
Consiglio Nazionale delle Ricerche
Istituto di Calcolo e Reti ad Alte
Prestazioni

DS2OS - Deliverable A
Project Overview and

Functional Requirements

Giovanni Schmid

RT-ICAR-NA-2010-02 Novembre 2010

Consiglio Nazionale delle Ricerche, Istituto di Calcolo e Reti ad Alte Prestazioni (ICAR)
– Sede di Napoli, Via P. Castellino 111, I-80131 Napoli, Tel: +39-0816139508, Fax: +39-
0816139531, e-mail: napoli@icar.cnr.it, URL: www.na.icar.cnr.it

1

Consiglio Nazionale delle Ricerche
Istituto di Calcolo e Reti ad Alte
Prestazioni

DS2OS - Deliverable A
Project Overview and

Functional Requirements

Giovanni Schmid1

Rapporto Tecnico N.:
RT-ICAR-NA-2010-02

Data:
Novembre 2010

1 Istituto di Calcolo e Reti ad Alte Prestazioni, ICAR-CNR, Sede di Napoli, Via P. Castellino 111, 80131 Napoli

I rapporti tecnici dell’ICAR-CNR sono pubblicati dall’Istituto di Calcolo e Reti ad Alte Prestazioni del
Consiglio Nazionale delle Ricerche. Tali rapporti, approntati sotto l’esclusiva responsabilità scientifica
degli autori, descrivono attività di ricerca del personale e dei collaboratori dell’ICAR, in alcuni casi in un
formato preliminare prima della pubblicazione definitiva in altra sede.

2

DS2OS - Deliverable A

Project Overview and Functional Requirements

Giovanni Schmid

November 10, 2010

Abstract

In the next decade, the Internet web will became more and more integrated in our
physical and social environments, and both high-speed and wireless connection will
proliferate, causing an increasing demand for IT architectures which are targeted to
manage the interactions of many people among them and with different Institutions,
Organizations and Enterprises in order to get fun, services and information at a faster
rate and lower costs.

A key point for these environments and virtual communities will be the ability to
manage very complex access control and resource usage scenarios, with no loss in perfor-
mance, reliability and security. Because of interoperability and scalability constraints,
such architectures cannot rely upon centralized trust and authorization models, but -
conversely - they must implement distributed access control models which enable users
to share effectively and efficiently computing resources and facilities, applications and
data.

The Distributed Security-Oriented Operating Systems (DS2OS) Project
concerns the design of an open access control infrastructure upon which next-generation
distributed computing environments can be effectively and safely built. Specifically, this
project aims to implement a such kind of architecture for the SSH system entry service,
deploying such implementation in the context of a “proof-of-concept” testbed.

This document, named Deliverable A, represents the first of a series of project’s
deliverables describing the the overall DS2OS architecture with its functional require-
ments and design specification. After illustrating reasons and inspiration which led to
DS2OS Project, Deliverable A aims to describe DS2OS goals and specify its func-
tional requirements. Moreover, it gives an overview of DS2OS architecture, sketching
its main components and their mutual relationships. As such, this document is also
intended as a ”reading key” for other project’s deliverables, illustrating the overall
organization of DS2OS specification.

1 Introduction

Current Internet web usage scenarios (e.g. social networks, file sharing communities, vir-
tual computing organizations, open software development communities) are rapidly changing
scopes and usages of networking, announcing the era when Internet will result in a collection
of service-oriented, user-centric, large-scale distributed and ubiquitous computing environ-
ments which can evolve and adapt their features not only because of their management staff
decisions, but also in function of the users’ needs and the behaviours of (some of) the items
managed in such environments. Indeed, as pointed out in [11], many networks based on
Internet technologies are experiencing the so-called “network effect”, where an increasing

1

number of on-line services attract increasing numbers of users, attracting further online avail-
ability of information and services. The meaning of the term “on-line service” itself is quickly
changing: only few years agò, we used it to denote just a (single) computing facility offered
by a single host on a network (e.g a server web, an FTP repository, an SSH connection);
now, it is more often employed to refer to a coordinate set of computing activities performed
on different hosts of a network with the scope of realizing a comprehensive and useful task
from the viewpoint of an end-user (user-friendliness here plays a crucial role). Web services
[10] represent particular instance of the above concept (paradigm), where the focus is on
implementation technologies (i.e. web technologies); grid services and cloud services are
other examples, focused at the servicing hardware and software infrastructure, instead. In
any case, we refer to distributed computations which could require the access and/or the
management of computing resources and facilities scattered across a network. The resources
involved in such computations can be both logical and physical, are not application-specific,
and are in general very different in nature; they might be executables, user profiles, devices,
data, cpu cycles, disk space, etc. And a potentially high complex mix of those resources
might have to be managed during a computation.

Ideally, we would rely on architectures that can allow those computations to be efficiently
and securely run in open networking environments, in a seamless and transparent way both
for their providers and consumers. These requirements drive forcibly toward Access control
frameworks (ACF) which are far more open, scalable, dynamic, user-driven and fine-
grained than the ones deployed so far.

1.1 Drawbacks of current ACFs

The huge research and technical efforts which have been developed in the last decade in the
field of distributed systems, culminating in Grids and Clouds deployments, resulted in some
ACFs that can effectively manage very complex policies, scaling well to a huge number of
users and a consistent set of services [1, 2, 4]. However, these systems exhibit one or more
of the following characteristics which, in our opinion, adversely affect their adoption in the
evolution for the Internet sketched in Section 1.

