

Consiglio Nazionale delle Ricerche
Istituto di Calcolo e Reti ad Alte Prestazioni

An Event Service for

Pervasive Grids

G. Della Vecchia – A. Coronato – M. Ciampi

RT-ICAR-NA-06-06 03-2006

Consiglio Nazionale delle Ricerche, Istituto di Calcolo e Reti ad Alte Prestazioni (ICAR)
– Sede di Napoli, Via P. Castellino 111, I-80131 Napoli, Tel: +39-0816139508, Fax: +39-
0816139531, e-mail: napoli@icar.cnr.it, URL: www.na.icar.cnr.it

 1

Consiglio Nazionale delle Ricerche
Istituto di Calcolo e Reti ad Alte Prestazioni

An Event Service for

Pervasive Grids1

G. Della Vecchia2 – A. Coronato3 – M. Ciampi2

Rapporto Tecnico N.:
RT-ICAR-NA-06-06

Data:
03-2006

1 Sottoposto per pubblicazione
2 Istituto di Calcolo e Reti ad Alte Prestazioni, ICAR-CNR, Sede di Napoli, Via P. Castellino 111, 80131 Napoli
3 Sviluppo ed Applicazione dei Sistemi Informativi Territoriali, SASIT-CNR, Sede di Napoli, Via P. Castellino 111,
 80131 Napoli

I rapporti tecnici dell’ICAR-CNR sono pubblicati dall’Istituto di Calcolo e Reti ad Alte Prestazioni del
Consiglio Nazionale delle Ricerche. Tali rapporti, approntati sotto l’esclusiva responsabilità scientifica
degli autori, descrivono attività di ricerca del personale e dei collaboratori dell’ICAR, in alcuni casi in un
formato preliminare prima della pubblicazione definitiva in altra sede.

 2

An Event Service for Pervasive Grids

Mario Ciampi
1
, Antonio Coronato

2
, Gennaro Della Vecchia

1

1
ICAR-CNR, Via Castellino 111, 80131 Napoli, Italy

{mario.ciampi,gennaro.dellavecchia @na.icar.cnr.it}
2
SASIT-CNR, Via Castellino 111, 80131 Napoli, Italy

{coronato.a@na.drr.cnr.it}

Abstract. Event driven paradigms have become the

leading model for large classes of applications and

environments. In particular, pervasive, ubiquitous, and grid

computing, in which services dynamically plug in and get

out, rely on middleware services that use communication

channels and events to integrate and coordinate application

level services. This work presents an advanced

asynchronous communication service, which is a core

component of a middleware, under construction, for

pervasive grid environments. Such a service handles

hierarchies of structured classes of events. In particular,

events are grouped in hierarchies of classes. Producers and

consumers can subscribe the communication service for one

or more classes; i.e., a consumer that subscribes a class

receives all the events of that class and of any other

hierarchically upper. The implemented model relies on well

established, structured paradigms as the producer/consumer

model, the message passing model, and the heredity

technique.

1. Introduction

During the last decade, new computing models have emerged and

affirmed. In particular, terms like Grid Computing and Pervasive

Computing have become of common use not only in the scientific and

academic world, but also in commercial and business fields. The Grid

computing model has emerged and rapidly affirmed as the new

2 Mario Ciampi, Antonio Coronato, and Gennaro Della Vecchia

computing paradigm for large-scale resource sharing and high-

performance distributed applications. The term “The Grid” was

primarily introduced by Foster and Kesselman to indicate a distributed

computing infrastructure for advanced science and engineering [1].

Successively, it has been extended to denote the virtualization of

distributed computing and data resources such as processing, network

bandwidth and storage capacity to create a single system image,

granting users and applications seamless access to vast IT capabilities.

As a result, Grids are geographically distributed environments,

equipped with shared heterogeneous services and resources accessible

by users and applications to solve complex computational problems and

to access to big storage spaces. Recently, Grid computing environments

are being extended in order to present some characteristics that are

typically found in pervasive computing environments.

Differently, the goal for Pervasive Computing is the development of

environments where highly heterogeneous hardware and software

components can seamlessly and spontaneously interoperate, in order to

provide a variety of services to users independently of the specific

characteristics of the environment and of the client devices [2].

Therefore, mobile devices should come into the environment in a

natural way, as their owner moves, and transparently, that is owner will

not have to carry out manual configuration operations for being able to

approach the services and the resources, and the environment has to be

able to self-adapt and self-configure in order to host incoming mobile

devices.

The conjunction of the two paradigms is leading towards Pervasive

Grid environments [3]. A key feature for Pervasive Grids is the

possibility of making mobile users able to get access to the Grid and to

move both among different areas within the same Grid environment

and among different Grid environments.

