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Abstract: This work focuses on the analysis of current grid security technologies. Its aim is
to establish if, where and how those technologies fail to meet the environmental requirements
for grids, indicating possible areas of future research. Grid security architectures are
examined with respect to an abstract model deduced by the Globus Toolkit, but which
conceives grids as tiered objects. A tiered approach naturally reflects the creation and
assessment of grid environments, allowing for implementation designs which are easier ana
safer to manage.
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1.Introduction.

A grid is a distributed computing architecture for delivering computing and data resource as a
service, using Internet hardware and software infrastructure to build the communication and control
middleware of distributed systems, and using a Web browser as the user interface to grid-enabled
applications (gridware).

As such, grids must be considered a natural evolution of previous distributed computing
environments, such as Multiprocessor Systems (MPs) and Clusters of Workstations (CoWs).
Indeed, both MPs and CoWs are distributed computing architectures with the following three
distinguished features: small (if any) hardware and software differences among computing nodes,
interconnection through shared memory or a crossbar switch network, and administration as a
single system in one single administrative domain; whereas a computational grid may consist of
clusters of networked single hosts, MPs, CoWs, in multiple different administrative domains,
scattered over departments, enterprises, or distributed globally even over the Internet.

In the research community the term “grid” refers usually to global grids, since those were quickly
recognized as a compelling, appealing evolution both of the world-wide Web and high
performance computing environments. As a matter of fact, global grids are extensively studied in
many papers, and various global grid infrastructures are currently under development within the
framework of relevant national and multinational projects (e.g. EGEE [EGEE], NINF [NINF],
NPACI [NPACI], this last one ended in 2004). Advanced prototype global grid middleware exist,
both in the form of open-source (e.g. Legion [LEGIO], Globus [GLOB], UNICORE [UNIC]) and
commercial (e.g. Sybase Avaki [AVAKI]) software. However, as we are going to delineate in this
introduction, the architectural approach introduced for global grids allow grids to be designed and
implemented as tiered objects, which is particularly appropriate with respect to security.

Global grid architectures are indeed based on the “hourglass model” [FOSO01], the same model used
in the deployment of the Internet: the narrow neck of the hourglass defines a small set of core
abstractions and protocols, onto which many different applications can be mapped and which
themselves can be mapped onto many different technologies. Moreover, the Globus Toolkit
[FOS99]- which nowadays is the de facto standard middleware for global computational grids - was
designed and implemented with respect to a layered architecture as the TCP/IP protocol suite and
which provides the following five layers: Application, Collective, Resource, Connectivity and
Fabric. The Globus Toolkit constitutes a (partial) implementation of Collective, Resource and
Connectivity layers, which in turn represent the neck of our hourglass. These layers define
protocols for the secure negotiation, initiation, monitoring, control, accounting, and payment of
sharing operations on individual resources and to capture interactions across collections of such
resources. At the bottom side of the hourglass there is the grid Fabric layer, which implements the
local, resource-specific operations that occur on specific resources, as a result of operations at
higher levels [FOSO01]. A resource may be a logical entity, such as a MP or a CoW, and its
implementation usually involves internal services and protocols, but these are not the concern of the
global grid architecture. A resource could also be a fully distributed computing architecture, which
uses Internet hardware and software to build communications and control, and Web technologies
to interface to its applications: in other words, such a resource could also be itself a grid, in the
sense of the definition given at the beginning of this section.

Thus grids can be represented as a tiered structure, in which they are organized with respect to their
dimensional scale. A tiered approach to grid architecture is useful, in a similar manner that it is
useful to consider layered networks.

First of all, local grid technologies have their own motivation and application, no matter if they are
employed to give rise to grids embedded in wider ones. Indeed, many experiences in these last
years show that they can be fruitfully employed to improve resource utilization and integration, and
nowadays a lot of both commercial and open-source software environment and toolkits exist to
address those requirements (e. g., Condor [COND], Digipede Network [DIGI], Moab Grid Suite
[MOABJ], Oracle Real Application Cluster [ORAC], Sun N1 Grid Engine [SUNTI]).

Second, a layered implementation naturally reflects the creation and assessment of grid
environments, since grids are not constructed from scratch, but they are obtained as a coordinated



resource sharing among existing collections of individuals, institutions and resources.

Finally, but with a major relevance from our viewpoint, a tiered approach to grid design allows for
implementations which are easier and safer to manage: connecting each node to a global grid on the
Internet is uselessly dangerous if the same functions and services can be achieved with only few
hosts belonging to a global grid and the others inter-operating via a local one.