• Enterprise-centricity: nowdays ACFs for distributed computing environments are
targeted to centralized, enterprise-level organizations (e.g.Cloud computing platforms)
or at most a federation of such organizations, like in computational Grids. In a feder-
ated organization settlement, a loosely coupled set of cooperating entities set up cross-
organizational trust allowing one participant organization to directly provide services
to entities registered at another organization member of the underlying federation.
However, there is still a lot of centralism here, since user collaborations are defined
and deployed mostly at the federation level, whilst user-centric, ad-hoc collaborations
are hardly supported.

• Application or organization specificity: actual frameworks are implemented at
the application layer or at the organization layer, as middleware. One of the main mo-
tivation of these approaches is the need of having OS-platform independent systems,
which is a must because of the different OS platforms on the market. However, these
solutions are designed and implemented as service- or environment-oriented framewoks
rather than general-purpose, infrastructural software. This inhibits the convergence
toward worldwide accepted open standards, and results in component solutions that
do not form an integrated infrastructure, undermining global interoperability and ac-
ceptance.

2

• Coarse-grain resource control: Although with significative differences among them,
actual systems are generally not designed to provide the highest fine-grain access con-
trol to resources, and there is often a gap in accessing a resource through these systems
instead of accessing it via the access control monitor built into the application or the
operating system which directly manages it.

Many frameworks, likewise previous generation operating systems, do not properly
separate the identities of resource requesters from their authorizations. This results
in an ”all-or-nothing” and ”context-unaware” policy, in which an access to a given
resource is granted or denied only on the basis of the identity of the resource requester.
Confusing identities with authorizations was a major historical misconception in access
control theory that has adversely affected the evolution of systems for a long time, with
remarkable consequences on many actual implementations.

More advanced systems discriminate between identities and authorizations, resulting
in a much better and flexible control. However, such systems usually realize a trade-
off in matching with the different local access control monitors they have to interact.
Thus,they are usually unable to reach the same level of control which can be achieved
by some new generation applications and operating environments.

1.2 A possible alternative

The root cause of the above adversing features is that nowdays ACFs were designed fo-
cusing on environments built from legacy operating systems and legacy Internet protocols
and services, by just adding ad-hoc, distributed-oriented application software and middle-
ware. This approach has originated by the fact that complex distributed environments are
never constructed from scratch, but are obtained as a coordinated resource sharing among
existing collections of individuals, institutions, and resources. After all, one of the key fac-
tors in the worldwide adoption of the Internet web is that it builds on existing computing
infrastructures.

However, this reasoning fails to catch two other key factors which have made possible
the convergence toward Internet as the global computer network:

1. an infrastructural approach to its design, where the focus has been on the evolv-
ing specification - in a comprehensive international standardization process - of a
set of communications models and technologies, which are platform-independent and
application-unaware;

2. a layered architecture for its implementation, in which a tight interfacing between the
infrastructures at (1) and host operating systems has been realized as OS kernel com-
ponents and userland libraries.

As a result of this approach, standalone operating systems have over time evolved into
networking-enabled platforms which integrate the link, internet and transport layers of the
Internet protocol suite1 in their kernels, offer some core client-side network applications
as APIs (e.g. the client-side of DNS2. Other major information services (e.g. NIS, NIS+)

1A.k.a. (somewhat improperly) TCP/IP suite, a set of IETF standard protocols for communicating
over the Internet, whose basic requirements for host system implementations are described in [14, 15]. The
link, internet and transport layers are described in the first of such documents.

2Domain Name System (DNS), a globally hierarchical and distributed naming service whose client-
server style protocol is an IETF standard [25, 26]. Although DNS is positioned at the application layer in
the TCP/IP stack, DNS clients are actually implemented as the resolver library in all POSIX-compliant
OSes

3

or directory services (e.g. LDAP) are also tightly coupled with some modern operating
systems, because of the relevance these services have played (and, in same cases, - as we are
going to show - will play) for networking and distributed access control.

A design driven by both points (1) and (2) as guideline principles is - in our opinion - the
right way for approaching and successfully getting in the Internet computing era. The latter
is indeed just a next step in the long evolutive roadmap of the Internet; so, why should it
not be driven by the same approach and strategies successfully adopted so far?

In order to solve the resource’s access issues posed by next generation computing environ-
ments we do not need some more gridware, cloudware or whatever else environment-specific
new software to ”glue together” legacy OS’s access control mechanisms at the network layer.
This inevitably results in poorly interoperable, somewhat outdated frameworks.

What we need is - given any operating system - the best, closest matching between its
local access control subsystem and a general-purpose, open-standard access control frame-
work which fits in with the actual set of Internet’s infrastructure technologies and augments
them, in a similar way the DNS did for the first generation Internet.

Conversely than the“legacy software plus ad-hoc middleware” approach, an infrastruc-
tural one - if designed in a modular fashion - can provide for a solution to the access control
problem which does not rely upon specific network topologies or usage scenarios, and will
comply with any future evolution of the Internet.

2 Technologies background

If we look at the core architecture supporting Internet web, then we found that it is just
composed of the following three basic elements3: a set of protocols for raw data transmission
over different (physical and logical) kind of networks, the DNS service, and the Hypertext
transfer protocol (HTTP)4.

Since the Web is what end users are looking at, in the last years HTTP is acting as a main
attractor, a sort of “center of gravity” in the field of networking and distributed computing.
With this trend, which many expert in the field are indicating as the advent of what they call
the Web-computing Era5, it is not strange that nowdays access-control research efforts and
technical developments are almost exclusively focusing on web services and their backend
stack of software, pointing once again to the application layers and forgetting the importance
that operating system security mechanisms play in supporting security at higher levels.