Such kind of environments are definitively highly dynamic, that is

users as well as services can be integrated on-the-fly in the

environment. This requires the environment be able to handle, compose

and coordinate services on-demand, depending on user’s needs and

context. In other words, such characteristics call for advanced

middleware services, which must confer to the environment autonomic

behaviours as self-management, self-configuration, and self-adaptation.

The programming paradigm that best fit emerging needs is the event-

driven model. In this case, applications and services are driven by

An Event Service for Pervasive Grids 3

events generated by the environment or components of it. This enables

to decouple services each other.

This work describes an asynchronous communication broker that

handles structured classes of events. The proposed model allows to

hierarchically classify events and enables producers and consumers to

subscribe specific classes of events. As a result, not only consumers

and producers are decoupled, but also, consumers receive only events

of the classes that they have subscribed.

The rest of this work is organized as follows. Section 2 discusses

some motivations and related works. Section 3 describes the proposed

model for handling structured classes of events and the architecture of

the asynchronous communication broker, which supports such a model.

In section 4 a case study is reported. Finally, section 5 concludes the

work.

2. Motivations and related works

Current Grid architectures do not take into account the mobile

computing environment since mobile devices have not been considered

as valid resources or interfaces in Grid community. However, in the last

few years mobile devices have substantially been enhanced and have

got a large diffusion in the market. As a consequence, they can no

longer be discriminated by Grid community. Differently, they can be

effectively incorporated into the Grid either as service consumer or as

service provider [4]. Such new potentialities have been attracting the

interest of several researchers. We cite some remarkable works that

face some aspects related to combining Grid and Mobile computing

[5,6,7].

In [5] new challenges stemming from implicit requirements are

outlined. In particular, authors emphasize some characteristics of

mobile devices and their impact in the Grid environment.

In [6] a new scheduling algorithm for Mobile Grid environments

have been proposed. Such a algorithm takes into account the

intermittent connectivity of mobile nodes, which are interfaced with the

Grid by specific proxy components.

In [7] mobile devices are considered as active resources for the Grid.

In particular, authors propose an architecture for deploying Grid

services on mobile nodes by making them active actors in the Grid.

4 Mario Ciampi, Antonio Coronato, and Gennaro Della Vecchia

In addition to this, in pervasive grid environments mobile users can

dynamically enter in a physical site and exit by leaving pending

computations. This calls for advanced session management

mechanisms. Moreover, every time a mobile user enters in a site, the

environment has to locate him and to provide him with the list of

services available at that location. Such a list may also depend on

hardware characteristics of the mobile device.

In both fields, pervasive computing and grid computing, specific

needs have been faced by developing middleware frameworks. Most of

them are event oriented middleware infrastructures, which rely on

event channels in order to enabling components to communicate each

other. For examples, we report GAIA [8] and the Globus Toolkit [9].

GAIA is a middleware infrastructure built at the Department of

Computer Science at the University of Illinois. It defines the concepts

of physical space and active space. A physical space is an area that

contains objects like devices and resources. An active space is a

physical space enriched by a software infrastructure that changes its

behavior depending on context and enables interactivity among users

and the environment. The GAIA kernel includes an event manager that

receives and dispatches events in the active space. It is important to

note that with this approach a consumer subscribes the channel and

receives every event dispatched by it. Contrary, in order to restrict the

set of events received by a consumer, distinct channels should be

available. In other words, GAIA doesn’t support direct mechanisms for

classifying and handling hierarchies of events.

The Globus Toolkit is the most diffused middleware infrastructure

for grid applications. Latest version of the Globus Toolkit implements

part of the WSNotification specifications [10,11]. Such specifications

define an interaction model based on the publish/subscribe paradigm;

i.e., a producer publishes a topic (class of events) and consumers can

subscribe it in order to get notification of events of that class. By this

way, a direct link among producers and consumers is established. As a

consequence, consumers and producers are not decoupled, but

consumers have to know which are the producers of any class of

events. Other problems arise when events of a class can be produced by

more sources: consumers have to know and subscribe every possible

producer. In addition to this, it is not possible to handle hierarchies of

classes of events. WSNotification specifications have been enhanced by

the WSBrokeredNotification [12] specifications that introduce the

An Event Service for Pervasive Grids 5

concept of broker as mediator between producers and consumers. This

allows to decouple producers and consumers. However, such

specifications are not supported by the Globus Toolkit yet and, more

important, they do not take into account hierarchies of classes of

events.

In this work, we present a model that extends the one proposed by

the WSBrokeredNotification specifications and implemented it as a

Grid Service that is part of a middleware we are developing for

Pervasive Grid environments. The service is compliant to the OGSA

standard [13] and can be deployed over the Globus Toolkit 3.2

platforms, or later.

