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Abstract

We present a comparative study of parallel Schwarz preconditioners in the solu-
tion of linear systems arising in a Large Eddy Simulation (LES) procedure for
turbulent plane channel flows. This procedure applies a time-splitting technique
to suitably filtered Navier-Stokes equations, in order to decouple the continuity
and momentum equations, and uses a semi-implicit scheme for time integration
and finite volumes for space discretization. This approach requires the solution
of four sparse linear systems at each time step, which accounts for a large part
of the overall simulation and hence is a crucial task in the whole procedure.
Several preconditioners are applied in the simulation of a reference test case for
the LES community, using discretization grids of different sizes, with the aim
of analysing the effects of different algorithmic choices defining the precondi-
tioners, and identifying the most effective ones for the selected problem. The
preconditioners, coupled with the GMRES method, are run within SParC-LES,
a recently developed LES code based on the PSBLAS and MLD2P4 libraries
for parallel sparse matrix computations and preconditioning.

Keywords: Schwarz Preconditioners, Large Eddy Simulation, Parallel
Software.
2010 MSC: 65F08, 65Y05, 76F65

1. Introduction

Large Eddy Simulation (LES) is a widely used approach for detailed study
of turbulent flows in small/medium-scale applications. Although it has a lower
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computational cost than Direct Numerical Simulation (DNS), its application to
realistic flows remains a computationally intensive procedure. In this work we
focus on large and sparse linear systems arising in a LES procedure for turbulent
wall-bounded flows, and analyse the performance of parallel Schwarz precondi-
tioners in solving these systems by GMRES [1]. The linear systems stem from
the application of a time-splitting technique to suitably filtered Navier-Stokes
equations, to decouple the continuity and momentum equations, and from a
finite-volume discretization of the resulting equations (see the next section for
details). Their solution accounts for a significant part of the overall computa-
tional effort, thus the use of efficient preconditioners is critical for the efficiency
of the overall simulation.

In our analysis we use the preconditioners implemented in the Multilevel
Domain Decomposition Parallel Preconditioners Package based on PSBLAS
(MLD2P4) [2], coupled with the GMRES solver from the Parallel Sparse BLAS
(PSBLAS) library [3]. The solution of the systems is performed within SParC-
LES [4], a parallel code recently developed for the simulation of turbulent chan-
nel flows, which is run on a classical test case used as benchmark in the Italian
LES community [5]. This study differs from previous work in [6, 7] because it
provides a more detailed analysis of several preconditioners for all the systems
arising in the LES procedure, applied to a widely used reference test case. It is
also worth noting that the results discussed in this paper guided our choice of
the preconditioners in a complete simuation of the selected test case with the
SParC-LES code (see [4]).

The paper is organized as follows. In Section 2 we briefly outline the LES
approach implemented in SParC-LES, with the aim of introducing the above-
mentioned linear systems. In Section 3 we give a very brief overview of the
preconditioners implemented in MLD2P4. Finally, in Section 4 we present our
analysis of the preconditioners. We also provide some conclusions, in Section 5.

2. Sparse linear systems in the LES of turbulent channel flows

We consider the approach proposed in [8, 9] for simulating an incompress-
ible and homothermal flow in a plane channel. The LES governing equations
are obtained by applying a top-hat filter coupled with a differential deconvo-
lution operator to the Navier-Stokes (N-S) equations in non-dimensional weak
conservation form. Periodic boundary conditions are prescribed in the stream-
wise (x) and spanwise (z) directions, and no-slip conditions on the walls (y).
The numerical solution of the filtered N-S equations is based on a time-splitting
technique, using an approximate projection method, to decouple the continuity
equation from the momentum equation. Thus, at the n-th time step, the un-
known velocity field ṽn is computed through the following predictor-corrector
formula:

ṽn = v∗ −∆t∇φ,

where v∗ is an intermediate velocity field, ∆t is the time step, and φ is a suitable
scalar field.
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The intermediate velocity v∗ is computed by solving a modified momentum
equation, where the pressure term is neglected, with Dirichlet boundary condi-
tions at the walls. By appling a second-order Adams-Bashforth/Crank-Nicolson
semi-implicit scheme, the following equation is obtained:(

A−1
x −

∆t

2Re
D2

)
v∗ =

(
A−1

x +
∆t

2Re
D2

)
ṽn−1+

∆t

2

(
3

(
1

Re
(D1 +D3)ṽn−1 + fn−1

conv

)
−
(

1

Re
(D1 +D3)ṽn−2 + fn−2

conv

))
,

(1)
where Ax is the differential deconvolution operator, D1, D2 and D3 are suitable
diffusion operators, fconv is the so-called convective flux, Re is the Reynolds
number, and the superscripts n−1 and n−2 indicate that a quantity is computed
at the (n− 1)-th and (n− 2)-th time steps, respectively.