About twelve years agò, researchers at the National Security Agency recognized that “se-
curity efforts suffer from the flawed assumption that adequate security can be provided in
application with the existing security mechanisms of [that time] mainstream operating sys-
tems” [23]. That work urged the need for more advanced security mechanisms in operating
systems, spawning a renewed interest in the field.

From that time, operating systems technology has greatly evolved, and nowdays we dis-
pose on the market of products with very sophisticated protection subsystems, which can

3Of course, the nowdays so-rich web experience would not be possible without a plethora of other protocols
and services; however the truly infrastructural elements are the ones cited here

4An application-layer protocol for distributed, collaborative, hypermedia information systems which at
the present time is a IETF draft standard [6].

5The reader should have noticed that in our referring to next generation distributed computing we have
preferred the term “Internet computing” to “Web-computing”. And indeed, for reasons which should be
more clear as a consequence of the following discussion, we believe like P. Vixie that, though the Web has
changed the rules, “...the Internet was here before the Web and will be here after the Web and is much
larger than the Web...”[34].

4

enforce sinergically different access control policies and offer much more fine-grain access con-
trol to resources than previous systems. Indeed, the majority of general-purpose operating
systems dispose now of mechanisms to enforce a role-based (RBAC) policy over the con-
ventional discretionary access control (DAC) mode. Some systems support mandatory-style
access control (MAC) policies as alternatives to DAC for highly protected environments.
Finally, there are very advanced systems in which a user security context is built not only
on the basis of a set of user-related identifiers, but thanks to an additional set of authoriza-
tions which affect the way applications and processes are run by that user [24]. In these
systems authorizations can be enforced not only through permissions and ownerships of files,
allowing for an unprecedent control over user’s actions and resources.

In the meantime, we have assisted to a strong evolution and deployment of technologies
for the sharing of access control related information over networks, too.

As it should be clear, the previously sketched basic infrastructure of the Internet does
not encompass nor authentication neither authorization. Indeed, Internet was born when
networking was restricted in the context of local area networks (LANs) only, and consisted
basically of remote logins and file transfers. At that time, the usage of Internet itself was
limited to email and a primitive form of what we are now experiencing as “web browsing”.
Authentication information was stored locally, in the systems who managed the resource
under request, or at most in LAN information servers, using NIS (later, although with not
so much success, NIS+ was proposed as the NIS successor); whilst authorization information
was directly coded into file systems, in the form of file access control modes.

Later, the increasing both in number and sophistication of networking applications, and
the simultaneous emerging of database systems, gave rise to application-specific access con-
trol monitors. The main motivation for this approach was decoupling access control to
specific services from that to the operating system itself, a suitable mean to get more secure
and efficient service’s platforms when the hardware costs and the absence of “off-the-shelf”
virtualization technologies make the paradigm “one OS for many applications” the rule of
thumb.

In the meantime, the financial and commercial demand pushed the emerging of interna-
tional open standards for cross-organization authentication and data protection. Large-scale,
remote authentication had indeed became technically possible by asymmetric cryptography
and the introduction of public-key certificates (PKCs) [12], which allow authentication in-
formation to be available and checked through public directory servers and protocols6.

In 1988 was published edition 1st of ITU-T X.509 [16] (formerly CCITT X.509), also
published as ISO/IEC Standard 9594-8, as part of X.500 series of computer networking
standards covering electronic directory services. It defined public key infrastructure (PKI)
as a strict hierarchical system of certification authorities for issuing public-key certificates,
in contrast to the web trust model - already implemented at that time in PGP [37] - where
any one can attest the validity of other’s public key certificates. Although the X.500 system
has never been fully accepted nor implemented, over the last two decades X.509 has been
continuously revised and extended to support the constant increasing demand in identity
management features driven by the evolution of the Internet and its usage scenarios7. In
1997 was issued X.509 edition 3rd [17], which redefined the PKI framework in a more flexible

6A Directory is a map of suitable identifiers (names) with related values, and a Directory service is
a system that stores, organizes and provides access to information in a directory, allowing the look up of
values given a name in a similar way it is realized by using a dictionary.

7The main obstacle in the full adoption of X.500 standard is perhaps the idea that managed entities
must have globally (worldwide) unique public names. As noticed in [5], many enterprises and organizations
consider valuable or even confidential their own collections of directory entries, so they do not intend to
release them to the the world in the form of an X.500 directory sub-tree.

5

way, in order to support other topologies like bridges and meshes, used in some common
communication scenarios, including the web of trust model. This edition also defined the
versions for PKCs and certificate revocation lists (CRL) as they are currently used8.

Basically, PKIs allow for conveying identity based access control decisions outside OS-
or application-enforced security domains. Indeed, the wide adoption of PKIs during this
first decade of Internet computing is because the large majority of actual distributed envi-
ronments rely upon identity-based access control decisions. In these systems PKCs are used
to gain corroborate evidence of the identity of a requester, by checking that she has access
to the private key that corresponds to the public one in the PKC.

However, as already recognized in the context of applications and mainstream OSes,
it was realized that distributed computing scenarios could benefit from advanced access
control policies such as rule-based, role-based, and rank-based ones. These forms of access
control decisions require additional information that cannot normally be included in a PKC.
Although PKCs have optional fields designed to contain authorization information, the life-
time of such information is generally much shorter than the lifetime of the public-private
key pair. Moreover, authorization information is often contex-dependent, whereas authen-
tication information is not.

