1 we
see that 2LDI4 and 3LDI4 significantly reduce the number of iterations with
respect to RAS, when up to 16 processors are used. With 2LDI4 the reduction
of number of iterations ranges from 70% for np = 1 to 78% for np = 16;
with 3LDI4 it ranges from 79% for np = 1 to 83% for np = 16. In this case,
the iteration count is approximately constant as the number of processors
increases. When more than 16 processors are used, the number of iterations
of the multilevel preconditioners has an erratic behaviour. In particular, it is
significantly greater than the RAS one for np = 32 and ov = 1, 2 and for
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np = 64 and ov = 2 (in the latter case the iterative solver does not reach
the required accuracy within the maximum number of iterations). A steep
increase of the iteration count on 32 and 64 processors can be observed with
RAS too, but in this case a larger overlap corresponds to a smaller number
of iterations. The behaviour of all the preconditioned solvers on 32 and 64
processors seems to be related to the possible singularity of the sub-matrices
to which ILU is applied, at either the fine or the coarse levels, and deserves a
careful investigation.

The best solution times are obtained with 3LDI4, which generally outperforms
both 2LDI4 and RAS for each value of the overlap, except for np = 32. In
particular, the smallest solution time (about 0.86 sec.) is obtained with 3LDI4
for np = 16 and ov = 0. On the other hand, the best behaviour in terms of
scalability is shown by the RAS preconditioner, which has the best speedup
line, with a maximum value of 11.9 for np = 32 and ov = 0.

¿From the results reported in Table 2, we see that BiCGSTAB, will all the
three preconditioners, has a general behaviour similar to RGMRES, in terms
of number of iterations, execution time and scalability. However, the number of
BiCGSTAB iterations is smaller than for RGMRES and BiCGSTAB is always
able to reach the required accuracy within the maximum number of iterations.
As a consequence, the BiCGSTAB solution time is often smaller, especially
for np ≤ 8. The smallest BiCGSTAB times are obtained with 3LDI4, which
outperforms both 2LDI4 and RAS, except in for np = 32, 64, where RAS is
superior. In particular, for np = 64 and ov = 0 RAS achieves the smallest
among all the execution times (about 0.44 sec.). The corresponding speedup,
with respect to RAS on 1 processor, is of 25.2. The best multilevel time (0.75
sec.) is obtained with 3LDI4 for np = 16 and ov = 0; the speedup for this case
is 7.3.

6 Conclusions and Future Work

We have analyzed the behaviour of Krylov solvers preconditioned with parallel
algebraic multilevel DD methods, implemented in the MLD2P4 package, in the
solution of singular elliptic linear systems arising in the numerical simulation
of uncompressible wall-bounded turbulent flows. Such preconditioners appear
to be effective in terms of efficiency and scalability and we expect that they can
be efficiently used in the development of scalable parallel codes for accurate
simulations of turbulent flows in real-world applications.

Future work will be devoted to evaluate the impact of these multilevel precon-
ditioners in a complete LES of flows, in both simple and complex geometries,
especially those for which reference experimental solutions are available.
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Iterations Tprec Tsolve Residual 2-norm