The scalar field φ is obtained by solving the following Poisson-like equation:

(D1 +D2 +D3)φ =
1

∆t |Ω (x)|

∫
∂Ω(x)

v∗ · n dS , (2)

where Ω(x) is a finite volume contained into the region of the flow and n is the
outward-oriented unit vector normal to ∂Ω(x). Neumann boundary conditions
are prescribed in the wall-normal direction, which satisfy the compatibility con-
ditions and hence ensure the existence of a solution that is unique up to an
additive constant. Note that (2) is also known as pressure equation, since ∇φ
provides an O(∆t) approximation of the pressure gradient.

The spatial discretization of the equations is obtained by using a structured
Cartesian grid, with uniform spacings in the streamwise and spanwise directions,
where the flow is assumed to be homogeneous, and non-uniform grid spacing
with refinement near the walls in the y direction, to suitably describe the bound-
ary layer. The equations are discretized by using a finite volume method, with
flow variables co-located at the centres of the control volumes.

In equation (1), a third-order multidimensional upwind scheme is used for the
convective fluxes, and a classical second-order central scheme for the diffusive
ones; a fourth-order central scheme is applied for the discretization of the inverse
deconvolution operator. The discrete deconvolved momentum equation consists
of three linear systems:

Avv
∗
r = wr, r = 1, 2, 3, (3)

where vr is the discrete approximation of the component of v∗ along the r-th
coordinate axis. Henceforth, these systems are referred to as velocity systems.
The linear equation corresponding to a grid point (i, j, k) that is two cells away
from the boundary of the computational domain takes the following form:
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ρj(v
∗
r )i,j,k +σ ( (v∗r )i−1,j,k + (v∗r )i+1,j,k + (v∗r )i,j,k−1 + (v∗r )i,j,k+1 )

+ τ ((v∗r )i−2,j,k + (v∗r )i+2,j,k + (v∗r )i,j,k−2 + (v∗r )i,j,k+2 )

+ ρj−2(v∗r )i,j−2,k + ρj−1(v∗r )i,j−1,k + ρj+1(v∗r )i,j+1,k + ρj+2(v∗r )i,j+2,k

= (wr)i,j,k,

where the coefficients σ and τ are independent of (i, j, k), and the coefficient
ρj+s (s = −2,−1, 1, 2) depends on j as well as on the Reynolds number. Some
changes are required in the equations corresponding to the remaining grid cells.
The matrix Av is unsymmetric, but has a symmetric sparsity pattern, with 13
nonadjacent nonzero diagonals; it is diagonally dominant and well conditioned.
Its dimension is equal to the total numer of grid cells. Furthermore, Av does
not depend on the time step, therefore it can be computed just once, at the
beginning of the LES procedure. Because of the features of Av, we expect that
GMRES with a simple preconditioner is very effective on (3).

Equation (2) is discretized by using a classical second-order central scheme,
obtaining a linear system

Apϕ = g, (4)

where ϕ denotes the discrete approximation of φ. In the following, this system
is called pressure system. As in the previous case, Ap has dimension equal to the
number of grid cells, is unsymmetrix, but with symmetric sparsity pattern, and
is independent of the time step. Furthermore, it has at most seven entries per
row, distributed over seven nonadjacent diagonals plus four diagonals arising
from the periodicity in the x and z directions. Ap is singular, but its null
space and range space have trivial intersection, so the GMRES method can
compute a solution of (4) before a breakdown occurs [10]. The linear equation
corresponding to the the grid cell (i, j, k) can be written as

αjφi,j,k + β (φi+1,j,k + φi−1,j,k) + γ (φi,j,k+1 + φi,j,k−1)

