
Consiglio Nazionale delle Ricerche
Istituto di Calcolo e Reti ad Alte
Prestazioni

DS2OS – Deliverable C
Implementing Directory

Services

Giovanni Schmid, Luca Tamburo

RT-ICAR-NA-2010-04 Novembre 2010

Consiglio Nazionale delle Ricerche, Istituto di Calcolo e Reti ad Alte Prestazioni (ICAR)
– Sede di Napoli, Via P. Castellino 111, I-80131 Napoli, Tel: +39-0816139508, Fax: +39-
0816139531, e-mail: napoli@icar.cnr.it, URL: www.na.icar.cnr.it

1

Consiglio Nazionale delle Ricerche
Istituto di Calcolo e Reti ad Alte
Prestazioni

DS2OS – Deliverable C
Implementing Directory

Services

Giovanni Schmid1, Luca Tamburo

Rapporto Tecnico N.:
RT-ICAR-NA-2010-04

Data:
Novembre 2010

1 Istituto di Calcolo e Reti ad Alte Prestazioni, ICAR-CNR, Sede di Napoli, Via P. Castellino 111, 80131 Napoli

I rapporti tecnici dell’ICAR-CNR sono pubblicati dall’Istituto di Calcolo e Reti ad Alte Prestazioni del
Consiglio Nazionale delle Ricerche. Tali rapporti, approntati sotto l’esclusiva responsabilità scientifica
degli autori, descrivono attività di ricerca del personale e dei collaboratori dell’ICAR, in alcuni casi in un
formato preliminare prima della pubblicazione definitiva in altra sede.

2

DS2OS - Deliverable C

Implementing Directory Services

Giovanni Schmid, Luca Tamburo

November 15, 2010

1 Introduction

As detailed in DS2OS-Deliverable A, a DS2OS environment adopts the dynamic delegation
(DD) access control model to enconmpass the requirements and objectives of its global
security policy. The scope of this Deliverable is to specifically discuss issues and design
choices related to DD enforcement at the network layer. These issues and design choices
concern two different although related aspects: (i) the use and specification of certificates
according to DD requirements, and; (ii) the implementation of an LDAP service which allows
the enforcement of the DD model in a DS2OS environment.

A DS2OS environment can be composed of many heterogeneous hosts, having their own
local users and access control policies. For efficiency and scalability, the authentication and
authorization information which compose a principals profile should be distributed among
network-wise and local-only repositories. Only the information which is relevant to multiple
hosts should be exported at the network level, whilst the host-specific information should
be stored and managed through the hosts local repositories.
Since we have adopted X.509 certificates to share authentication and authorization informa-
tion at the network level, and since local information is managed through host-specific files
and formats, an integration is required between the network and the host layers in order
to retrieve the correct security contexts that a given principal running a task must hold on
each of the hosts involved in such a task.
The focus of our implementation is on the OpenSolaris (or, equivalently, Solaris 10) OS1,
since at the moment - as throughfully discussed in Deliverable B - these are the general-
purpose OS platfoms with the most advanced access control features. In particular, they
are the only platforms supporting access control policies which include the management of
authorizations directly at the kernel level, virtually for any process in the user space. This
special authorizations, called process privileges, are very important for an effective enforce-
ment of the DD model, since they allows for the specification of principal’s capabilities at
an unprecedented fine-grain level, and with much greater flexibility.

This document is organized as follows. Section 2 introduce to X.509 certificates and their
related management infrastructures. In Section 3, we discuss Lightweight Directory Access
Protocol (LDAP), and its use for managing both basic user-related information and the
extended user security attributes introduced with OpenSolaris. Finally, Section 4 illustrates
our enforcement of DD using X.509 certificates and OpenLDAP [1], a major open source
implementation of the LDAP protocol.

1For the sake of simplicity, as in other DS2OS deliverables, we will use the term OpenSolaris to refer in
general to Solaris-related technologies

1

2 X.509 Certificates and Infrastructures

The ITU-T X.509 standard specifies a directory service to implement authentication and
authorization based on public key cryptography.
The standard defines two types of certificates: Public Key Certificate (PKC), and At-

tribute Certificate (AC). X.509 PKCs and ACs are the most relevant and adopted way
to convey with integrity protection authentication and authorization information over open
networks and distributed environments. In order to achieve that, however, ad-hoc infras-
tructures must be deployed for the distribution and management of certificates. The scope
of this section is to introduce to X.509 certificates and their related management infrastruc-
tures. Section 2.1 and 2.2 illustrates PKCs and ACs, respectively. In Section 2.3 we do a
comparison between the infrastructures for PKC management and those for the management
of ACs, showing their similarities and mutual interactions. Finally, Section 2.4 discusses the
various models provided by the X.509 standard to manage privileges.