The tiered structure of grids was pointed out in [GENO1, COOO02] and is at the basis of the
approach followed in the last years at Sun Microsystems to network computing and grid
technologies [ARKO04] . Following this approach, grid computing can be divided into the following
three logical level of deployment: Global, Enterprise and Cluster Grids. A cluster grid is the
simplest form of a grid, and provides a compute service to a group or department level. The point to
focus here is that a cluster grid constitutes a single administrative domain, in the sense that there are
a single Policy Authority and a unique, global accounting and access control policy for all the nodes
in the cluster. Moreover, cluster grids are built upon System Area Network (SAN) and/or Local
Area Network (LAN) technologies'. Enterprise grids enable multiple projects or departments to
share resources within the same enterprise or organization and don't necessarily address the security
and global policy management issues associated with global grids. With respect to that, enterprise
grids are composed of (possibly many) administrative domains, but all of them are deployed and
enforced within the global accounting and access control policy implemented at the enterprise level.
Enterprise grids are faced with the use of the Internet, though tunneling techniques such as virtual
private networks (VPN) can be enforced at this level for security and reliability. Finally, Global
grids are collections of enterprise and cluster grids as well as other geographically distributed
resources, all of which have agreed upon global usage policies and protocols to enable resource
sharing.

It should be clear that security issues greatly vary depending on the tier of grid considered. At the
top of the scale measuring security requirements are global grids, whose dynamic and multi-
institutional nature introduce challenging security issues that demand new technical approaches.
Scaling down, we first encounter enterprise grids and then, at the bottom of the scale, cluster grids.
It could appear that these two less complex environments do not require too much attention with
respect to security issues, as their security infrastructure could be derived with minor changes from
the more complex one implemented at the global tier. This misleading reasoning breaks up some
founding principles of computing security, first of all the Principle of Layered Defense and the
Principle of Weakest Link [PFL03], whose implications could be summarize as follows: although it
could be appropriate to overlap controls, in the expectation that one control will compensate for the
failure of another, overlapping computer security mechanisms should not result simply in
redundancy (that is, straightforward mechanism duplication), since redundancy could increase
administrative tasks, lowers easy of use and not offer actual improvements against attacks, not even
those based on the brute force approach. Moreover, (computational) grids are entailed to offer
heavy throughput computing, distributing many compute jobs onto different resources of the grid,
and composing individual results back into one global result. Thus grid security mechanisms should
be designed and implemented with a constant attention to performance and interoperability issues,
carefully minimizing their overhead.

The main aim of this paper is to establish if, where and how current grid security technologies fail
to meet the requirements imposed for such computing environments, indicating possible
alternatives and areas of future research. Our analysis is carried out with respect to an abstract
model for grid security architecture which accomplishes the tiered layering previously sketched and
takes into account the Globus Toolkit (GT) [GLOB] as a concrete grid implementation of reference.

2.Grid security challenges.

On the whole, security in grids is a particularly difficult problem. In global grid environments one
must deal with diverse local mechanisms, support dynamic creation of services, and enable
dynamic creation of trust domains (c. Def.2) [FOS98, FOSO01]. Since global grid computing is

1 Some authors ad IT professionals prefer the term “Departmental Grid”, since “Cluster Grid” could be confused with
“cluster computing”.



concerned with the sharing and coordinated use of resources and services scattered across multiple
control domains, one must assume the absence of central location, central control, omniscience and
existing trust relationships [GLOO02]. These issues and constraints are of little if any concern in
enterprise and cluster grids, but - in view of the considerations of the previous section - one here is
faced with performance and interoperability issues.

2.1.Environmental requirements.

Common to all grid environments is the need to control resource sharing, by means of rules
defining participants, resource providers, consumers, what is shared (also fraction of resources) and
the conditions under which sharing occurs. By extending a definition introduced in [FOS98] for
global grids, we refer to any set of individuals (figuring eventually as workgroups or institutions)
and resources defined by the above rules as a Virtual Organization (VO)>. The sharing rules
constitute the VO policy and the VO policy rules stating “who can do what and to whom” constitute
the VO security policy. The entities involved in a VO security policy are distinguished in two
classes, as VO security subjects and objects, respectively. A VO security subject is a grid entity that
carried out an action under the control of the VO security policy. Besides of the specific grid
considered, a security subject can be a user, a process acting on behalf of a user, a resource (such as
a computer host, an application, a device, a file, etc.), or a process operating on behalf of a resource.
A VO security object is instead a resource that is being protected by the VO security policy.