+ δjφi,j+1,k + ηjφi,j−1,k = gi,j,k,

where β and γ are constant, and αj , δj and ηj depend on the cell grid spacing
in the y direction. This equation is suitably modified near the boundaries to
accomplish the non-homogeneous Neumann conditions; obvious modifications
of the indices i and k are also applied to take into account the periodicity in the
streamwise and spanwise directions. Taking into account that system (4) arises
from the discretization of an elliptic equation, we expect that multilevel Schwarz
preconditioners, coupled with GMRES, are effective in its solution. However,
several algorithmic choices must be done to choose a specific preconditioner,
with the aim of getting the best tradeoff between effectivenes and parallel per-
formance.

For further details on the LES model and its discretization we refer to [8, 9].
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3. Algebraic one-level and multilevel Schwarz preconditioners

We provide a short description of one-level and multilevel Schwarz precon-
ditioners, to better understand the comparative analysis performed in the next
section. We consider algebraic preconditioners, which are built by using infor-
mation coming from the matrix to be preconditioned, but do not assume any
specific knowledge of the discretization grid. This makes the implementation
of the preconditioners independent of a particular application, thus providing
general and flexible tools; furthemore, on “standard” elliptic test problems, the
algebraic preconditioners are able to achieve results close to that of geometric
methods, which explicitly use information from the discretization of the prob-
lem.

Roughly speaking, one-level Schwarz preconditioners are domain decompo-
sition methods based on the idea of dividing into submatrices the matrix A to
be preconditioned, solving a linear system involving each submatrix, and com-
bining the local solutions for building a preconditioner for A. Among them,
we consider the additive Schwarz (AS) preconditioners, which are well suited to
parallel computation. In this case, the number of submatrices usually matches
the number of available processing units. The submatrices usually overlap, i.e.,
they have some common rows; the overlap level is defined recursively, by using
the adjacency graph of A. More precisely, a submatrix Aδi with overlap δ is
obtained by extending a submatrix Aδ−1

i with the entries that are adjacent to
Aδ−1
i in the sense of the graph of A; the overlap 0 indicates that the submatrices

do not overlap. The well-known block-Jacobi preconditioner is a special case of
the AS preconditioners, corresponding to the overlap 0. Some variants of the
AS methods have been developed; the most effective one in terms of both con-
vergence behaviour and parallel performance is the so-called restricted additive
Schwarz (RAS) [11, 12]. The theory states that the effectiveness of the precon-
ditioners generally improves as the overlap increases; on the other hand, larger
overlaps require more data movements on parallel computers. Unfortunately,
the convergence rate of iterative solvers coupled with AS preconditioners dete-
riorates as the number of submatrices increases, and a coarse-level correction
must be added to introduce a global coupling such that the number of iterations
is bounded independently of the submatrices (see, e.g., [13]).

The recursive application of AS preconditioners and coarse-level corrections
generates multilevel Schwarz preconditioners. In other words, these precon-
ditioners are obtained by applying basic Schwarz methods to a hierarchy of
matrices that represent the matrix A in increasingly coarser spaces, and by
combining the contributions coming from each space. In this context, the one-
level Schwarz preconditioners applied to each matrix of the hierarchy play the
role of smoothers, as in the multigrid methods.

Here we refer to the multilevel Schwarz preconditioners implemented in the
MLD2P4 package [2]. In this case, the hierarchy of coarser matrices is built by
using the smoothed aggregation technique [14], briefly described next. Given
the set Ωl = {1, 2, . . . , nl} of row (column) indices of the matrix Al at a certain
level l of the hierarchy, the smoothed aggregation generates a coarser index
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set Ωl+1 = {1, 2, . . . , nl+1} by suitably grouping strongly coupled indices into
disjoint subsets called aggregates. Two indices i, j ∈ Ωl are considered strongly
coupled if ∣∣alij∣∣ ≥ ε√∣∣aliialjj∣∣,
where ε > 0 is a given threshold. The first matrix of the hierachy is A1 = A,
which is called the finest matrix. In MLD2P4, a parallel decoupled aggregation
is implemented, where each processor generates coarser index spaces by using
only the local indices assigned to it. This approach has the advantage of being
embarrassingly parallel, but the quality and the dimension of the resulting coarse
matrices are dependent on the initial data distribution and on the number of
processors. Work is in progress for developing new aggregation schemes to be
included in MLD2P4 with the aim of overcoming the above limitation [15]. Once