2.1 Public Key Certificates

A PKC is an electronic document which uses a digital signature to bind together a public
key with a principal’s identity.
In the X.509 system, a Certification Authority (CA) issues a certificate binding a public
key to a particular distinguished name; the CA uses its private key to digitally sign a
PKC.
Let A and Ap be the distinguished name and a public key for a given principal, respec-
tively. If CA is the name of a CA, then the cleartext part of a PKC issued by CA to A has
the form:

CA<<A>> = CA{V,SN,AI,CA,UCA,A,UA,Ap,T} ,

where V is the certificate version, SN its serial number, AI is the identifier of the algorithm
used to sign the certificate, and T is the certificate validity period, in the format “notBefore
and notAfter” [2]. The fields UCA and UA are optionals; they represent (unique) identifiers
for the CA and the subject principal, respectively.
A PKC is represented in ASN.1 syntax as follows:

Certificate ::= SIGNED { SEQUENCE {

version [0] Version DEFAULT v1,

serialNumber CertificateSerialNumber,

signature AlgorithmIdentifier,

issuer Name,

validity Validity,

subject Name,

subjectPublicKeyInfo SubjectPublicKeyInfo,

issuerUniqueIdentifier [1] IMPLICIT UniqueIdentifier OPTIONAL,

-- if present, version shall be v2 or v3

subjectUniqueIdentifier [2] IMPLICIT UniqueIdentifier OPTIONAL,

-- if present, version shall be v2 or v3

extensions [3] Extensions OPTIONAL

-- If present, version shall be v3

}}

The signature in the PKC is used to verify the validity of the PKC using the CA’s public
key. The validity of the certificate is the period of time during which the CA will publish
any eventual certificate revocation, warranting the status information of the certificate.

2

There are mainly two types of PKC, the end–entity certificate and the CA–certificate.
An end-entity certificate is a PKC issued to a subject which does not issue other PKCs, whilst
a CA–certificate is a PKC issued by a CA to another CA. In turn, a CA–certificate can be
categorized as one of the following types:

• Self–issued certificate, in which the issuer and the subject are the same.

• Self–signed certificate, which is a special case of self-issued certificate. The private
key used by the CA to sign the certificate corresponds to the public key Ap in the
certificate.

• Cross certificate, where the issuer and the subject are two different CAs. A CA can
issue a certificate for another CA (the subject CA) in two ways: in a strict hierarchy
of CAs, in order to authorize the subject CA’s existance, or to recognize the existence
of the subject CA in a distributed trust model.

2.2 Attribute Certificates

In the context of X.509 standard, privileges can generically represent authorizations in
accessing some resource, roles, or other capabilities given by some authority to a principal2.

ACs are used to assign privileges to the certificate holder by the certificate issuer, that
can eventually act as a delegated authority (see Section 2.4). Privileges are stored in ACs as
set of attributes of different kind. ACs are thus a means to convey with integrity protection
a permission for the subject principal w.r.t. a service or a resource that the issuer controls
in some way.

Some people constantly confuse PKCs and ACs. An analogy may make the
distinction clear. A PKC can be considered to be like a passport: it identifies
the holder, tends to last for a long time, and should not be trivial to obtain. An
AC is more like an entry visa: it is typically issued by a different authority and
does not last for as long a time. As acquiring an entry visa typically requires
presenting a passport, getting a visa can be a simpler process [3].

AC and PKC data structures of course differ. However, similarly to a PKC, the set of data
constituting an AC is signed by the issuer, called Attribute Authority (AA), in order to
ensure data integrity. The following ASN.1 syntax represents an AC:

AttributeCertificate ::= SIGNED{ AttributeCertificateInfo }

AttributeCertificateInfo ::= SEQUENCE {

version AttCertVersion, -- version is v2

holder Holder,

issuer AttCertIssuer,

signature AlgorithmIdentifier,

serialNumber CertificateSerialNumber,

attrCertValidityPeriod AttCertValidityPeriod,

attributes SEQUENCE OF Attribute,

issuerUniqueID UniqueIdentifier OPTIONAL,

extensions Extensions OPTIONAL

}

2Be aware that the term “privilege” is used with a different, more specific meaning in the context of
Solaris security, too; see Deliverable B.

3

The fields version, signature, serialNumber, attrCertValidityPeriod and issuerUni-

queID have the same meaning of their analogous in a PKC. The holder and issuer fields
represent the subject principal and AA of the AC, respectively. These two fields can have
one of the following three forms [2]:

• GeneralNames, which identifies one or more names for the entity;

• baseCertificateID, which identifies a particular PKC and is used to link the AC to
a PKC;

• objectDigestInfo, that is used to authenticate directly the identity of the holder by
comparing a digest of the corresponding information.

Finally, the attributes field contains a set of attributes which establishes the privileges
given by the issuer to the holder.

2.3 Public Key vs. Privilege Management Infrastructures

The main purpose of a Public Key Infrastructure (PKI) is to enable the safe and efficient
acquisition of public keys over open networks.

A PKI is a set of hardware, software, people, policies, and procedures needed to
create, manage, distribute, use, store, and revoke public-key certificates [4].

The IETF has its own workgroup, the Public Key Infrastructure X.509 (PKIX) work-
ing group, which is devoted to the specification of X.509-compliant structures and procedures
of valuable usage in the Internet. A PKIX infrastructure defines the elements and functions
for PKCs management as specified by the PKIX workgroup. A scheme of the PKIX model
is illustrated in Figure 1.

Figure 1: PKIX model.

4

Concept PKI Entity PMI Entity

Certificate Public Key Certificate Attribute Certificate
Certificate issuer Certification Authority Attribute Authority
Certificate user Subject Holder
Certificate binding Subject’s name to public key Holder’s name to privilege

attribute(s)
Revocation Certificate revocation list (CRL) Attribute certificate

revocation list (ACRL)
Root of trust Root certification authority or Source of authority

trust anchor
Subordinate authority Subordinate certification Attribute authority

authority

Table 1: A comparison of PKIs with PMIs [5].