Since grids couple VO resources to enable advanced computing applications,

Single user Coexistence with | Dynamic creation | Dynamic creation Support for Support for secure
sign-on local security of services of trust domains | transient groups of group
VO users communications
Cluster Grids yes yes, at the yes yes, but not at the yes yes
Operating System institutional level
(OS) level
Enterprise Grids yes yes, both at yes yes, but not at the yes yes
Cluster and OS institutional level
levels
Global Grids yes yes, both at yes yes, coupling trust yes yes
Enterprise, Cluster domains at lower
and OS levels levels

their ultimate

security objective is the execution of such applications according to the VO security policy. It turns
out that grid security challenges are essentially related to authentication and access control in
distributed systems and that a VO security policy must be a distributed access control policy
designed on the basis of the peculiar environmental requirements for grids. These requirements
somewhat vary depending of the tier of grid considered, as shown in table 1, and can be
summarized as follows:

1. single sign-on. A user must be able to authenticate just once and then have access to all the grid
resources on which he/she is authorized, even in case of using hundreds of distributed resources
for a long period of time. Single sign-on increases easy of use, enabling to run complex
applications without further user intervention. It relies on delegation, that is the facility to
provide a process with the ability to run on a user's behalf, so that the process is able to access
resources beyond those under the control of the (eventually distributed) operating system which
hosts the user;

2. Coexistence with local security. Any grid environment is composed of multiple security domain,
a security domain being a logical, administrative structure under the control of a security policy
which is deployed and enforced by a single authority that the entities therein trust (c. Deff. 3-5).
At the lowest level, a security domain is realized in a centralized way via an operating system,
which implements all the communication channels and knows the user responsible for each

2 The meaning given here to the attribute “ virtual” is slightly different than that in [FOS98], since in our case a
virtual organization could in some case coincide with a concrete one.



process. An important requirement for grid architectures, which directly follows from its layered
nature, is that grid security policies and mechanisms at one tier must only interact with those at
the lower tier, without affecting them: as stated in the introduction grids are not constructed
from scratch, and it will be impractical to modify both local resource access control policies and
the mechanisms which implement them to accommodate inter-domain access; instead, one or
more entities in a trust domain at tier » must act as agents of principals at tier n+/ for local
resources;

3. Service creation. Quite apart from the tier considered, a grid computation is composed of a time-
varying set of processes running on different resources, possibly scattered among multiple
security domains. A computation may acquire, starts processes on, and release resources
dynamically during its execution;

4. Domain creation. According to the intentions of their designers [FOS98, FOS01, GLO02],
global grids should be systems to be carried out on-the-fly, coupling previously existing trust
domains into a wider one. Actually, because of reasons which we are going to investigate later,
global grid security design suffers a number of scalability and overhead issues which hardly
limit that requirement. In cluster and enterprise environments dynamic domain creation is a
concern too, but only to accomplish transient collaborations (see below), since security policies
are deployed and enforced on the basis of preexisting, real organizations;

5. Transient collaborations. As stated in [LOR04], many usage scenarios involving computational
grids are actually based on small, ad-hoc working groups within a long-lived VO which need to
establish transient collaborations with little or no intervention from the VO resource
administrators. The two main kind of transient collaborations are as follows: (1) a group of users
enrolled in the same VO which need to establish a collaboration in a peer-to-peer flavor, such
that any member of the group can delegate some other group member to usage of resources
(files, programs, disk space, CPU time, etc.) to which he/she has granted access by resource
administrators, and (2) a user or a group of a VO which wish to delegate some other users or
groups (not enrolled in the same VO, or not enrolled at all in any VO) to usage of the VO
resources;

6. Group communications. The processes constituting a computation may communicate by using a
variety of mechanisms, including multicast. A trivial solution for secure multicast is to set up a
secure point-to-point connection between every two participants in the group communication
session, but this solution is prohibitively inefficient in most cases and obviates the use of
multicast routing [CAN99].

Grid environmental requirements address a number of security related issues that can be grouped
into three main categories: interoperability, expressiveness and scalability issues. The first two
kinds of issues are equally relevant for both global, enterprise and cluster grids;, whereas
scalability issues affect especially global grids.

Interoperability issues concern the interaction between, at one side, the security policies and
mechanisms enforced at the operating system level and, at the other side, the VO security policy
and the grid middleware used to enforce it. The major difficulty here is to cope with a multitude of
operating systems, gaining a unique high level interface which is able to hide transparently their
heterogeneity and the specifics of local implementations.

Expressiveness issues are related to the capability for VO users to have fine-grained access control
to VO resources. Of course, that capability strictly depends upon legacy operating system
commands and tools for accessing and managing system resources and for administering user
privileges; what the above notion aims to convey in this context is that, with respect to the access
and management of resources of any operating system S belonging to a given VO, VO users should
not experience severe limitations if compared to standard users of S.

Security related scalability issues concern the overhead introduced to manage authentication, access
control and user privileges in grid environments. Grids introduce the need to establish security
relationships not simply in a client-server scenario, but in a more complex, hybrid programming
environment which should encompass as much as possible peer-to-peer networks [FOXOI,



LORO4]. In grid computations, potentially hundreds of processes distributed among hosts that
collectively span many administrative domains must interact securely, and securely access to
computing resources; furthermore, the dynamic nature of grids can make it impossible to establish
trust relationships between sites prior to application execution.