the coarse index set at level l + 1 has been built, a tentative prolongator P̃ l ∈
<nl×nl+1 is constructed, where each column identifies an aggregate. Generally
P̃ k is defined as a piecewise constant interpolation operator whose range includes
the space spanned by the vector of all ones. A damped Jacobi smoother is
applied to P̃ l to obtain the actual prolongator P l. The coarse matrix Al+1 is
built by using the Galerkin approach, i.e.,

Al+1 = RlAlP l,

where Rl = (P l)T . Convergence results concerning multilevel methods based on
the previous aggregation strategy confirm the effectiveness of this approach for
symmetric positive definite matrices [16]. A Petrov-Galerkin generalization of
the above smoothed aggregation algorithm is also available in MLD2P4. This
technique was proposed in [17] with the aim of achieving the effectiveness of the
symmetric positive definite case in the case of highly nonsymmetric systems,
such as those arising in advection-dominated flows.

Different combinations of the AS smoothers with the coarse matrices and
relevant transfer operators may be considered, resulting in different multilevel
preconditioners. A discussion on this issue is beyond the scope of this paper;
for details the reader is referred to [13]. To give an example, in Fig. 1 we report
the algorithm for the application of a V-cycle preconditioner to the system
Alul = bl. Here L corresponds to the coarsest level and MAS is a one-level AS
preconditioner. This is the algorithm used in the experiments discussed in the
next section.

A key issue to achieve efficient parallel multilevel Schwarz preconditioners is
finding a suitable combination of the number of levels with the coarsest system
solver, for the problem and the machine under consideration. In particular, a
tradeoff between the accuracy and cost of the coarsest-level correction must be
found to achieve a significant time reduction; the cost for the application of the
AS smoother must be also taken into account.

Many variants of multilevel Schwarz preconditioners are available in MLD2P4,
as explained in [18]. The simple Jacobi and Gauss-Seidel methods are also pro-
vided as smoothers and coarsest-level solvers.
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V-cycle
(
l, Al, bl, ul

)
if (l 6= L) then

ul = ul +M l
AS

(
bl −Alul

)
bl+1 = Rl+1

(
bl −Alul

)
ul+1 =V-cycle

(
l + 1, Al+1, bl+1, 0

)
ul = ul + P l+1ul+1

ul = ul +M l
AS

(
bl −Alul

)
else

ul =
(
Al
)−1

bl

endif

return ul

Figure 1: V-cycle algorithm.

4. Performance analysis

We analyse the performance of parallel preconditioners from the MLD2P4
library, coupled with the GMRES solver implemented in PSBLAS, in the sim-
ulation of a turbulent flow in a plane channel at Reτ = 590. This is a classical
test case for wall-bounded flows, for which DNS data are also available [19].
The height of the channel is 2δ, while the streamwise and spanwise lengths
are 2πδ and πδ, respectively; these lengths are made non-dimensional by using
the channel half-width δ. The turbulent flow, assumed to be periodic along x
and y, is sustained in the x direction by a forcing pressure gradient, which is
kept constant; an initial parabolic velocity profile with a superimposed Gaussian
perturbation field is assigned along the streamwise direction.

This problem has been discretized using the two Cartesian grids proposed
in [5] as reference grids for large-eddy simulations of the selected test problem.
Both grids have Nx = Nz = 64 equally spaced nodes in the streamwise and
spanwise directions, corresponding (approximately) to the grid spacings ∆x =
0.098 and ∆z = 0.049; they use a different number of nodes, Ny, in the wall-
normal direction, distributed according to a trigonometric stretching law. For
one of the grids, named Grid 1, Ny = 32 and the grid spacing varies from
∆ymin = 0.0025 to ∆ymax = 0.1, so that the boundary layer is not resolved. For
the other grid, named Grid 2, Ny = 100, ∆ymin = 0.00025 and ∆ymax = 0.03,
thus allowing to resolve the boundary layer. The corresponding dimensions of
the matrices of the velocity and pressure systems are N = 126976 for Grid 1,
and N = 405504 for Grid 2. A third grid (Grid 3), with Ny defined as in
Grid 2 and Nx = Nz = 100 has been also considered to better analyse the
performance of the preconditioners as the size of the matrix increases. In this
case N = 990000. The time step used in the simulation is ∆t = 10−5. The grids
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have been partitioned according to a 3D block decomposition; each subgrid
has been assigned to a process in a virtual 3D Cartesian topology, where each
process matches an available processor. In all the tests, only 1000 time steps
have been considered, because we have previously observed that the behaviour
of the linear solvers in this time interval is representative of the behaviour in a
complete simulation, which requires about 107 time steps.