3. The Asynchronous Communication Broker

A model for defining and handling structured classes of events

In a complex environment like a pervasive grid, events can be

grouped in classes, which can also be related each other and constitute

hierarchies.

To clarify such a concept, figure 1 can help understanding. In the

part a of the figure, events are classified and represented by sets as

follows:

• Class A = B U C U D U (E_A1; E_A2)= (E_A1; E_A2; E_B1;

E_C1; E_C2; E_D1)

• Class B = C U (E_B1) = (E_B1; E_C1; E_C2)

• Class C = (E_C1; E_C2)

• Class D = (E_D1)

An alternative representation is proposed in the part b of the figure.

This is more interesting for our aim because it allows to focus on

hierarchical properties of the classes of the events. In particular, for an

example, a consumer that subscribes for class D will receive only the

event E_D1. Differently, a consumer that subscribes for class B will

receive every events E_B1, E_C1, and E_C2.

6 Mario Ciampi, Antonio Coronato, and Gennaro Della Vecchia

Figure 1 – Representations of hierarchies of classes of events

Architecture of the service

The Asynchronous communication service handles hierarchies of

classes of events. In particular, it implements and extends (with the

model described previously) the WSBrokeredNotification

specifications. Figure 2 shows the following services functionalities:

• Publish Topic – This functionality allows producers to publish

topics, that is classes of events. When a new topic is published,

it can extend other already published topics. By this way,

hierarchies of classes can be defined.

• Unpublish Topic – This functionality is invoked by a producer

to communicate that it will no longer be a producer for that

class of events. If there isn’t any other producer for the topic,

the service remove the class of events from the list of available

topics.

• Notify Event – This functionality is required by the producer to

communicate a change of state, i.e. an event, to the Broker.

Consequently, the Broker dispatches the event to every

consumer that has subscribed the class which contains the

event, or a class hierarchically related to that one.

Class A

Class D

• E_D1
Class B

Class C

• E_C1
• E_C2

• E_B1

• E_A1

• E_A2

C

E_C1

E_C2

<<enumerative>>

B

E_B1

<<enumerative>>

A

E_A1

E_A2

<<enumerative>>

D

E_D1

<<enumerative>>

(a) (b)

Class A

Class D

• E_D1
Class B

Class C

• E_C1
• E_C2

• E_B1

• E_A1

• E_A2

Class A

Class D

• E_D1

Class D

• E_D1
Class B

Class C

• E_C1
• E_C2

• E_B1

Class B

Class C

• E_C1
• E_C2

Class C

• E_C1
• E_C2

• E_B1

• E_A1

• E_A2

C

E_C1

E_C2

<<enumerative>>

B

E_B1

<<enumerative>>

A

E_A1

E_A2

<<enumerative>>

D

E_D1

<<enumerative>>

C

E_C1

E_C2

<<enumerative>>

B

E_B1

<<enumerative>>

A

E_A1

E_A2

<<enumerative>>

D

E_D1

<<enumerative>>

(a) (b)

An Event Service for Pervasive Grids 7

• Verify Topic – This functionality enables producers and

consumers to verify weather a topic is active or not.

• Browse Topics – This functionality enables producers and

consumers to browse classes of events and hierarchies of

classes.

• Subscribe Topic – This functionality allows consumers to

subscribe a class of events. When a class is subscribed, the

consumer automatically subscribes every class hierarchically

upper.

• Unsubscribe Topic – This functionality is invoked by a

consumer to unsubscribe a class (and every other hierarchically

upper) of events.

Figure 2 – Service use cases

The internal architecture of the service is shown in figure 3.

In order to become a producer, a service active in the environment

has to publish a topic and to indicate the related hierarchy (if any). If

the topic is not already present in the list of available topics, it is

inserted in by the CommunicationChannel. After that, the

CommunicationChannel creates the WaitForEvents thread, which is in

Publish Topic

Unpublish Topic

Notify Event

Producer

Subscribe Topic

Unsubscribe T opic

Browse T opi c

Consumer

Verify Topic

8 Mario Ciampi, Antonio Coronato, and Gennaro Della Vecchia

charge of receiving events from the producer. When an event is

received, the CommunicationChannel creates one NotifyEvent thread

for each consumer that has subscribed that class, or any other

hierarchically lower.

The service has been developed as a Grid Service and deployed over

a Globus Toolkit 4.0 platform. It is an OGSA compliant component.

Figure 3 – Service architecture

4. An applicative scenario

This section presents an application scenario in which some basis

middleware services interacts each other for supporting a pervasive grid

environment. In particular, middleware services are:

• LocationService – This service locates mobile devices in the

environment. It is in charge of communicating to the

environment i) incoming devices, ii) location changes for active

mobile devices, and iii) outcoming devices.