Before investigating the specifics of these issues with respect to a grid security architecture, it is
useful to report some concepts and terminology from the security literature. Moreover, it is clear
that our discussion requires a formal definition for both cluster, enterprise and global grids. In turn,
those definitions rely on a precise notion of trust relationship and related concepts, as frust and
security domain. These topics will be covered in the next subsection and in §3, where we delineate
a framework for grid security.

2.2.Security services for grids.

As previously stated, grid security is mainly targeted to the execution of applications according to a

VO security policy. In view of the environmental requirements detailed in the previous section, that

requires the control of resource sharing and usage in highly heterogeneous, dynamic, massive

distributed systems. Moreover, grid applications require both correct addressing and integrity for

application data and codes transferred over the grid to operate properly. As such, grid security

concerns the design and implementation of:

a) communication protocols devoted to the identification of a VO security subject to a VO security
object, and vice-versa;

b) policies and mechanisms for the deployment, administration and enforcement of privileges on
the basis of the identification phase (a);

¢) communication protocols which guarantee integrity and, eventually, encryption for data transfers
among the VO entities which are granted to be involved in such transfers, on the basis of the
privileges enforced by phase (b).

Items (a) and (c) are obviously related to entity authentication and message authentication. Item (c)

is also related to confidentiality. Finally, item (b) consists precisely in the access control service.

The above services are not specific to the kind of grid considered; they are not specific to grids at

all, since represent basic security services. With the only possible exception of the delegation

facility (c. § 2, sign-on requirement), grids security indeed relays on standard services. What is

specific to grids in general and to each one of the three tiers of grid, are the mechanisms to be used

to realize such security services and the way those must be implemented. As we shall see, these

issues strongly depends on the tier of grid considered.

2.2.1. Authentication

Entity authentication (or identification) is a service which assures one party (the verifier) of both
the identity and aliveness of a second party involved (the claimant), and is at the basis of any access
control mechanism. Entity authentication typically involves no meaningful message, but
corroboration of a claimant's identity through actual communications with an associated verifier in
real-time, that is while the verifying entity awaits. In grids, identification must be performed both in
user-computer interactions than in computer-computer interactions. The latter typically occurs
when a process running on behalf of a user on a given host needs a service or a resource from
another host. In that case, authentication is required in both directions (mutual authentication), in
order to guarantee both the host acting as server and the requesting process. Indeed, while users and
processes are subjected to impersonation attacks, in a spoofing attack a system masquerades as
another system, tricking a remote user or application into disclosing information.

Message authentication, where a message may represent both (a piece of) data and code, is instead
a security service that provides to a party, which receive a message, assurance of the identity of the
message's source (that is, the party which originated the message). This form of authentication
typically provides no guarantee of timeliness, but involves meaningful messages and it is useful in
circumstances where one of the parties is not active in the communication. It implicitly provides
message integrity, since the receiver can verify if a message was modified during transmission, or
substituted for a false one.



2.2.2.Confidentiality

Confidentiality or secrecy means to keep the content of information from all but those authorized to
have it. This kind of service can be performed at various levels, and is specific to one of the two
following security objectives: channel protection and message protection. In channel protection the
goal is to avoid disclosure of both source, destination and distinctive traffic parameters to
unauthorized parties. Instead, message protection aims to protect from disclosure the user data
transmitted during a period of time. Message protection can be enforced at different degrees,
depending on the percentage of protected messages and the protected fields for each message.
Confidentiality should only be employed to transmit sensitive data, since the overhead it introduces
could heavily influence the performance of the targeted application. For that reason, and since
export control laws regarding encryption technologies are complex, dynamic and vary from country
to country, confidentiality is only required as an optional service in grid environments.

2.2.2.Access control

In grids, access control is concerned with evaluating every request, submitted by a VO security
subject, to access or use a VO security object to determine whether the request should be allowed or
denied on the basis of the VO security policy. In this context the distinction between policies and
mechanisms is important: access control policies define high-level guidelines establishing rules that
regulate access to resources, whereas access control mechanisms are low-level software and/or
hardware functions which act together to implement one or more access control policies. Typically,
access control mechanisms are split in two functional moduli: policy decision points (PDPs) and
policy enforcement points (PEPs), which may be co-located or separated. PDPs receive as inputs
attributes and policies related to the subject who makes access request to a resource, along with
resource specification, and output access control decisions; whereas PEPs enforce access decision
made by PDPs. At the grid level, in view of the environmental requirement (2), access control
mechanisms result in add-on software (and, eventually, in the hardware on which run such
software) that acts as a “glue” with respect to the various access control mechanisms implemented
at the operating system level. In grids, PEPs are realized at the operating systems level, reusing as
much as possible legacy commands and tools for accessing and managing system resources and for
administering user privileges. That is a natural consequence of the fact that resources are ultimately
managed by operating systems. Instead, a typical approach followed in grid implementations is to
realize PDPs in the middleware layer [LORO04]. Although that allows for more scalability in global
grid environments, it could result in various security drawbacks; we are going to detail about this in
a next section.