For each type of system, GMRES has been coupled with different precon-
ditioners, chosen according to the characteristics of the system itself (actually,
restarted GMRES, with restarting parameter equal to 30, has been applied, but
the number of iterations is generally lower than 30). A reduction of the 2-norm
of the residual by a factor of 10−7 has been used as stopping criterion. For each
velocity or pressure system, the solution obtained at the previous time step has
been chosen as starting guess, except at the first time step where the zero vector
has been considered.

All the experiments have been carried out on a HP XC 6000 Linux cluster
with Intel Itanium Madison bi-processor nodes, operated by the Naples branch
of ICAR-CNR, using from 1 to 64 processors. This machine has been equipped
with PSBLAS 2.4.0, MLD2P4 1.2.1., HP MPI 2.01, and the GNU 4.6.1 Fortran
compiler.

4.1. Preconditioners for the velocity systems

GMRES has been applied to the velocity systems with the simplest Schwarz
preconditioner, i.e. block-Jacobi, as well as with the Jacobi (i.e., diagonal) pre-
conditioner and without any preconditioner. The ILU(0) factorization has been
applied to the blocks in the block-Jacobi method. Other preconditioners have
not been tested because the matrix of the velocity systems is well conditioned
and diagonally dominant.

The results obtained on Grid 1 and Grid 2 are shown in Tab. 1. For
all the runs we report the mean time (in seconds) for solving a single velocity
system and, in brackets, the average number of iterations, rounded to the nearest
integer. The time for building the Jacobi and block-Jacobi preconditioners is
neglected, since the matrix of the velocity systems does not change during the
whole simulation and hence the preconditioner must be built only once. For
both grids we see that the number of iterations with no preconditioner is small
and no gain is obtained by using the Jacobi preconditioner (surprisingly, the
latter produces an increase of 1 in the mean number of iterations). As expected,
a reduction of the iterations is achieved with the block-Jacobi preconditioner;
nevertheless, the smallest execution time is obtained without preconditioner,
except on 1 and 2 processors (on 1 processor the preconditioner is ILU(0)).
However the execution times corresponding to the three cases get closer as the
number of processors increase.

Fig. 2 shows the speedups in the solution of the velocity systems, computed
by using the mean execution time. As expected, the best speedups are obtained
with no preconditioner and with the Jacobi one; on 64 processsors, they are
about 30 for Grid 1, and more than 41 for Grid 2. On 64 processors, the
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Grid 1

NP NOPREC JAC BJAC

1 0.742 (10) 0.814 (11) 0.427 (4)
2 0.392 (10) 0.423 (11) 0.339 (5)
4 0.197 (10) 0.211 (11) 0.208 (6)
8 0.104 (10) 0.111 (11) 0.127 (7)
16 0.063 (10) 0.067 (11) 0.070 (7)
32 0.035 (10) 0.037 (11) 0.038 (7)
64 0.025 (10) 0.027 (11) 0.025 (7)

Grid 2

NP NOPREC JAC BJAC

1 2.365 (9) 2.572 (10) 1.483 (4)
2 1.222 (9) 1.312 (10) 1.102 (6)
4 0.673 (9) 0.723 (10) 0.678 (6)
8 0.324 (9) 0.357 (10) 0.394 (7)
16 0.172 (9) 0.183 (10) 0.204 (7)
32 0.102 (9) 0.108 (10) 0.116 (7)
64 0.057 (9) 0.061 (10) 0.064 (7)

Table 1: Solution of the velocity systems: mean execution times and iterations (in brackets)
on Grid 1 (top) and Grid 2 (bottom).

block-Jacobi preconditioner achieves a speedup of 17 on Grid 1 and of 23 on
Grid 2. As expected, the strong scalability improves with the size of the grid.