To overcome this main limitations, edition 4th of X.509 [18] introduced attribute certifi-
cates (AC) and privilege management infrastructures (PMI). An AC is a structure similar
to a PKC, but instead of realizing a binding between a public key and identity information
of the certificate’s holder, it associates such identity information with attributes that may
specify group membership, role, security clearance, or other authorization information. The
AC format allows any additional information to be bound to a PKC by including, in a
digitally signed data structure, a reference back to one specific PKC or to multiple PKCs,
useful when the subject has the same identity in multiple PKCs. Additionally, the AC can
be constructed in such a way that it is only useful at one or more particular contexts or
targets (see Deliverable C for a detailed analysis of these issues).

Summarizing, the research efforts and technological developments observed so far in the
field of access control have resulted in a two-fold achievement, one concerning OS protec-
tion systems and the other directory-based distributed architectures for conveying public
credentials over insecure communication channels with integrity protection. In both cases,
the achievement has derived by realizing that many access control scenarios require a sharp
distinction between authentication and authorization information, conveying and managing
them by mean of different data structures and flows.

However, no tight interoperability is currently provided between the security contexts
which can be enforced, at the local level, through modern OSes and, at the network level,
through directory services. Indeed, until now, directory-based services have usually been
employed to export and manage just basic POSIX-compliant login access information; that
is, usernames and passwords.

3 Problem Statement and project goals

At the heart of this project, named Distributed Security-Oriented Operating Systems
(DS2OS), there is the idea that ACFs suitable for the Internet computing Era have to be
obtained from the confluence of state-of-the-art OS access-control related technologies with
the emerging Internet standards concerning, broadly speaking, information services.

8The IETF’s Public-Key Infrastructure (X.509), or PKIX, working group has adapted the standard
to the more flexible organization of the Internet. In fact, the term X.509 certificate usually refers to the
IETF’s PKIX Certificate and CRL Profile of the X.509 standard, as specified in [3].

6

That fulfil the two factors which in Section 1.2 we recognized as driving forces for the
worldwide deployment of the Internet, and aims to fill the gaps discussed in the previous
section among ACFs at the network and OS layers.

In order to comprehensively illustrate the DS2OS project we need both a precise formu-
lation of the problem it aims to solve, and the way it intends to do that. These issues are
discussed in the following sections.

3.1 DS2OS computing environments

In the following we will consider networked operating systems, briefly called hosts. The term
”networked” has here a specific meaning, referring to the fact that the targeted OSes have
built in all the kernel components and the APIs required for basic TCP/IP internetworking
(datagram and packet transmission, client-side name resolution, and client-side directory
service)9.

We will consider arbitrary sets of such hosts, interconnected by a network of arbitrary
topology. Likewise grid environments [8], we will moreover assume that for such a network:

1. A Resource is any (logical or physical) item which - directly or indirectly (that is,
via an application layer) - falls under the control of the protection subsystem of a
given host in the network. Resources are thus scattered through hosts constituting the
network, in such a way that each resource is managed locally by a given host, being
subjected to authentication and authorization mechanisms and policies which - with
the exception of specific cases - are locally defined and have significance just in the
context of multiple, local trust domains enforced through such hosts.

2. Generally speaking, a Computation is any computing task which can be performed
using a pool of resources and hardware/software facilities of the network. However,
we are specially interested in (truly distributed) computations that, throughout their
lifetimes, are composed of dynamic groups of processes running on different hosts of
the network. Processes can be created remotely and on demand by other processes,
by using different computing schema such as remote invocations, process migration
or cloning. A computation could thus be the result of many processes which run
concurrently and/or sequentially on different hosts, communicate using dynamically
created TCP/IP connections, and dynamically acquire or release resources such as
data, CPU time, devices, and so on.

3. In order to perform seamlessly and trasparently computations as stated at point (2) -
a Global security policy must integrate a heterogeneous collection of locally admin-
istered users and resources in different trust domains. The focus of the global security
policy is on controlling interdomain interactions and the mapping of interdomain op-
erations into local security policies. The integration of the global security policy with
those enforced locally must be such that:

(a) operations that are confined to a single trust domain are subject to local security
policy only;

9The Internet protocol suite has been greatly refined and extended over time in order to overcome some
limitations and encompass new services, and actually composes of more than 200 standard protocols. It
is implemented, although at different extents and refinements, in most operating systems in use today,
including all consumer-targeted systems. What we aim to catch with the previous definition is a minimum
common denominator of protocols allowing for the mutual Internet-style communication and interaction of
a wide spectrum of eterogeneous, network-enabled devices

7

(b) both global and local subjects exist;

(c) all access control decisions are made locally on the basis of the local security
policy.

Conversely than in grids, we do not assume to have a connectivity layer realized in mid-
dleware and common to all the hosts in the network [7] upon which a network-wide ACF
can be built. The only building blocks upon we rely to realize such ACF are the single ACFs
enforced on each host by its own OS, the X.509 directory services infrastructures (PKI and
PMI) and a directory service protocol (LDAP).

In analogy with clouds environments[33], we think of our environment as a megacomputer
- composed by a mix of infrastructural hardware e software, virtualization technologies, web
services, etc. - that can be accessed through any networked host. Differently than in clouds,
however, we do not focus on infrastructure providers, and we assume that resources can be
in many cases shared between users.

What detailed until now ultimately represents both a model and a framework for (dis-
tributed) computations; we will refer to it in the following as DS2OS computing envi-
ronment.