3.A framework for grid security.

As detailed in §2.2, entity and message authentication services are mandatory in grid architectures.
The most common technique used for both services is as follows: the verifier checks the correctness
of a message (possibly in response to an earlier message), which demonstrates that the claimant (as
entity or data-source, respectively) is in possession of a secret associated by design with the
genuine party. Typically, the secret is a private or a symmetric key K and the proof of correctness
consists in the verification that some data, encrypted with K, can be decrypted with a paired key
K' for K, or vice versa’. In any case, practical implementations relies on key management, which
establish how keying material is generated and how it is distributed, used and updated among
authorized parties [MEN97] . Key management is an outstanding challenge in the context of grids,
because such complex distributed environments require ad hoc communication models and
procedures.

According to our definition of trust relationship (§3.1, def.1), one could equivalently say that key
management concerns the way trust relationships are implemented and propagated between parties
ina VO.

3 K’ will be the paired public key in case of asymmetric cryptographic systems, and a key that can be easily deduced
from K (possibly K'=K) in case of symmetric systems.



3.1.The notion of “trust”, and related concepts.

In the sequel we give a formal definition for “trust” and for some related concepts. The concept of
trust has a wide range of notions and aspects [SWA99]; the following definition was derived from a
less formal one stated in [MEN97].

Def.1 (trust relationship) Let ab two entities. We say that a trusts b and use the notationa T b

if one of the two following conditions occurs:

i. a and b share a key and/or a password k and a assumes that b shares k with ¢ € E only if a
shares k with ¢, too;

ii. a assumes to know an authentic and up-to-date public key of b.

It easily follows that a trust relationship T satisfies the reflexive property. What about the
symmetric and transitive ones ? We need to add some detail on “why” the involved parties are
induced to do their assumptions, perhaps postulating something, so that one or both these two
properties hold. For example, nothing can guarantee us a priori that, if (i) is satisfied, then b will be
induced to do an assumption equivalent to that of a. Analogously, we cannot have evidence that if a
assumes something on b and b assumes the same thing on c, then a will assume the same thing on
¢, too. This gap results because the previous definition does not say anything on how assumptions
are built.

Ifboth a T band b T a hold, we say that ab mutually trust each other and we write simply a
T b

Def.2 (trust domain) Let E be a set of entities. Suppose that it exists a (mutual) trust relationship
T such that, for any e, e € E it follows that e T e'. Then we say that T is a trust relationship on
the set E and we call trust domain the set E considered with the above trust relationship .

Def.3 (trusted third party) Let a be an entity and E be a set of entities. Suppose that it exists a
(mutual) trust relationship T such that, for any e € E it follows that e T a. Then we say that T is
a trust relationship between a and the elements of E or - alternatively - that a is a trusted third
party (TTP) for the entities in E We sometimes prefer the notation T, to T, to stress that the trust
relationship is enforced by a.

Notice that a trust relationship T between a and the elements of E is not in general a trust
relationship on E since e T a for each e € E does not imply that e T €' for any two elements
ee'e E such that ee'# a; Conversely, it could happen that any such couple of elements e,e' is
not in relation T, because the transitive property does not hold for t. In other words, a set E whose
elements trust a given TTP a with respect to a trust relationship T, is not usually a trust domain
under T,; we thus give the following:

Def.4 (trust domain generated by a TTP) Let a be an entity and E be a set of entities such that a
is TTP for E We say that E is a trust domain generated by the TTP a if the set E considered with
the trust relationship T, among a and the elements of E is a trust domain.

Def.5 (security domain generated by a TTP) Let a be an entity. Let E and R be a set of entities
and a set of resources, respectively. A security domain under the control of a is a triple (ERyr),
where E is the set of subjects and R is the set of objects of a security policy  which is deployed
and enforced by a, that is a TTP for the entities in E

Again, a security domain (E,Ryr) does not results, generally speaking, in a trust domain for the set E
of the objects of the security policy m, because m does not subtend a transitive trust relationship



between the TTP and E In order to achieve such transitive property, we need to assume that a is not
only a trusted third party, but it has the capability to give corroborate evidence of the trustworthy
of a given entity to any other party: since two any elements in E trust a as the TTP of E then they
mutually trust each other. Besides of the reasons for that to occur, it is the fundamental, inherent
characteristic of a certification authority (c. [MEN97]):

Def.6 (certification authority) Let a be a TTP for a set E of entities. We say that a is a
certification authority (CA) for E if, for any two ee'€ E such thate T a and e' T a, then it
follows thate T e'.