A Privilege Management Infrastructure (PMI) is very similar to a PKI (see table
1), and it is used for the management of Attribute Certificates. Both PKIs and PMIs are
represented by tree structures rooted at a primary source of trust, and having intermediate
sources of trust as nodes and end-users as leaves. A PKI root of trust is sometimes called
root CA, while the root of trust of a PMI is called Source of Authority (SOA). A
CA may have subordinate CAs (its children in the tree), that it delegates to sign PKCs;
similarly, SOAs may delegate their power to subordinate AAs. If a principal needs to have
its public key revoked, a CA will issue a Certificate Revocation List (CRL); similarly, if
a principal needs to have its privileges revoked, an AA will issue an Attribute Certificate

Revocation List (ACRL)[5].
Usually PMIs relies on an underlying PKI, since ACs have to be digitally signed by the

issuing AA, and the PKI is used to validate the AA’s signature. A joint adoption of PKI
and PMI is suitable in environments where any one of the following is true:

• Different authorities are responsible for issuing authentic public keys and assigning
privileges to the same subjects;

• There are a number of privileges to be assigned to a principal, from a variety of
authorities;

• The (average) lifetimes of ACs are substantially different than those of PKCs;

• Privileges are valid only during specific intervals of time which are asynchronous with
those relative to other privileges or principal’s PKCs 3.

• Privileges are assigned by an issuer in a specific host. If this host belongs to a network,
then such privileges are valid all over that network.

2.4 Certificate Management Models

Certificate Management Models are of two kinds: privilege management models and
certificate distribution models. The first kind is specific for ACs, whereas the second
kind relates to both PKCs and ACs.

3“The time specification extension can be used by an AA to restrict the specific period of time during
which the privilege, assigned in the certificate containing this extension, can be asserted by the privilege
holder” [2, 15.1.2.1].

5

The standard specifies four different privilege management models, as follows.
The General model consists of three entities: the object, the privilege asserter and

the privilege verifier. The object represents a protected resource. The privilege asserter
represents the entity that holds a set of privileges and asserts them for a particular context of
use of the object. Finally, the privilege verifier is the entity that determines if the privileges
asserted by the privilege asserter are sufficient for the given context of use of the object [2].

In the Control model there are five components (see Figure 2): the privilege asserter,
the privilege verifier, the object method, the privilege policy, and the environmental

variables. The privilege verifier controls the object method of the privilege asserter in
accordance with the privilege policy and the environmental variables [2].

Figure 2: PMI Control Model

In the Delegation model there are four components (see Figure 3): the privilege verifier,
the SOA, and two privilege asserters. In this case, the SOA can authorize one privilege
asserter to act as AA and delegate some privileges to the other asserter, which acts as end
entity. A restriction in this model is that AAs cannot delegate more privileges than they
hold [2].

Figure 3: PMI Delegation Model

In the Role model users are issued role assignment certificates that assign one or
more roles to them through the role attribute contained in the AC. Roles provide a means
to indirecly assign privileges to users. In this case, it is possible to change user’s privileges

6

without modifying user’s AC, but only changing the role assignment certificate [2]. The
Role model is illustrated in figure 4.

Figure 4: PMI Role Model

The distribution of digital certificates can be performed following two models: the push

and the pull model. Both models assume that a principal, acting as a client, makes a request
to a server in order to perform an authentication or authorization task.

In the push model, when a principal makes a request, it presents (pushes) a certificate
to the server to corroborate the request. The server does not have to perform any search
operation, but it must check that the principal’s certificate is valid by inspecting a suitable
certificate revocation list (see 2.3).

In the pull model, conversely, in response to the request of accessing a resource by a
principal, the server requests (pulls) the principal’s certificate from a certificate issuer or a
repository [3]. Of course, the pull model simplifies the operations of the principal at the
expense of those for the server.

For the case of ACs, the pull and the push model result in the two following ways to
acquire a privilege by a principal:

• An AA may create an AC for the principal, without any principal’s request. In this case
the AC may be stored in a public repository and the AC may subsequently recovered
(pulled) by one ore more privilege verifier to make an authorization decision.

• A principal may request a privilege to some AA. The AC, once created, may be
returned (only) to the principal, which explicity supplies it when requesting access to
some protected resource.

3 Naming services through LDAP

A directory is “a collection of open systems cooperating to provide directory services”[6]. A
directory user, through a client, can access to a directory using a directory access protocol,
and Lightweight Directory Access Protocol (LDAP) represents the de–facto standard
directory access protocol. The main application of LDAP in the last years has been the
enforcement of naming service in the context of enterprise-level distributed environments.
And, indeed, directory services can be considered a specialized form of naming services,

7

designed to support larger and more complex information about network entities. LDAP
schemas and information trees have been introduced to match the functionalities offered by
other, older naming services such as DNS, NIS and NIS+.

Since in our approach we adopt LDAP for the management of both principal’s authen-
tication and authorization information, it is useful to briefly recall here some basics about
LDAP (Section 3.1), and how it has been used to manage legacy OS accounting information
(Section 3.2). Moreover, in Section 3.3, we will discuss the LDAP scheme recently intro-
duced to support (Open)Solaris extended security attributes. That is a main concern for
our approach, since the DD access control model relies upon these extended attributes.