The results on Grid 3 show about the same behaviour, therefore we do not
report them for the sake of brevity. We can conclude that it is not worth using
more “sophisticated” preconditioners on the velocity systems, and that GMRES
with no preconditioner is generally the best choice on the available machine.

4.2. Preconditioners for the pressure systems

As observed in Section 2, multilevel Schwarz preconditioners are a natu-
ral choice for the pressure systems; for comparison purposes, we also consider
one-level AS preconditioners. We note that, by varying algorithmic parame-
ters, several preconditioners with different performances can be obtained. The
results presented here are aimed at identifying the best tradeoff between the
effectiveness and the (strong) scalability of the preconditioner for the problem
under consideration.

Among the one-level AS preconditioners, we consider RAS with overlap 0, 1
and 2 and the incomplete LU factorization with no fill-in (ILU(0)) to the local
systems arising in its application. In the following, we use RAS(n) to denote
RAS with overlap n. Concerning the multilevel preconditioners, we discuss the
results obtained with the two- and three-level V-cycles, using 1 block-Jacobi
sweep as pre-/post smoother, and four Jacobi or block-Jacobi sweeps, as well
as the ILU(0) factorization, to (approximately) solve the coarsest-level system.
The coarsest matrix is distributed among the processors when the Jacobi meth-
ods are used, otherwise it is replicated on each processor. ILU(0) is applied
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Figure 2: Solution of the velocity systems: speedups on Grid 1 (top) and Grid 2 (bottom).

to the blocks within the block-Jacobi sweeps. Furthermore, the threshold in
the coarsening algorithm is set to 10−2, to take into account the anisotropy
of the grids in the wall-normal direction. By numerical experiments we found
that using more than 3 levels does not improve the overall performance of the
preconditioners on our problems, therefore we do not show the results obtained
with a larger number of levels.

In the following, the multilevel preconditioners are denoted by mLDPJ,
mLDBJ and mLRIF, where mL indicates that m levels are used, D or R in-
dicates that the coarsest matrix is distributed or replicated, and BJ, PJ and
IF denote the Jacobi (also called point-Jacobi), block-Jacobi and incomplete
factorization methods used at the coarsest level, respectively.

In Tab. 2 and 3 we report, for the three grids, the mean time (in seconds),
and the corresponding average number of iterations, for solving a single pressure
system with RAS and with the two-level and three-level preconditioners. In the
multilevel case, we also report the size of the coarsest matrix. Note that RAS(0),
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Grid 1
NP RAS(0) RAS(1) RAS(2)

1 1.135 (13) 1.135 (13) 1.135 (13)
2 0.735 (17) 0.788 (17) 0.813 (17)
4 0.376 (18) 0.387 (17) 0.410 (17)
8 0.203 (18) 0.209 (17) 0.227 (17)
16 0.135 (22) 0.142 (20) 0.153 (20)
32 0.069 (21) 0.073 (19) 0.085 (19)
64 0.048 (22) 0.052 (19) 0.064 (19)

Grid 2
NP RAS(0) RAS(1) RAS(2)

1 3.703 (12) 3.703 (12) 3.703 (12)
2 2.046 (13) 2.119 (13) 2.085 (12)
4 1.221 (15) 1.286 (14) 1.299 (14)
8 0.570 (16) 0.626 (15) 0.665 (15)
16 0.315 (18) 0.335 (16) 0.353 (16)
32 0.185 (19) 0.198 (17) 0.216 (17)
64 0.115 (21) 0.124 (19) 0.141 (19)

Grid 3
NP RAS(0) RAS(1) RAS(2)

1 8.808 (12) 8.808 (12) 8.808 (12)
2 6.027 (15) 6.469 (15) 6.612 (15)
4 3.230 (16) 3.463 (15) 3.519 (15)
8 1.909 (18) 2.050 (17) 2.102 (17)
16 1.076 (20) 1.114 (19) 1.188 (19)
32 0.492 (20) 0.570 (19) 0.584 (19)
64 0.266 (22) 0.296 (20) 0.332 (20)

Table 2: Solution of the pressure systems: mean execution times and iterations (in brackets)
with RAS on Grid 1 (top), Grid 2 (middle) and Grid 3 (bottom).