np RAS 2LDI4 3LDI4 RAS 2LDI4 3LDI4 RAS 2LDI4 3LDI4 RAS 2LDI4 3LDI4

ov = 0

1 107 32 22 0.439 4.106 5.156 19.130 9.134 6.290 0.00012 9.15e-05 0.000125

2 108 31 24 0.223 2.613 3.264 9.906 5.626 3.801 0.000138 0.000125 9.85e-05

4 108 30 25 0.104 1.397 1.687 4.150 2.541 1.923 0.000131 0.000138 0.000107

8 114 31 30 0.051 0.757 1.020 2.120 1.530 1.259 0.000135 0.000127 9.72e-05

16 197 42 33 0.025 0.481 0.686 1.973 1.023 0.859 0.00014 0.000116 0.000141

32 245 61 64 0.014 0.297 0.566 1.599 1.124 2.021 0.00014 0.00012 0.000134

64 304 98 72 0.038 0.374 0.559 1.734 1.527 1.648 0.00014 0.00012 0.000137

ov = 1

1 107 32 22 0.440 4.166 5.144 19.990 9.247 6.407 0.00012 9.15e-05 0.000125

2 107 30 23 0.376 2.754 3.434 10.420 5.511 3.743 0.000133 0.000139 0.000125

4 107 30 25 0.305 1.488 1.847 4.648 2.609 2.034 0.000134 0.000114 7.61e-05

8 108 30 29 0.207 0.916 1.159 2.399 1.416 1.494 0.000126 0.000128 9.7e-05

16 110 35 32 0.176 0.629 1.007 1.395 1.071 0.908 0.000131 9.63e-05 0.000136

32 163 239 200 0.179 0.459 0.865 1.454 5.818 5.233 0.00014 0.000136 0.00012

64 213 112 147 0.286 0.329 0.822 2.282 2.640 3.973 0.000138 0.00014 0.000134

ov = 2

1 107 32 22 0.434 4.115 5.157 20.010 9.242 6.390 0.00012 9.15e-05 0.000125

2 107 30 23 0.528 2.924 3.601 10.850 5.747 3.813 0.000124 0.000139 0.000125

4 107 30 25 0.417 1.655 1.994 4.794 2.982 2.061 0.000128 0.000114 7.58e-05

8 108 30 29 0.355 1.066 1.367 2.696 1.701 1.394 0.000121 0.000126 9.59e-05

16 109 35 32 0.504 0.949 0.988 1.819 1.110 1.018 0.00014 9e-05 0.000131

32 142 253 191 0.329 0.958 1.065 1.823 6.421 5.641 0.000133 0.00014 0.000139

64 149 3000 3000 0.433 0.451 0.913 1.437 77.790 107.200 0.000141 83.2 31.6

Table 1
Statistics for RGMRES with RAS, 2LDI4 and 3LDI4.
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Iterations Tprec Tsolve Residual 2-norm

np RAS 2LDI4 3LDI4 RAS 2LDI4 3LDI4 RAS 2LDI4 3LDI4 RAS 2LDI4 3LDI4

ov = 0

1 59 20 13 0.434 4.109 5.179 10.500 7.501 5.487 3.61e-05 0.000101 8.04e-05

2 55 19 13 0.223 2.615 3.302 5.405 5.007 3.121 0.000127 0.000119 0.000119

4 57 19 17 0.103 1.317 1.705 2.835 2.544 2.091 0.000104 6.19e-05 2.79e-05

8 59 19 17 0.051 0.747 1.024 1.454 1.387 1.173 9.78e-05 4.67e-05 0.000109

16 78 21 19 0.025 0.475 0.678 0.987 0.839 0.753 0.000125 0.000138 0.000132

32 101 36 37 0.022 0.342 0.724 0.688 1.156 1.151 0.000125 0.000112 0.0001

64 105 47 43 0.007 0.220 0.556 0.389 1.480 2.371 0.000114 7.6e-05 0.000111

ov = 1

1 59 20 13 0.434 4.122 5.191 11.310 7.571 5.544 3.61e-05 0.000101 8.04e-05

2 62 21 13 0.376 2.768 3.427 6.867 5.747 3.243 7.96e-05 1.9e-05 7.14e-05

4 59 20 16 0.253 1.473 1.862 3.417 2.830 2.157 6.44e-05 3.49e-05 2.36e-05

8 57 18 18 0.200 0.898 1.172 1.783 1.414 1.358 0.000132 6.77e-05 7.86e-05

16 99 24 19 0.175 0.626 0.823 1.862 1.487 1.082 0.000116 9.79e-05 7.37e-05

32 73 164 146 0.166 0.448 1.022 0.905 6.927 6.279 0.000141 9.64e-05 8.16e-05

64 85 58 86 0.140 0.334 0.694 0.929 2.140 5.407 0.000128 0.00014 0.000139

ov = 0

1 59 20 13 0.434 4.130 5.169 11.320 7.535 5.511 3.61e-05 0.000101 8.04e-05

2 56 21 13 0.536 2.914 3.571 6.559 6.022 3.311 8.62e-05 1.83e-05 7.2e-05

4 59 19 14 0.405 1.631 1.986 3.762 2.913 1.930 0.000101 5.89e-05 0.000126

8 58 18 18 0.366 1.057 1.353 2.149 1.530 1.485 0.000117 4.6e-05 6.92e-05

16 92 24 18 0.329 0.794 0.989 2.456 1.300 1.139 9.5e-05 3.88e-05 0.000109

32 94 172 182 0.321 0.790 0.880 1.991 8.407 10.350 7.39e-05 6.9e-05 7.17e-05

64 103 2558 973 0.436 1.222 1.211 2.092 115.200 59.590 0.000107 9.43e-05 0.000111

Table 2
Statistics for BiGCSTAB with RAS, 2LDI4 and 3LDI4.
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