3.2 Principals and their security profiles

According a classic definition given in [28], a principal is any“entity in a computer system to
which authorization is granted; thus the unit of accountability in a computer system”. More
concisely, [31, 27] define a principal as “an entity whose identity can be authenticated”. We
are concerned with networks of computer systems, and we are interested in network-wide
entities which can perform actions and acquire or release resources on multiple hosts in those
networks. Thus we need to refine in some way the above definition. We will denote with the
term Principal any physical entity (a human being, a software, a device) which is uniquely
identifiable in the context of a DS2OS environment and whose identity can be - directly or
indirectly - authenticated on each host of the environment on which it can perform actions
and/or utilize resources.

Principals are therefore global entities which can be related to more than one computer
system. Examples of principals are the (single) entities represented by an individual who
has account profiles on multiple hosts in the environment, or by a software system composed
of different modules distributed among different hosts10.

We will suppose without loss of generality that, given an host, a principal p can have no
more than a single account on it. Let uH(p) be the Username of principal p on host H ,
a platform-dependent-form string which represents the identifying coordinate of the unique
account of p on H . We will denote by aH(p) the authentication token which represents the
validating coordinate for the above account; the access to H as uH(p) is granted only if the
accessing request presented for uH(p) is corroborated in some way by the fact that p ”owns”
aH(p). In the majority of cases, aH(p) is a password, an alphanumerical string which is
supposed to be known only by p. The logical entity of H univocally represented by uH(p)
is called a User of H . In general-purpose operating systems users are generally associated
to one ore more Groups, collective entities that represents set of users which share access
control settings.

An host H associates to any principal p successfully authenticated as u = uH(p), that is
to any of its users, a set I = IH(u) of identifiers plus, possibly, a set A = AH(u) of security

10Multiple, identical copies of the same software must be considered different principals, however.

8

attributes. We will call the joint set

C = CH(p) = CH(u) = IH(u) ∪ AH(u)

the Set of credentials, or concisely the credentials, of user u (or, equivalently, principal p)
in H , since - as we will soon show - C constitutes u’s designated entitlements for services
and computing resources from H . In such way, the binding

p −→ (u, a) −→ C = I ∪ A

adequately catches the intuitive notion of p’s Security profile on computer system H .
In general, both I and A have significance just in the operating environment in which

they were issued, and are platform-dependent data. In Unix-like systems, I consists in the
user identifier (UID) and a bounce of group identifiers (GID). These are integer values used
by the kernel to assign credentials to userland processes and to define file ownership. As
consequence of the authentication process, a user is mapped univocally to a single UID and
to as many GIDs as the groups to which she belongs. Then, each process spawned by that
user inherits her UID and her current primary GID as its credentials to get access to system
resources. Actually, this is true only for processes that are generated by running non set-ID
programs: a set-UID (set-GID) program runs with the UID (GID) of the (group) owner of
the program executable file. The set-ID mechanism was introduced to allow non-sysadmin
users to perform some operations that, although necessary or useful in the context of their
standard login sessions, requires different credentials11. In any case, the UID and GID
inherited by a process are matched against those indicating the owner and the group owner
for any file the process makes an access request for, and access is granted or denied depending
on the permission settings for such owner and group owner (plus the file permission settings
encompassing all users in the system).

That sketched above is the only access control mechanism implemented in legacy oper-
ating systems. Thus, for such systems A is the void set, p’s profile becames:

p −→ (u, a) −→ {UID, GID1, ..., GIDn} ,

and the security context for such profile can be expressed at any time by p’s capability, a list
indicating filenames and p-related file permissions for all the files in H .
Most advanced operating systems provides for sets A filled with special types of credentials,
such as Solaris authorizations, privileges and execution attributes[30]. See Deliverable B for
an overview of these concepts and their implementation.

3.3 Access control in DS2OS environments

As already stated, this project aims to solve the access control problem in DS2OS environ-
ments. That informally consists in defining an ACF which allows for what is established at
point (3) in Section 3.1. In [11], the authors observe that nowdays networks are increasingly
facing with two main scale-related problems:

i) boundary access controllers (as those implemented through perimeter firewalls) cannot
easily enforce fine-grained policies, and became a bottleneck as the level of replication
increases in an attempt to meet increased demand in network bandwith and processing;

11For example, the man utility - a program for accessing the documentation released with any Unix-like
distribution - requires to update some configuration files which are ownen by the ”man” pseudo-user and
must not be modified by any other user

9

ii) the increasing size and complexity strains the ability of administrators to effectively
manage their systems.

On such basis, they argue that access control in modern networks “must became an end-
to-end consideration similar to authentication and confidentiality”, outlining architectural-
level requirements that favor credential-based policy management and the decentralization
of both policy specification and policy enforcement.

With respect to DS2OS computing environments (see Section 3.1), we believe that a
correct reformulation of that general end-to-end principle turns out in the following access
control policy requirements. They are inspired by the guideline principles introduced in
Section 1.2, and are devoted to overcome the limitations illustrated in Section 1.1.

Requirement Set 1 (AC Policy Requirements) An access control policy should be:

AP1 enforced on each host via the host operating system protection mechanisms;

AP2 specified and administered directly by resource owners, in such a way that an overall
(i.e. a network-wide) policy could result from the proper mutual integration of many
locally specified policies; and,

AP3 stored and managed via a distributed information service obtained by integrating host
repositories (files, local databases) with credential-based directory services.