3.1 LDAP data structures and operations

LDAP directories provide a way to name, manage, and access collections of directory entries.
A directory entry is composed of object classes, which in turn compose of attributes,
that have a type and one or more values. The syntax for each attribute defines the values
allowed and how those values are interpreted during a directory operation. Directory entries
are organized into a tree structure called Directory Information Tree (DIT). DITs can
be based on geographic regions (country names, states, etc.), organizational boundaries
(organization name and organizational units), or name service domains. Entries are named
according to their position in this tree structure by a distinguished name (DN). Each
component of the distinguished name is called a relative distinguished name (RDN).
An RDN is composed of one or more attributes from the entry.

An LDAP schema is nothing more than a convenient packaging unit containing broadly
similar object classes and attributes. Every attribute or object class used in an LDAP
implementation must be defined in a schema, and that schema must be known to the LDAP
server.

LDAP defines nine operations, categorized in the following groups:

• Interrogation: This group of operations interrogates the directory, retrieving its
information. The operations included in this group are: search and compare.

• Update: This group of operations updates the directory information. The operations
included in this group are: add, delete, modify and modify RDN.

• Authentication: The operations included in this group are: bind, unbind and
abandon. The first and second operation provide means for securing directory in-
formation, the third operation allows users to cancel an operation in progress.

3.2 Using LDAP for legacy OS accounting information

To manage UNIX-like basic accounting information, LDAP provides the nis.schema [7].
The object classes for this shema are:

• posixAccount, for the information usually stored in /etc/passwd;

• shadowAccount, for the shadow password ’s extensions, usually stored in /etc/shadow;

• posixGroup for information on group accounts, usually provided through the /etc/group
file;

Figures 5, 6 and 7 show the relationships between LDAP directory entries and the above
accounting information repositories.

8

Figure 5: Relationship between posixAccount objectClass and /etc/passwd

Figure 6: Relationship between shadowAccount objectClass and /etc/shadow

Figure 7: Relationship between posixGroup objectClass and /etc/group

The MigrationTools4 are a set of Perl scripts for migrating users, groups, aliases, hosts,
netgroups, networks, protocols, RPCs, and services from existing nameservices (flat files,
NIS, and NetInfo) to LDAP.
These tools provide a LDIF5 file for each existing system information file.
LDAP provides for special entries which act as containers to organize LDAP entries into
a tree structure. Following a common practice, the containers named People and Group

are used for organizing user and group accounting information, respectively. The resulting
Directory Information Tree is shown in Figure 8. “Normally, all users defined in a central

4http://www.padl.com/OSS/MigrationTools.html
5LDAP Data Interchange Format [8]

9

http://www.padl.com/OSS/MigrationTools.html

LDAP directory have access to every host which authenticates against that directory. In
some cases, it is desirable to restrict access to specific hosts for certain users defined in
LDAP. This can be accomplished using the host attribute of the account objectClass.” [9]
The DIT for this case is shown in Figure 9

Figure 8: Directory Information Tree for UNIX-like accounting information

Figure 9: Directory Information Tree for UNIX-like accounting information (restricted host
access)

It can be worthwhile to notice here that the management of user and group related
information in a LDAP repository cannot be performed through the usual OS commands
for user administration. Instead, a specific LDAP client must be used 6

3.3 Managing Open(Solaris) security attributes with LDAP

In order to support its advanced access control policies, (Open)Solaris provides other files
besides the POSIX compliant repositories for user related information. In particular, the

6e.g, the Change Password Utility (CPU) (http://sourceforge.net/projects/cpu/).

10

http://sourceforge.net/projects/cpu/

/etc/user attr file is a local source of extended capabilities associated with users and
roles; it lists the accounts which have addictional security attributes 7. Each record in
/etc/user attr has the following structure:

user:qualifier:res1:res2:attr

where user is the user name as in /etc/password, the fields qualifier, res1 and res2 are
reserved for future use, and attr is an optional list of semicolon-separated, key-value pairs
describing the security attributes of user.

At the moment, (Open)Solaris interprets twelve attribute keywords, including auths

(i.e., authorizations), roles and profiles. In turn, the definitions for these keywords are
stored and managed through suitable local databases. The most relevant security attributes
w.r.t. the DD access control model and DS2OS environments are discussed in some detail
in Deliverable B; what is relevant in the context of this section is that the local databases
specifying such advanced security attributes can be used with other user attributes sources,
including the LDAP people container, the user attr NIS map, and the user attr NIS+
table.

LDAP schemas and DITs for (Open)Solaris are defined in [10]. The schemas specifically
required for managing user related information in (Open)Solaris are the Extended user ac-
counting schema, Role based access control schema, Solaris client naming profile schema,
and Projects schema. Although the attributes stored in /etc/user attr concur to support
various kinds of access control policies, both of discretionary and mandatory type, they are
usually referred as role based access control (RBAC) attributes, since RBAC policy is the
higher level policy supported in (Open)Solaris. Thus, such attributes are described in the
Role based access control schema. The role based access control Attributes are:

(1.3.6.1.4.1.42.2.27.5.1.4 NAME SolarisAttrKeyValue

DESC Semi-colon separated key=value pairs of attributes

EQUALITY caseIgnoreIA5Match

SUBSTRINGS caseIgnoreIA5Match

SYNTAX IA5String SINGLE-VALUE)

(1.3.6.1.4.1.42.2.27.5.1.7 NAME SolarisAttrShortDesc

DESC Short description about an entry, used by GUIs

EQUALITY caseIgnoreIA5Match

SYNTAX IA5String SINGLE-VALUE)

(1.3.6.1.4.1.42.2.27.5.1.8 NAME SolarisAttrLongDesc

DESC Detail description about an entry

EQUALITY caseIgnoreIA5Match

SYNTAX IA5String SINGLE-VALUE)

(1.3.6.1.4.1.42.2.27.5.1.9 NAME SolarisKernelSecurityPolicy

DESC Solaris kernel security policy

EQUALITY caseIgnoreIA5Match

SYNTAX IA5String SINGLE-VALUE)

(1.3.6.1.4.1.42.2.27.5.1.10 NAME SolarisProfileType

DESC Type of object defined in profile

7Be aware of not confusing the term “attribute” used in the context of Solaris security with the same
term previously introduced for LDAP.