3.2.Cluster, enterprise and global grids.

We said in §2 that grid security challenges are essentially related to authentication and access
control in distributed systems, and that a VO security policy must be a distributed access control
policy designed on the basis of the peculiar environmental requirements for grids. We said also that
any grid environment is composed of multiple security domain, as per Def.5, and that, at the lowest
level, a security domain is realized in a centralized way via an operating system, which implements
all the communication channels and knows the user responsible for each process.

The main aim of this section is to investigate more deeply the authentication and access control
problems in grids, detailing the above statement, and giving formal definitions for the three kind
of grid environments which was informally introduced in §1.

At this point, for a better understanding of the sequel, it is useful to add some words on the way
authentication and access control operates at the system level; that will lead us to remark the
distinction between the notions of (registered) user, user name and subject (of a security policy).

In general-purpose operating systems (that is by far the usual case for grids), access control policies
are usually discretionary [DODS85] in their nature, that is access to system resources is granted only
on the basis of the identity of users and/or groups to which they belong®. Thus, user authentication
is a prerequisite for access control and, if successful, it results in one or more user processes which
inherit the user identity (UID) via suitable process identifiers (RUID, EUID, etc.). Modern
operating systems implement various mechanisms to realize user authentication, but in any case
those mechanisms are based upon some secret or unforgeable data which is shared among the
operating system and the user®.

Let s denote an operating system; then the access control implemented by it results in a security
policy whose objects are the resources of s. Moreover, s is trusted, as per def. 1.i, both by the
authority that specifies the policy and the users who are registered on s. The above trust relationship
is mutual, since s assumes that a user shares its login and password with other users only if that
information is related to a group account®.

Thus s has a security domain (ERm) naturally associated to it (c. Def. 5), where 7 denotes the
access control policy enforced by s, R is the set of resources belonging to s, and E is the set of
entities which are subjected to that policy. E consists precisely in the time varying set of user's
processes running on the system’. If U denotes the set of users registered on system s, and E is the
set of subjects of the access control policy on s, then one of the tasks of the operating system, as a

4 Recent general purpose operating systems (e. g. Microsoft Windows NT and derivatives, Sun Solaris 10) provides
Role-based access control (RBAC), in which authorizations to access system resources are assigned to roles, not to
users anymore, whereas users are given authorizations to activate roles.

5 The shared information consists usually of the couple (login name, password), where login name is a public
string uniquely associated by the system to any registered user, and password is a secret string owned by that user
or, in more recent implementations, an hash of such string.

6 As a matter of fact, an operating system cannot detect if the password of a given user was compromised; we thus
assume that passwords are good ones from the OS's perspective.

7 Although each access reguest tosis originated by users for the purpose of performing some action on the resources
under the control of s, auser is a“passive” entity for whom authorizations are defined and who can only connect to
the system. Thus, strictly speaking, users cannot be subjects of a security policy, since they do not carry out any
action on a system (c. 82). Indeed, the operating systems does not interact directly with a user u to enforce the
access control policy onsrelative tou, but with processes running onson behalf of u.



consequence of a successful authentication phase, is that of applying a mapping o: U — E in order
to properly associate user's identities to the activity on the system. Thus, it follows that o(U) < E
not that U € E. However, in IT terminology the term user is often used in a broader sense than that
conveyed by the expression registered user, indicating an accessing agent to a general object of a
policy [PLFO03]. In grid literature, for example, the term refers both to a person and an agent (that
is, a process) on whose behalf the grid computation is being run [FOS98]. We adopt that
terminology, denoting with U the set composed of both people which have an account on a given
operating system s and agents acting on s on behalf of such people; thus, with a somewhat
notational abuse, we speak in the following of “sets U of (registered) users such that U = E’, where
E denotes as usual a set of security policy subjects.