AP1 roots in the circumstance that the resources that have to be managed in our envi-
ronments are not application-specific and ultimately fall under the control of an operating
system. Moreover, an OS’s protection subsystem is the closest layer through which this set of
resources can be accessed and controlled12. Thus AP1 allows for the finest-grained resource
control and, at the same time, gets free of application or organization specificity. Moreover,
it offers the highest (architectural) scalability, since poses policy enforcement points at their
mimimum possible distance from resources.

As observed in [11], “the traditional way of handling scale at the human level has been
decentralization of management and delegation of authority”. AP2 is the utmost incarna-
tion of such paradigm, since applies separation of administration duties at the maximum
possible extent, that of resource owners. Albeit the particular meaning of the term “re-
source owner” is specific of the computing environment being considered, in many cases,
and especially in emerging computing environments, it has to be distinguished by that of
“system administrator”. In many cases, it is more appropriate to consider as resource owner
a service/application or a standard user, instead of a system administrator. Other than ad-
dressing precisely which entity/subsystem manages the resources under consideration, this
allows for an easier application of the least privilege principle.

Both AP1 and AP2 requirements are encompassed by what we called dynamic delega-
tion (see Section 4.1). Informally speaking, dynamic delegation is an access control model
which allows standard users on a given host H to authorize remote users or applications
to use the resources they own as a result of their accounting profiles on H . Dynamic del-
egation represents an extension of direct delegation, which in turn was introduced in grid
environments to support highly-dynamic, ad-hoc workgroups [13].

AP3 concerns directly neither problem (i) nor (ii), but is intended to give some more
insight on how requirements AP1 and AP2 should be realized. It establishes that credential-
based directory services are used to export at the network layer what is of concern for that

12Of course, single database records are not encompassed here; however, they falls under the control of a
database system which, in turn, falls under the control of an operating system.

10

layer of a principal security profile, leaving in local repositories (that is, at the host layer)
what is host-specific. Since a security profile (see Section 3.2) is the joint set of entity au-
thentication coordinates and authorizations, the idea here is to extend to authorizations the
way hostnames and authentication information are resolved in modern networked environ-
ments.
In order to illustrate this, let us consider just the basic case in which a principal p requires
a network service s (i.e. processing by another principal) provided by a remote host H13.
We will assume that s has to check p’s profile on H

p −→ (u, a) −→ CH(p) = CH(u) = IH(u) ∪ AH(u) (1)

for some credentials which cannot be directly desumed by p identity (i.e. they fall in the
set AH(u)). Then, AP3 states that s has to resolve such authorization information starting
from the authorization-related repositories provided and managed by H for the local access-
control policy specification, and then checking some more (optional) directory services for
p authorizations. There is a main difference here w.r.t. hostnames or principal identities
resolution, since in this case the resolution process is incremental in its nature and requires
consistency, too. Suppose that authorization information for p is stored in repositories
R1 and R2. The resulting p authorization profile should be the set of authorizations ai

retrieved from both R1 and R2, but with the constraint that, if ai clashes with aj, then the
authorization rule stored in a local repository takes precedence over the remote one. More
generally, the precedence order of (possibly more than two) authorizazion repositories can
be arranged to reflect the hierarchy security policy domains deployed over a network as a
result of the existence of multiple organizations and their afferences to virtual ones.
This features can be easily implemented, coherently with AP1 and AP2, by assuming that
the repositories of authorization information can be managed through the name service
switch framework. This is indeed the case for our development platform OpenSolaris, and
Deliverables C and D illustrate such implementation.

4 Functional requirements

From Section 3.3 it follows that our solution of the access control problem in DS2OS envi-
ronments results in a ACF that adopts the dynamic delegation access control model, and
makes a combined use of directory services and OS protection mechanisms to enforce that
model in such a way to accomplish requisites AP1-AP3.

In the present project, the implementation of the above ACF is restricted to the case
of the SSH system entry service, as a “proof-of-concept” testbed. The following sections
details about a precise formulation of dynamic delegation, and the functional requirements
involved by our design at various levels.

4.1 Dynamic delegation

Given a networked environment as detailed in Section 3.1, and a host H , we will say that
a principal s has a sponsor profile (or simply is a sponsor) on H if the profile of s on

13That does not represent a loss in generality, since the general case of a computation issued by p which
might consist of different services provided by a set of remote hosts decouples in a number of the above
basic cases, each concerning a single couple “service s at host H”. Indeed, because of AP2 we assumed no
centralized access-control decision points; moreover, resource/service lookup and discovery, process sinchro-
nization and other relevant issues in the field of distributed computations are not of concern from our strictly
“access-control viewpoint”.

11

H (see (1)) includes the credential for allowing other principals g, that have not a regular
account on H , to operate on H with a set of credentials CH(g) such that

IH(g) = {UID(g) = φ(g, UID(s)), GID(g) = GIDG} , AH(g) ⊆ AH(s) ,

where GIDG is a special GID value reserved to guest profiles, and φ is a suitable function
which allows to uniquely determine g given s and UID(g). Principals g are said to have a
guest profile (or simply to be guests) on H (see requirement DD3 below).

Dynamic delegation (DD) is an access control model such that any principal p in
a DS2OS environment - thanks to a single sign-on - is allowed to perform actions and to
run computations on the set {Hi} of hosts composing a such environment according to p’s
sponsor, guest and/or standard profiles on each Hi and the security policies enforced on
those hosts.