11

EQUALITY caseIgnoreIA5Match

SYNTAX IA5String SINGLE-VALUE)

(1.3.6.1.4.1.42.2.27.5.1.11 NAME SolarisProfileId

DESC Identifier of object defined in profile

EQUALITY caseExactIA5Match

SYNTAX IA5String SINGLE-VALUE)

(1.3.6.1.4.1.42.2.27.5.1.12 NAME SolarisUserQualifier

DESC Per-user login attributes

EQUALITY caseIgnoreIA5Match

SYNTAX IA5String SINGLE-VALUE)

(1.3.6.1.4.1.42.2.27.5.1.13 NAME SolarisReserved1

DESC Reserved for future use

EQUALITY caseIgnoreIA5Match

SYNTAX IA5String SINGLE-VALUE)

(1.3.6.1.4.1.42.2.27.5.1.14 NAME SolarisReserved2

DESC Reserved for future use

EQUALITY caseIgnoreIA5Match

SYNTAX IA5String SINGLE-VALUE)

The role based access control Objectclasses are instead:

(1.3.6.1.4.1.42.2.27.5.2.3 NAME SolarisUserAttr SUP top AUXILIARY

DESC User attributes

MAY (SolarisUserQualifier $ SolarisAttrReserved1 $ \

SolarisAttrReserved2 $ SolarisAttrKeyValue))

(1.3.6.1.4.1.42.2.27.5.2.4 NAME SolarisAuthAttr SUP top STRUCTURAL

DESC Authorizations data

MUST cn

MAY (SolarisAttrReserved1 $ SolarisAttrReserved2 $ \

SolarisAttrShortDesc $ SolarisAttrLongDesc $ \

SolarisAttrKeyValue))

(1.3.6.1.4.1.42.2.27.5.2.5 NAME SolarisProfAttr SUP top STRUCTURAL

DESC Profiles data

MUST cn

MAY (SolarisAttrReserved1 $ SolarisAttrReserved2 $ \

SolarisAttrLongDesc $ SolarisAttrKeyValue))

(1.3.6.1.4.1.42.2.27.5.2.6 NAME SolarisExecAttr SUP top AUXILIARY

DESC Profiles execution attributes

MAY (SolarisKernelSecurityPolicy $ SolarisProfileType $ \

SolarisAttrReserved1 $ SolarisAttrReserved2 $ \

SolarisProfileId $ SolarisAttrKeyValue))

Figure 10 illustrates the relationship between an entry of /etc/user attr file and
SolarisAuthAttr LDAP Objectclasses for the case of the example record:

12

Figure 10: Reletionship between SolarisAuthAttr objectClass and (Open)Solaris
/etc/user attr file.

root::::auths=solaris.*,solaris.grant;profiles=All;type=normal

4 Implementing dynamic delegation

This part is devoted to the specifications of X.509 certificates, LDAP structures and directory
service workflows for the enforcement of dynamic delegation (DD) in a DS2OS environment.
In order to match the authorization information managed at the OS layer with that stored
through ACs, a DD specific Attribute Certificate is required; that will be discussed in
Section 4.1. Section 4.2, instead, describes the object classes and DITs that we have chosen
to manage the DD model through LDAP. Section 4.3 discusses the problem of managing
a principal’s security context. A crucial point in such respect is the integration of the
authorization information stored in X.509 certificates with that defined at the OS layer
through platform specific repositories. As already explained in Deliverable A, we follow an
approach which resembles the way information is accessed by naming services, requiring
a suitable, incremental retrieval of principal’s security attributes. Section 4.4 discusses the
issue of retrieving PKCs and (related) ACs in OpenLDAP [1]. As we shall see, at the moment
OpenLDAP supports only one kind of certificate’s search, which does not fully accomplish
the requirements for DD; we overcome these difficulties thanks to the structure of the DITs
introduced in Section 4.2. Section 4.5 describes the operations for the creation, modification
and deletion of a guest’s account. Lastly, a brief illustration of the access control mechanisms
provided for LDAP repositories is given in Section 4.6.

4.1 X.509 certificates for dynamic delegation

W.r.t. a given host H , principals in the DD access control model can be categorized as one
of the following types (see Deliverable A):

• Administrator: administrators are granted the authorizations for managing and
monitoring all other kind of principals on H . In particular, administrations are in
charge of creating user accounts on H , giving them suitable authorization profiles;

• Sponsor: a sponsor is a principal that has an account on H and has been granted
the authorization to allow principals that are not registered users on H to access and
use at some extent its own resources on H .

13

• Guest: a guest is a principal that access to some resources of H thanks to, and under
the constraints defined by, a sponsor in H . A guest can have more than one sponsor
in H .

• Standard User: standard users are just principals which have an account on H and
do not belong to any of the three previous categories of users.