A one more distinction takes relevance in our analysis of grid security, that concerning registered
users and user names (or, equivalently, login names). It could appear somewhat obvious and
useless to remark the difference between these two notions; indeed, when it is clear from the
context, we sometimes use the term user purporting instead as user name, for conciseness reasons.
What we wish to stress here is that our model has to emphasize in some circumstances that
difference. First of all, differently than in the single system case, where usually one has a one-to-
one mapping from the system's users to the user's identifiers for that system, in the context of grids
the usual case is that to the same grid user correspond many user names, each name being the
identifier of that user for a particular system. Thus, our model needs to sharply differentiate
between individuals (or groups) which figure in a VO and the way such individuals are registered
on the various operating systems that belong to the pool of resources that such VO has access to.
Moreover, the same individual can figure on a system s both as a user of s and a user of a grid
which includes s among its resources. Eventually, both the previous circumstances could be
simultaneously true. Because of the environmental requirements (1) and (2), that is single sign-on
and coexistence with local security (c. §2.1); then it follows that to avoid conflicts one has to
distinguish between identification at the operating system level and identification at the various grid
levels (that is: cluster, enterprise and global). For example, suppose that there are two users ui, Uy,
which are registered with the same user name u' on systems s; and s,, respectively. Suppose now
that user u, gets enrolled in a grid which includes s; and s, among its resources. If u; had the same
identifier u' both at the operating system and grid levels, it would be impossible to distinguish u,
from u, on system s,. The need for each VO user to have two kinds of user name, a VO user name
and a potentially different local name on each VO resource was clearly expressed in [FOS98]. In
our tiered approach to grid security, the general case results in a user u which has a single global
user name to access as user of a global grid, plus as many user names as many enterprise grids,
cluster grids and operating systems compose the global grid®. Each level requires its separate name
space, and an user access at one level requires as many name translation as many tiers the user
must traverse to reach that level. For example, suppose that a user u, enrolled in an enterprise grid
Eg wishes to read a file under the control of an operating system s, which belongs to a cluster
environment Cg embedded in Eg That access requires a total of two name translations: a first one
from the Eg to the Cg name space, and a second one from the Cg to the s name space. Of course, if
s was included in Eg directly as a system and not as a Cg component, it would suffice only one
translation from the Eg to the s name space. The mapping of a name space to another one has to be
defined at the lower level, and is site-specific. For example, the Cg interface at Eg could map Eg
names to a predefined Cg name, a dynamically allocated Cg name, or a single “group” name. That
is again a consequence of requirement (2), which poses also a somewhat different restriction: if a
user u has an account u' on a system s, and then he/she gets enrolled in a grid which includes s
among its resources; then he/she should be logged on s as u', instead of being logged with the
user name(s) that the grid interface on s uses to login grid users that do not have a specific local
account on s.

All that premised, we assume that a grid is an operating environment (U,S) composed of a finite set

8 It should be clear that, because of requirement (2), a naming convention such that the one used in the Domain Name
Service cannot be successfully employed here.



Rof resources distributed among a finite set S of (possibly distributed) operating systems, and that

the resources in R must be shared among afinite set Uof usersin such away that:

1. Any resource reRis under the control of just oneseS; i. e. R=U.s s, where sns' if s#s'. For
commodity purposes, we enumerate the elements in S @Ss, Sy,..., Sm, SOthat si={ri, rio,...rj |
denotes the operating system in Sto which pertains the grid resources shown in brackets;

2. The system s;={riy, rp,....r;; | enforces a certain access control policy m; on aset U of users,
which are enrolled in the grid environment and are registered on systemss;. That, as previousy
stated, results into a security domain (E,s;,m ), where U < E and E consists precisely in the
time varying set of user's processes running on systems;;

3. A grid user u? U is subject to access control policies and mechanisms which inter-operate with
the ones enforced at the system level, in order to assure that grid resources are used properly;

4. Systems and users communicate along unsecured channels, from which parties other than those
for which the information is intended can reorder, delete, insert, or read;

It follows that (U,S) results in m security domains (E,s;,m; ), which control accesses by (possible)
overlapping sets of users to disjoint sets of resources, on the basis of security policies that are
specific of the system to which the requested resource belongs.

Requirement (3) above corresponds to the coexistence with local security requirement and,
together with the single sign-on facility, it results in the following two coexistence statements:

Statement.1 (Coexistence with previous enrollments) Let (US)be an operating environment in
which a set of users U is entailed to use a set of resources S. Suppose that S=US, where S denotes
the set of resources related to the operating environment (U,S), (i=1,...,n).
A global naming scheme for (U;S) is a 1-to-n mapping y: U — UU such that:
« y=(yu,...yn), wherey, €U foreachi,
- ifueU is a user name related to a user which was previously registered as u, in (U,S), then
y(ulnU=u,.

Statement.2 (Coexistence with previous domains). Let (U,S) be an operating environment as in
statement 1, and let y: U — UU be a global naming scheme for (US) Let (E,S,m;) be the security
domain associated to the environment (U,S ), where m; denotes the access control policy local to
S, E (E>U) is the set of entities which are the subjects of that policy, and\J ( E>\U) is the set
of users entailed to use the resources of S.
If an user u requests access to a resource r, an (overall) access control policy 7 for (US) acts as
follows:

« ifugUl orrgUs, then  rejects the request;

« ifuel and reS, then v acts as m;;

« ifueld and reS, withi#j, then ™ uses y to map u to u'e€l , eventually imposing some

access restrictions on u' as acting on behalf of u, and finally acts as ;.