RAS(1) and RAS(2) are the same preconditioner on one processor; however, we
show the corresponding data three times, for ease of readability. The same
observation applies to 2LDBJ and 2LRIF, and to 3LDBJ and 3LRIF.

We see that, among the RAS variants, RAS(0) (i.e., block-Jacobi) is the
most efficient preconditioner. The slight reduction of the number of iterations
obtained with RAS(1) and RAS(2) on more than two processors is not suffi-
cient to get execution times smaller than those achieved with RAS(0). We note
that a few more iterations are required for Grid 1 with respect to Grid 2
and, generally, Grid 3. This can be explained by considering the differences in
the pressure matrices introduced by the discretization along the wall-normal di-
rection. As expected, the two-level and three-level preconditioners significantly
reduce the number of iterations with respect to RAS. In terms of iterations they
show about the same behaviour on the three grids; a slight increase of the num-
ber of iterations can be observed as the number of processors grows, which is
due to the use of an inexact solver at the coarsest level. Generally, the most effi-
cient multilevel preconditioners are 3LDBJ and 2LDBJ, where the best tradeoff
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Grid 1
NP C-size 2LDPJ 2LDBJ 2LRIF C-size 3LDPJ 3LDBJ 3LRIF

1 10368 1.309 (5) 1.127 (4) 1.127 (4) 338 1.099 (4) 1.067 (4) 1.067 (4)
2 9755 0.816 (6) 0.672 (5) 0.803 (5) 388 0.609 (4) 0.599 (4) 0.605 (4)
4 10048 0.409 (6) 0.334 (5) 0.526 (5) 736 0.320 (4) 0.316 (4) 0.318 (4)
8 10128 0.215 (6) 0.186 (5) 0.426 (5) 868 0.177 (5) 0.179 (5) 0.187 (5)
16 10232 0.137 (8) 0.108 (6) 0.395 (6) 968 0.107 (5) 0.104 (5) 0.112 (5)
32 10288 0.078 (7) 0.063 (6) 0.359 (6) 1280 0.070 (5) 0.069 (5) 0.076 (5)
64 10560 0.066 (7) 0.054 (6) 0.381 (6) 1904 0.074 (5) 0.073 (5) 0.075 (5)

Grid 2
NP C-size 2LDPJ 2LDBJ 2LRIF C-size 3LDPJ 3LDBJ 3LRIF

1 48108 4.253 (5) 3.771 (4) 3.771 (4) 1530 3.523 (4) 3.509 (4) 3.509 (4)
2 48325 2.237 (5) 2.111 (5) 2.479 (5) 1635 2.090 (4) 2.090 (4) 2.101 (4)
4 53138 1.337 (6) 1.187 (5) 1.847 (5) 2306 1.152 (4) 1.117 (4) 1.199 (4)
8 53632 0.738 (6) 0.630 (5) 1.474 (5) 2652 0.606 (5) 0.596 (4) 0.711 (4)
16 53820 0.402 (7) 0.362 (6) 1.384 (6) 4368 0.379 (4) 0.377 (5) 0.519 (5)
32 51640 0.236 (7) 0.202 (6) 1.351 (6) 3344 0.211 (4) 0.209 (5) 0.337 (5)
64 52752 0.148 (8) 0.127 (6) 1.383 (6) 4016 0.142 (4) 0.138 (5) 0.296 (5)

Grid 3
NP C-size 2LDPJ 2LDBJ 2LRIF C-size 3LDPJ 3LDBJ 3LRIF

1 117872 9.529 (5) 8.974 (4) 8.974 (4) 2879 8.285 (4) 8.343 (4) 8.343 (4)
2 130000 6.226 (6) 5.450 (5) 6.518 (5) 4568 4.632 (4) 4.544 (4) 4.636 (4)
4 128596 3.192 (6) 2.824 (5) 4.431 (5) 4174 2.406 (4) 2.356 (4) 2.449 (4)
8 130868 1.857 (6) 1.611 (5) 3.720 (5) 4684 1.400 (4) 1.367 (4) 1.532 (4)
16 124376 1.048 (7) 0.871 (6) 3.834 (6) 4152 0.736 (4) 0.727 (4) 0.897 (4)
32 124888 0.566 (7) 0.471 (6) 3.164 (6) 4376 0.413 (5) 0.399 (4) 0.605 (4)
64 127456 0.322 (8) 0.265 (6) 3.235 (6) 4976 0.245 (5) 0.237 (5) 0.488 (5)