We can relate DD principals to PMI’s entities (see Section 2.3) as follows: administrators
act as SOA; sponsors act as AA; guests and ordinary users act as AC holders.

The X.509 standard does not give definitions of any specific attribute: attribute specifi-
cation does not pertain indeed to the standard, but it is environment or application specific.
In order to support DD through PMIs, we introduced as LDAP attribute an UTF8String

encoded value representing an entry of /etc/user attr (see 3.3).
That attribute is conveyed using an AC which has the fields holder and issuer structured

as depicted in Figures 11 and 12 (see also Sections 2.2 and 2.1). The fields marked with

Figure 11: Structure of Issuer field.

* are optional, but at least one of them shall be present. The field marked with ** is not
optional if issuerUID is present in the PKC identified by the the DN and the serial number.
Finally, the field marked with *** is optional.
As respect to the linking of the above AC to its related PKC, we have preferred to adhere to
the X.509 specifications instead of following the recommendation [3], since this is in conflict
with the matching rule [2][17.3.1]. Using the X.509 approach, an AC can be seen as a US
visa, and the PKC as an Italian passport. The US visa has the number of passport; thus,
if the passport expires, or it is revoked, then the visa is invalid, too. That is coherent with
the DD authorization model.

Figure 13 shows the connection between an AC, the holder’s PKC and the issuer’s PKC.
The case depicted therein is that in which Alice acts as guest, and Bob as sponsor.

14

Figure 12: Structure of Holder field.

Figure 13: Connection between holder’s PKC, AC and issuer’s PKC

4.2 Dynamic delegation DITs

Dynamic delegation requires special Directory Information Trees or DITs (see Section 3.1).
These different DITs are introduced to accomplish various organization scenarios, as we are
going to show in the following, but in any case they make use of the container People to
store user account information, the container Group to store group account information,
and the container Guest to store guest information. Let us examine these three containers.
People has two other containers as children; they are: Sponsor and User; one for each
kind of DD principal, as discussed in Section 4.1.

Each account of type sponsor or ordinary user is stored in the DIT as four object classes:

1. account: it contains the account login name. This objectClass is defined in the

15

Figure 14: Directory Information Tree for dynamic delegation

cosine.schema [11].

2. pkiUser: it contains the principal’s PKC, where the PKC is issued by the system
administrator. This objectClass is defined in [12].

3. pmiUser: it contains the principal’s AC, where the AC is issued by the system
administrator. This objectClass is defined in [2].

4. simpleSecurityObject: it contains the userPassword attribute. This objectClass
is defined in [11].

Since a principal can act on a given system host as a guest for more than one sponsor, then
its related profile information is stored in two places in the DIT, as follows. When a new
guest account is created, if it is the first such account for that principal, then it is stored as
a child of Guest container, which is composed of the two objectClass items:

1. guestAccount: it composes of the username in e–mail format (attribute name is
mail), an integer (attribute name is count) and one dn (attribute name is guestuid)
for each sponsor;

2. pkiUser: it contains the principal’s PKC, where the PKC is now issued by an external
CA.

This new resulting objectClass guestAccount is as follows:

objectIdentifier delOID 1.666

objectIdentifier delLDAP delOID:2

objectIdentifier delAttributeType delLDAP:1

objectIdentifier delObjectClass delLDAP:2

objectIdentifier uid 0.9.2342.19200300.100.1.1

16

objectIdentifier mail 0.9.2342.19200300.100.1.3

objectIdentifier count 1.3.6.1.4.1.1466.115.121.1.27

objectIdentifier guestuid 1.3.6.1.4.1.1466.115.121.1.12

objectclass (delObjectClass:1 NAME ’guestAccount’

SUP top STRUCTURAL

DESC ’guest user in dynamic delegation’

MUST (mail, count, guestuid)

)

The choice of using an email address was since it represents one component of the
PKC field subjectName, which uniquely individuates a principal. The attributes count

and guestuid were instead introduced to accomplish the need of storing in this objectClass
different uids related to a same PKC, a consequence of the possible existence of multiple
sponsors for a given guest, and of the restrictions about the format for the guest uid (see
below).

The remaining information, which depends on the individual sponsor, is stored as a child
of the sponsor ’s entry. This guest ’s entry is formed by two objectClass:

1. account: it contains the user’s uid. The guest uid is obtained by appending the
sponsor uid to the string composed by character G, followed by an integer (used to
distinguish among multiple guests for the same sponsor), and the underscore “ ” as
separator. This choice was motivated by the constraints actually imposed by POSIX
on the strings representing user names 8.

2. pmiUser: it contains the user’s AC issued by its sponsor.

In the DITs (see, e.g., Figure 14) we put the Guest container at the same hierarchical
level of the People e Guest ones. That is because guests usually do not belong to the
organizational unit referred by the DIT, but to different, external organizations.

4.2.1 DITs for multiple units and OS istances

To implement DD in a DS2OS environment with multiple organizational units and/or OS
istances, we need to extend the DIT shown in Figure 14. For example, in order to deploy
DD onto the ICAR network, which composes of three branches, we add a container for each
branch (i.e. cs, na and pa), as shown in Figure 15.

These new containers are children of the DIT’s root dc=icar,dc=cnr, and are of type
domain component (dc), too. The above reflects the circumstance that in this case different
branches are autonomosly managed and constitute separate security domains. Different
business organizations could result in different DIT architectures as well.