AsynchronousCommunicationBroker

CommunicationChannel

publish Topic()

unpublishTop ic ()

sub scribeTop ic ()

unsubscribeTopic()

notify()

browseTopics()

verifyTopic()

<<component>>

W aitForEvents

<<thread>>

Consumer
Producer

Topics

1

1

1

1

Consumer

Topic

1

1..*

1

1..*
1

1..*

1 ..*

0..*

Producer
1..*

1..*

0..*

1 ..*

1..*
1..*

1..*

1

<<create>><<create>>

NotifyEvent

<<thread>>

<<create>><<create>>

Event

1

1..*

1

1..*1

0..*0..*

1

An Event Service for Pervasive Grids 9

• PersonalAgentService – This component is in charge of

interfacing with a mobile device and handling its requests.

• SessionManagerService – This service handles sessions for

mobile devices. It creates a PersonalAgent as soon as a new

device comes in the environment. When a mobile device

changes its location, the SessionManagerService updates the list

of services, which depends on the user location, available for

that device. Finally, when a mobile device exits the

environment, the SessionManagerService destroys its

PersonalAgent.

• DeviceService – This service handles the list of mobile devices

active in the environment.

For this scenario, three classes of events can be defined:

• Class MOBILITY = (NEW_LOCATION)

• Class PRESENCE = (NEW_DEVICE, DEVICE_HAS_LEFT)

• Class LOCALIZATION = MOBILITY U PRESENCE;

As shown in figure 4, the LocationService publishes the topic

LOCALIZATION, that is it can produce events like

NEW_LOCATION, NEW_DEVICE, and DEVICE_HAS_LEFT. The

SessionManagerService subscribes such a topic, whereas the

PersonalAgentService and the DeviceService respectively subscribe the

MOBILITY and the PRESENCE topics.

Figure 4 – Applicative scenario

Device
Session Manager Personal Agent

Location Service

Asynchronous Communication Broker

PRESENCE

MOBILITY

LOCALIZATION

Topics

10 Mario Ciampi, Antonio Coronato, and Gennaro Della Vecchia

5. Conclusions

This work has described an asynchronous communication service for

pervasive grid environments. The service implements a communication

model that enables to handle hierarchies of events. The models that we

propose is demonstrating to effectively handle events and hierarchies of

classes of events in pervasive grid environments.

References

[1] I. Foster, C. Kesselman, “The Grid: Blueprint for a New Computing

Infrastructure”. Morgan Kaufmann, 1999.

[2] D. Saha and A. Murkrjee, “Pervasive Computing: A Paradigm for

the 21st Century”, IEEE Computer, March 2003.

[3] V. Hingne, A. Joshi, T. Finin, H. Kargupta, E. Houstis, “Towards a

Pervasive Grid”, International Parallel and Distributed Processing

Symposium, IPDPS 2003.

[4] B. Clarke and M. Humphrey, “Beyond the ‘Device as Portal’:

Meeting the Requirements of Wireless and Mobile Devices in the

Legion of Grid Computing System”, International Parallel and

Distributed Processing Symposium, IPDPS 2002.

[5] T. Phan, L. Huang and C. Dulan, “Challenge: Integrating Mobile

Devices Into the Computational Grid”, International Conference on

Mobile Computing and Networking, MobiCom 2002.

[6] S. M. Park, Y. B. Ko and J. H. Kim, “Disconnected Operation

Service in Mobile Grid Computing”, International Conference on

Service Oriented Computing, ICSOC 2003.

[7] D. C. Chu and M. Humphrey, “Mobile OGSI.NET: Grid

Computing on Mobile Devices”, International Workshop on Grid

Computing, GRID 2004.

[8] C. Hess, M. Roman, R. Cerqueira, A. Ranganathan, R. H.

Campbell, and K. Nahrsted, “A Middleware Infrastructure for

An Event Service for Pervasive Grids 11

Active Spaces”, IEEE Pervasive Computing, October-December

2002.

[9] http://www.globus.org

[10] http://www.oasis-open.org/committees/download.php/13488/wsn-

ws-base_notification-1.3-spec-pr-01.pdf

[11] http://docs.oasis-open.org/wsn/2004/06/wsn-WS-Topics-1.2-draft-

01.pdf

[12] http://www.oasis-open.org/committees/download.php/13485/wsn-

ws-brokered_notification-1.3-spec-pr-01.pdf

[13] I. Foster, C. Kesselman, J. Nick, S. Tuecke, “The Physiology of the

Grid: An Open Grid Services Architecture for Distributed Systems

Integration”, Open Grid Service Infrastructure WG, Global Grid

Forum, June 22, 2002.