Table 3: Solution of the pressure systems: mean execution times and iterations (in brackets)
with the multilevel preconditioners on Grid 1 (top), Grid 2 (middle) and Grid 3 (bottom).

12



between the effectiveness of the coarse-level correction and the cost of the pre-
conditioner is achieved. More precisely, 3LDBJ achieves the smallest execution
times in all the cases but Grid 1 on 32 and 64 processors, and Grid 2 on 16,
32 and 64 processors, where 2LDBJ is the winner. However, from the results
on Grid 3 we see that using three levels becomes effective on a large number of
processors when the grid size increases. The preconditioners 2LRIF and 3LRIF
are not competitive, because of the cost of the coarsest-level correction; on the
other hand, using a very simple coarsest-level solver does not reduce the time,
because it generally produces a small increase of the number of iterations. It is
interesting to note that RAS(0) outperforms the best multilevel preconditioner
in some cases: on 64 processors with Grid 1 and on 16, 32 and 64 processors
with Grid 2. On the other hand, the results on Grid 3 show that RAS loses
its efficiency when the number of processors increases.

In Fig. 3 we compare the strong scalability of all the preconditioners for the
three grids. On Grid 1 the speedups of all the preconditioners generally show
close behaviours up to 32 processors, except 2LRI where the cost for replicating
and factorizing a large coarsest-level system strongly reduces the scalability of
the preconditioned solver. In this case, the best speedup is generally obtained
with 2LDBJ; in particular, it is about 18 on 32 processors. The situation is
different on 64 processors, where RAS(0) achieves the best speedup (about 24),
closely followed by RAS(1) and 2LDBJ. Actually, increasing the number of
processors from 32 to 64 does not yield a significant time gain, because of the
relatively small size of the coarse grid, and the cost for the multilevel correction
is not paid off. On the larger grids, the speedup of all the preconditioners but
2LRIF and 3LRIF shows an increasing behaviour up to 64 processors. On Grid
2 the largest speedup is achieved by RAS(0), closely followed by RAS(1), 2LDBJ
and 2LDPJ. Excluding 2LRIF and 3LRIF, the speedup on 64 processors ranges
from 25 (3LDPJ/3LDBJ) to 32 (RAS), which can be considered satisfactory.
Conversely, on Grid 3 the best scalability is obtained by 3LDBJ, followed by
3LDPJ and 2LDBJ; in particular, 3LDBJ gets a speedup of 35. These results
clearly show that the performance of the multilevel preconditioners increases
with the grid size.

From the previous discussion we can conclude that 3LDBJ and 2LDBJ are
generally to be preferred to the other preconditioners in our LES application,
for their good behaviour in terms of both execution time and scalability.
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Figure 3: Solution of the pressure systems: speedups on Grid 1 (top), Grid 2 (middle) and
Grid 3 (bottom).
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5. Conclusions

The work presented in this paper was devoted to analysing the performance
of different parallel Schwarz preconditioners in the solution of linear systems
arising in a LES procedure for turbulent channel flows. The preconditioners
were applied within SParC-LES, a LES code recently developed by exploiting
the PSBLAS and MLD2P4 libraries, implementing parallel sparse linear alge-
bra kernels and preconditioners. We compared one-level and multilevel Schwarz
preconditioners, with the final aim of achieving the best tradeoff among con-
vergence, time and scalability objectives on a test case widely used by the LES
community. The results show that, on the pressure systems, the two-level and
three-level preconditioners using a distributed block-Jacobi solver at the coars-
est level provide a significant reduction of the number of iterations with respect
to RAS, which generally translates into smaller execution times and good scal-
ability, especially on the largest grid. Conversely, the features of the velocity
systems make worthless the use of preconditioners on the relevant matrices.
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