One more hierarchy level, the host level, is appropriate in case different hosts and/or
computing platforms fall in distinct security or administrative domains. This case is de-
picted in Figure 16. Finally, Figure 17 shows the general case of multiple, independent
organizational units with multiple hosts falling in separate administrative domains.

8According to POSIX, a user name shoud be represented by a string of no more than eight bytes consisting
of characters from the set of alphabetic characters, numeric characters, period (.), underscore (), and hyphen
(-). The first character should be alphabetic and the field should contain at least one lower case alphabetic
character. A warning message is displayed if these restrictions are not met.

17

Figure 15: Directory Information Tree for DD when there are more branches

Figure 16: Directory Information Tree for DD when there are more OS istances

4.3 Security context management

This section illustrates the approach, introduced in Deliverable A, to allow for the acquisition
of authorization information concerning principals in a DS2OS environment.
We remember that, according to one directory services requirement (see Deliverable A), such
authorization information must be achieved thanks to the name service switch framework,

18

Figure 17: Directory Information Tree for DD when there are more branches and more OS
istances

in an incremental and consistent way that gives (at least by default) higher priorities to local
repositories and lower priorities to remote ones. That requirement applies to all principal’s
profiles (see Section 4.1), and in particular to the guest and sponsor profiles. However, we
have to distinguish between guest and non-guest profiles, as follows.

In case of a principal p with a non-guest profile u on host H , its set of security attributes
AH(u) is first retrieved from suitable local repositories on H , and then extended using
ACs stored in one or more LDAP directory service via a special exclusive union operation
(see below). Instead, if p whishes to operate on H as the guest profile g, then AH(g) is
first desumed from the credentials issued for g by its sponsor s in H (via local repositories
and/or ACs stored in LDAP directory services), and then restricted at runtime via a special
exclusive intersection operation with the security attributes set AH(s) of s (see below).
This guarantees that the security attributes for g are a subset of those for s also if the
system administrator removes some credential for s after its granting of credentials to g. In
particular, if s has revoked its credential to act as a sponsor, then g can no more operate as
guest of s on H .

Exclusive union, or shortly x-union, is a special set operation which applies to sets
of boolean propositions only. Given two sets of security attributes A and B, A ⊔ B (to be
read “A x-united B”) is the set of attributes which is obtained by adding to the attributes
in A only those attributes in B that neither get in conflict nor duplicate the attributes in
A. For example, given the three sets of attributes A = {a1, a2, a4, !a5}, B = {a1, a3, a5} and
C = {a2, !a3, a4, a6}, where “!” denotes the negation operator, we have that

A ⊔ B = {a1, a2, a3, a4, !a5}

19

(A ⊔ B) ⊔ C = {a1, a2, a4, !a5, a6}

Notice that, conversely than for the standard set union operation, the commutative property
does not hold for the x-union operation.

Exclusive intersection, or shortly x-intersection, is a special set operation which
applies to sets of boolean propositions only. Given two sets of security attributes A and
B, A ⊓ B (to be read “A x-intersected B”) is the set of attributes obtained by taking only
the attributes common to A and B, with the exception that if the second set B does not
contain a special attribute, then the intesection is the empty set. In our case, the special
attribute is the credential as of being a sponsor. For example, given the two sets of attributes
A = {a1, a2, a4}, B = {a1, a3, a5, as}, we have that

A ⊓ B = {a1}

B ⊓ A = ∅

Thus, also the x-intersection operation does not satisfy the commutative property.

4.4 Retrieval of certificates

At the present moment, OpenLDAP (http://www.openldap.org) is the only opensource
LDAP protocol implementation that can store and retrieve both PKCs and ACs.
As for PKCs, OpenLDAP supports at the moment only the CertificateExactAssertion

search syntax, defined in [2][11.3.1]. This kind of search allows to retrieve PKCs having
specific issuer and serialNumber values. However, common tasks in DS2OS environments,
such as the logging of a guest user to a remote host, require the retrieval of a certificate
based on the value of its subject field, which is realized through the CertificateAssertion

search syntax [2, 11.3.2].
Analogously, the current OpenLDAP implementation only (partially) supports the At-

tributeCertificateExactAssertion search syntax (defined in [2, 17.3.1]), which allow to
retrieve an AC having a specific serialNumber and a specific issuer 9. Instead, connect-
ing a PKC holder to an AC, as required by DD, would require the implementation of the
HolderIssuerAssertion search syntax defined in [2, 17.3.3].

The above difficulties can be overcome thanks to the DITs introduced so far. PKC and
AC are indeed stored in specific DIT entries, which can be accessed through the knowledge
of three kinds of data:

• the guest’s username, inserted at login time by the guest user ;

• the sponsor’s username, inserted at login time by the guest user ;

• the host OS istance, which is known by the host (only in case of multiple OS instances,
as for the DITs of Figures 16 and 17).

4.5 Guest account management

This section illustrates the steps that a sponsor must perform to create, edit and delete a
guest’s account.
It is intended that these operations are performed through a suitable guest account man-
agement tool built upon legacy OS commands like useradd, userdel, etc., and OpenLDAP
specific commands such as ldapadd, ldapmodify, ldapsearch, etc. We realized a first
version of such a program in bash scripting language with a GUI written in Java.