It is assumed that:

Requirement Set 2 (Dynamic Delegation Requirements) :

DD1 the identification of a principal p is unique in the context of a DS2OS environment,
possibly encompassing the entire Internet, althought p might have a local identifier
(other than the UID) on some or all the Hi;

DD2 both authentication and authorization of p on Hi could rely on asymmetric-cryptography-
based tokens that are managed through public directory services;

DD3 a guest g on host H is not a regular user of H, in the sense that its profile is given by

g −→ CH(g) = IH(g) ∪ AH(g) . (2)

Expression (2) establishes that g is not supposed to have a password, neither - at least
by default - a username, a shell and a home directory on H. The set I of identifiers for
g is derived at runtime thanks to the function φ and the special GID of value GIDG14.

DD4 a guest g on host H can exercise its sponsorship only for specified periods of time
and/or as a consequence of suitable conditions, as defined by its sponsor s according
to the security policy of H;

DD5 a single user on H can act as sponsor s for different guests gj, and each gj must have
its own separate authorization profile and its own separate running environment;

DD6 a single principal p can be the guest of different sponsors sj on the same host H. In
this case, p has different profiles on H, one for each sj, and these profiles must be kept
separate and not-joinable15.

14Thus, a guest profile on a Unix-like system is not managed through the standard local databases passwd

and shadow (or their remote counterparts), but thanks to the certificates provided in DD2 and the repos-
itories used to specify the sponsor profile. As we shall see in Deliverables C and D, there is however one
main exception: when g is allowed to log in H. In this case, for backward compatibility with the legacy
system entry service workflow, it is advisable for g to have username, shell and home directory, and that
such information is managed - as usual - through passwd

15In case of an entry service, it is allowed that p gets the same home directory and shell. However, ps
set of credentials on H varies with sj and these sets cannot be joined in some way to get a more powerful
profile on H.

12

4.2 Operating system requirements

This project has been carried out using OpenSolaris as OS development and deployment
platform. OpenSolaris implements extended security attributes for users and support a
right-based security policy (see Deliverable B). Both these features are key factors for the
implementation of direct delegation at the OS level, as shown in Deliverable D. Obviously, a
great care has to take in order to assure that the above implementation does not introduce
security flaws or bugs. The requirements at the OS layer can be summarized as follows:

Requirement Set 3 (Operating System Requirements) :

OS1 the target OS must implement user security profiles that allow for the enforcement of
not ID-based credentials. In other words, the set AH in (1) must be not empty;

OS2 the OS databases storing the credentials in AH must be managed through the name
service switch framework;

OS3 the filesystem must support advanced access control modes and customization at the
single user level. Moreover, in case a guest is allowed to have its own home directory,
the system must support virtualization technologies in order to keep separate and under
special control the guest environment from those of standard users;

OS4 the new access control facilities and their implementations must be backward compatible
with any discretionary, role-based or mandatory access control models and security
policies and mechanisms implemented in the target operating system;

OS5 the extended model should neither introduce new architecture security flaws, nor sub-
stantially augment the ”threath-exposition” surface for the access control subsystem.

4.3 Directory service requirements

In this project, we propose Lightweight Directory Access Protocol (LDAP) [36] to realize the
X.509-compliant PKI and PMI that support our environments. LDAP, which was created
to replace DAP directory service protocol, has been object in recent years of extensive
researches and contributions, and is the de-facto standard for storing and querying X.509
PKCs.

Our design introduces a new certificates and LDAP structures in order to support direct
delegation, as described in detail in Deliverable C. The requirements at this layer can be
summarized as follows:

Requirement Set 4 (Directory Service Requirements) :

DS1 a specific attribute certificate is required to manage at the network layer the credentials
stored in AH

DS2 the directory service must implement suitable structures to reflect the existence of guest
and sponsor profiles;

DS3 The authorization information from the local databases and the directory must be in-
tegrated in an incremental and consistent way, as described at the end of Section 3.3.
This requires a special handling during the resolution process performed through the
name service switch framework.

13

4.4 Entry service requirements

Our (prototipal) implementation of an ACF for DS2OS environment is restricted to the
secure shell (SSH) service. A first, PMI-compliant SSH implementation is described in [22].
SSH is an Internet standards track protocol for secure remote login and other secure network
services, which is widely adopted to operate on a remote host through a command-line shell
in a secure way. Indeed, SSH encrypts communication sessions after the mutual authenti-
cation of the client and the server, thus allowing integrity and confidentiality protection for
both user login coordinates, and subsequent transmitted data.

Currently two major versions (SSHv1 and SSHv2) of the protocol exist, but SSHv1 has
some security weaknesses and its support in modern implementations is provided only to
help sites with existing SSHv1 clients and servers to transition to SSHv2. For that reason,
we will refer to SSHv2 only.

SSH host-based authentication relies on asymmetric cryptography, user authentication
can either use it optionally, and both are designed to support public-key certificates. Nev-
ertheless, the protocol makes no assumptions for an infrastructure or means for distributing
the public keys of hosts, allowing communication without prior communication keys or cer-
tification, both from the server-side and the client-side16.

Apart from that, all the interactions provided by SSH are possible only if the requester
(i.e., the client agent) has a regular account on the remote host which offers the service,
or otherwise she knows the authentication credentials of another user on that host. This
is a severe limitation, which is incompatible even with grid basic functional requirements,
leading the Globus designers to realize a grid-aware SSH server, that is supporting Globus
proxy-certificates [32].

In our design, we required the following features for the SSH service and, more generally,
for any other system entry service:

Requirement Set 5 (Entry Service Requirements) Given a principal p and a host H

with an entry service ǫ, then:

ES1 p can log in H through ǫ if p has been granted a suitable guest profile on H;

ES2 its sponsor s entitles p to get a complete operating environment (e.g. username, home
directory, shell, credentials, environment variables, etc.) in such a way to satisfy, in
particular, requirements DD3 and OS3.