9the field issuer is composed by the PKC serialNumber and the subject used to sign the AC

20

http://www.openldap.org

4.5.1 Guest account creation

To create a new guest account on host H for user G, a sponsor S through the above tool or
GUI has to perform the following tasks:

1. creation of G’s AC containing its own authorization attributes;

2. editing of user related repositories of H (e.g., /etc/passwd and /etc/group) to insert
G’s accounting information;

3. storing of the AC created at the step 1 in an LDAP network repository;

4. (optional) if the above constitutes the first guest account for G in that organizational
unit, then S must create a new instance of the couple of objectClasses guestAccount
and pkiUser under the container Guest (the blue node in the DITs presented in
Section 4.2);

5. S must create a new guest entry, that is a new instance of the couple of objectClasses
account and pmiUser under his own uid container. Such entries are depicted as yellow
nodes in the DITs of Section 4.2.

4.5.2 Guest account upgrade

In order to modify an existing guest account, a sponsor S must create a new AC for the
guest G. After the AC creation, S must update the guest entry for G under his own uid
container (a yellow node in the DITs shown in Section 4.2).
If G is logged in during the account upgrade, the modification will take effect at the next
login.

4.5.3 Guest account deletion

To delete a guest account for G on host H , a sponsor S must delete G’s information con-
cerning that specific account from both user related repositories on H and LDAP databases.
The guest account entry composed of the two objectClasses guestAccount and pkiUser (the
blue node in the DITs of Section 4.2) has to be removed just in case G has no other guest
accounts in the considered organizational unit. For example, referring to Figure 14, deletion
of the guest account G1 bob by her sponsor uid=bob consists just in the removal of the re-
lated yellow node in the DIT, whilst the successive deletion of G1 tom results in the removal
of the yelloe node and the blue node uid=alice@unina.it under the ou Guest.

4.6 Security considerations

LDAP provides an Access Control List (ACL) mechanism which can be enforced to
protect specific attributes or entire subtrees of a DIT. The following example shows an ACL
for userPassword attribute.

ACL1 for userPassword attribute

access to attrs=userPassword

by self write

by anonymous auth

by "cn=Manager,dc=icar,dc=cnr" write

by * none

21

Thanks to the LDAP ACL mechanism, it is easy to constrain the guest account man-
agement tool to operate just on the information that pertain to a given sponsor S. In order
to allow for that, S must have a DIT entry with a userPassword attribute for his authen-
tication to the LDAP repository.
The following examples show two such ACLs. The first ACL allows any sponsor to create
and modify the ou=Guest subtree. The second one, allows a given sponsor S to create
and modify his entry subtree only.

ACL2 for ou=Guest,dc=icar,dc=cnr subtree

access to dn.subtree="ou=Guest,dc=icar,dc=cnr"

by self read

by anonymous read

by "cn=Manager,dc=icar,dc=cnr" write

by dn.one="ou=Sponsor,ou=People,dc=icar,dc=cnr" write

by "cn=PrivilageVerifier,dc=icar,dc=cnr" read

by * read

ACL3 for subtree

uid=<sponsor_username>,ou=Sponsor,ou=People,dc=icar,dc=cnr

access to dn.regex="(.+,)?(uid=[^,]+,ou=Sponsor,ou=People,dc=icar,dc=cnr)$"

by dn.exact,expand="$2" write

by "cn=Manager,dc=icar,dc=cnr" write

by "cn=PrivilageVerifier,dc=icar,dc=cnr" read

by * none

22

References

[1] OpenLDAP Foundation. OpenLDAP Admin Guide (version 2.4). OpenLDAP Foun-
dation, January 2009. http://www.openldap.org/doc/admin24.

[2] International Telecommunication Union Telecommunication Standardization Sector.
The Directory: Public-key and attribute certificate frameworks. ITU-T, August 2005.

[3] R. Housley S. Farrell and S. Turner. RFC 5755: An Internet Attribute Certificate
Profile for Authorization. RFC Editor, January 2010.

[4] M. Toorani and A.A.B. Shirazi. Lpki - a lightweight public key infrastructure for
the mobile environments. In 11th IEEE International Conference on Communication
Systems (IEEE ICCS’08) - (Guangzhou, China, November 2008), pages 162 – 166.
IEEE, 2008.

[5] D.W. Chadwick. An X.509 role based privilege management infrastructure. In Briefing -
Global InfoSecurity 2002, World Markets Research Centre Ltd. World Markets Research
Centre, October 2001. On accompanying CD-ROM Reference Library/03.pdf.

[6] International Telecommunication Union Telecommunication Standardization Sector.
The Directory: Overview of Concepts, Models and Service. ITU-T, November 1993.

[7] L. Howard. RFC 2307: An Approach for Using LDAP as a Network Information
Service. RFC Editor, March 1998.

[8] G. Good. RFC 2849: The LDAP Data Interchange Format (LDIF) - Technical Speci-
fication. RFC Editor, June 2000.

[9] M. Gnirss and F. Kirschner. Advanced LDAP User Authentication: Limiting Access to
Linux Systems Using the Host Attribute. IBM Redbooks, April 2004.

[10] Inc. Sun Microsystem. LDAP Setup and Configuration Guide. Sun Microsystem, Inc.,
January 2001.

[11] K. Zeilenga. RFC 4524: COSINE LDAP/X.500 Schema. RFC Editor, June 2006.

[12] K. Zeilenga. RFC 4523: Lightweight Directory Access Protocol (LDAP) Schema Defi-
nitions for X.509 Certificates. RFC Editor, June 2006.

23

http://www.openldap.org/doc/admin24