16This choice was made with the consciousness that it exposes to Man-in-the-Middle attacks, but in order
to make the protocol much more usable during the transition time until a widely deployed PKI will be
available on the Internet [35].

14

References

[1] Chadwick D.W., Otenko O.: The Permis X.509 Role Based Privilege Management
Infrastructure. Future Gener. Comput. Syst. 19 (2003).

[2] Chadwick D.W.: Authorization in Grid Computing. Information Security Technical
Report 10 (2005).

[3] Cooper D. et al.: Internet X.509 Public Key Infrastructure Certificate and Certificate
Revocation List (CRL) Profile, RFC 5280 (2008).

[4] DACS Distributed Access Control System http://dacs.dss.ca/

[5] Ellison C. et al.: SPKI certificate theory, RFC 2693 (1999).

[6] Fielding R. et al.: Hypertext Transfer Protocol - HTTP/1.1, RFC 2616 (1999).

[7] Foster I. et al.: The Anatomy of the Grid, J. Supercomputer Applications (2001).

[8] Foster I. et al.: A Security Architecture for Computational Grids, Proceedings of the
5th ACM Conference on Computer and Communication Security (2003).

[9] Globus Toolkit 4.2.1 Security Documentation
http://www.globus.org/toolkit/docs/4.2/4.2.1/security/#security

[10] Gunzer H., Introduction to Web Services, Borland white paper (2002).
http://archive.devx.com/javasr/whitepapers/borland/12728JB6webservwp.pdf

[11] Keromytis A.D., Smith J.M.: Requirements for Scalable Access Control and Security
Management Architectures, ACM Trans. on Internet Technology, vol. 7, n. 2 (2007).

[12] Konfelder, L.M.: Towards a Practical Public Key Cryptosystem., MIT BS Thesis (1978).

[13] Lorch M. , D. Kafura: Supporting Secure ad hoc User Collaborations in Grid En-
vironments, Grid Computing - GRID 2002 3rd International Workshop, LNCS 2536
(2002)

[14] Internet Engineering Task Force NWG: Requirements for Internet Hosts - Communi-
cation Layers, RFC 1122 (1989).

[15] Internet Engineering Task Force NWG: Requirements for Internet Hosts - Application
and Support, RFC 1123 (1989).

[16] International Telecommunication Union: The Directory - Authentication Framework.
ITU-T Rec. X.509 (1988).

[17] International Telecommunication Union: The Directory - Authentication Framework.
ITU-T Rec. X.509 (1997).

[18] International Telecommunication Union: The Directory - Authentication Framework.
ITU-T Rec. X.509 (2001).

[19] International Telecommunication Union: The Directory - Authentication Framework.
ITU-T Rec. X.509 (2005).

[20] International Telecommunication Union: Security Frameworks for Open Systems - Ac-
cess Control ITU-T Rec. X.812 (1995).

15

http://dacs.dss.ca/
http://www.globus.org/toolkit/docs/4.2/4.2.1/security/#security
http://archive.devx.com/javasr/whitepapers/borland/12728JB6webservwp.pdf

[21] Laccetti G., Schmid G.: A Framework Model for Grid Security, Future Gener. Comput.
Syst. 23(2007)

[22] Laccetti G., Schmid G.: A PMI-Aware Extension for the SSH Service, Lec. Not. Comp.
Sci. 4967 (2008)

[23] Loscocco P. A. et al.: The Inevitability of Failure: The Flawed Assumption of Security
in Modern Computing Environments. Proc. of the 21st National Information Systems
Security Conference (1998)

[24] Mauro J., McDougall R.: Solaris Internals (2nd ed.), Sun Microsystem Press (2005)

[25] Mockapetris P.: DOMAIN NAMES - CONCEPTS AND FACILITIES, RFC 1034
(1987)

[26] Mockapetris P.: DOMAIN NAMES - IMPLEMENTATION AND SPECIFICATION,
RFC 1035 (1987)

[27] National Institute of Standards: Glossary of Key Information Security Terms, 1st Rev.
(2010)

[28] Saltzer J., Schroeder M.: The Protection of Information in Computer Systems, Pro-
ceedings of the IEEE (1975).

[29] Samar V., C. Lai: Making Login Services Independent of Authentication Technologies,
Proceedings of the SunSoft Developers Conference (1996).

[30] Sun Microsystems Security Engineers: Solaris 10 Security Essentials, Sun Microsystem
Press (2009).

[31] U.S. Dept. of Commerce: FIPS Pubs 196 - Entity Authentication Using Publi Key
Cryptography (1997).

[32] Tuecke S. et al.: Internet X.509 Public-Key Infrastructure (PKI) Proxy Certificate
Profile, RFC 3820 (2004).

[33] Vaquero, L. M. et al.: A Break in the Clouds: Toward a Cloud Definition, ACM
SIGCOMM (2009).

[34] Vixie P.: What DNS Is Not, Communications of the ACM col. 52 n. 12 (2009).

[35] Ylonen T.: The Secure Shell (SSH) Protocol Architecture. RFC 4251 (2006).

[36] Zeilenga K.: Lightweight Directory Access Protocol (LDAP) Schema Definitions for
X.509 Certificates RFC 4523 (2006).

[37] Zimmermann P.R.: The Official PGP User’s Guide (1995).

16