It is important to remark, at this point, two basic facts about the grid access control policymr
introduced via the previous statements.

First, analogously that access control policies at the operating system level, = has been conceived
as a discretionary access control policy; this is probably the simplest way to satisfy the coexistence
with local security requirement and was a main design choice for the Globus Toolkit [FOS98].
However that choice results in serious drawbacks in the implementation of global grids, since it
imposes a trade-off between expressiveness and scalability issues. Indeed, if ueU and re§ with
i #j, then 7t relays on impersonation: the user u is mapped to another user u', which is a subject for
the access control policy local to §. Thus, the finest-grain access control in (U,S) is achieved when
the global naming scheme y is partially injective on any U, that is if from u,u'€U and u#u' it then
follows that y(u)nU # y(u')nU;. But this case results, for any operating system belonging to a



given VO, in a number of local accounts which is at least equal to the total number of the VO
security subjects. Since any new account requires (manual) intervention from system
administrators, the above scenario has the drawback of daunting management and it is not scalable
at all, so it can be employed only for grids of small dimensions (that is, with a small set of users
and/or resources).

The second thing we wish here to emphasize about the grid access control policyr introduced
previously, is that its effective enforcement requires that entities and systems belonging to different
security domains are mutually authenticated. Indeed, if an entity ecE requests access for a resource
re§ withi #j, then:

- avoiding impersonation attacks [PFL03] requires that § has corroborated evidence that the
system from which the request was issued is actually S, and that e is not impersonated by
another entity on § (in general, granting access to a resource depends both on the remote
system from which the resource usage request was issued and the particular user which made
the request);

- avoiding spoofing attacks [PFLO3] requires that e has assurance of the identity of §.

Thus it follows that both users and systems related to a grid environment must all belong to a trust
domain E as per Def.2. Eventually, E could be a trust domain resulting from the aggregation of
multiple trust domains, and in such case we shall refer to E as a composite trust domain. In both
cases (simple or composite), it must exist a set of communication methods and procedures such that
any two entities in E can mutually trust each other; these communication methods and procedures
can be organized in a variety of ways, which are called trust models.

As we are going to show, one main difference between cluster, enterprise and global environments
consists actually in the nature of E as a trust domain.

Another major difference, as stated in the introduction, concerns Policy Authorities: in cluster and
enterprise grids system-wide access control policies are defined, implemented and managed with
respect to a root Policy Authority, whereas that is not the case for global grids.

Def.6 (Cluster grid) 4 cluster grid is a grid environment (US) with the following additional

properties:

5. Any s,€S represents an operating system with an associated security domain (E,R,m), where
U=UU, U < E and E consists precisely in the time varying set of user's processes running on systems;;

6. Thereisan overall access control policy r, satisfying the coexistence statements with respect to
the security domains (E ,s;,m; ) associated to the operating systemss; €S

7. m is defined, implemented and managed by a single Policy Authority;

8. Usars and systems are interconnected via a local area network, such that the overhead
introduced by any cryptosystem is not negligible with respect to the network latency.

As directly follows from requirement (5), any cluster grid environment (US) involves a trust
domain (E ), where E=WS and r isatrust relationship such thatp = q for any p and g, wherep,

g may denote both users involved into the grid, processes running on behalf of such users and
operating systemss; €S. Since, typically, an operating system is not a certification authority for the
USEr's processes running on the system, the security domain (E,s;,m;) isnot atrust domain, so that

E resultsin asimple trust domain.

Def.7 (Enterprise grid) An enterprise grid is a grid environment (U,S) such that U=UU, S=US

and with the following additional properties:

5.Any (U,S) represents a cluster grid as per def. 6, with an associated security domain (E ,R,m),
where E results in a trust domain with respect to the trust relationship induced by the access
control policy m;;

6'. There is an overall security policy m satisfying statements 1 and 2 with respect the security
domainsin (5);



7'.  is defined, implemented and managed by a single Policy Authority,

8'. Users and systems from different clusters are interconnected each other not necessarily via a
local area network, and the overhead introduced by suitable cryptosystems is negligible with
respect to the network latency;

Def.8 (Global grid) A global grid is a grid environment (US) such that U=Uy, S=US and with

the following additional properties:

5".Any (U.S) represents an enterprise or a cluster grid as per deff. 6 and 7, with an associated
security domain (E R, ), where E resultsin a trust domain with respect to the trust relationship
induced by the access control policy m;

6".Thereisan overall security policy m which satisfies the coexistence statements with respect the
security domainsin (5");

7".t cannot be defined, implemented and managed by a single Policy Authority; instead, that
requires the mutual interaction of as many Policy Authorities as the enterprise and cluster grids
which compose the global one;

8".Users and systems from different (U,S) are interconnected each other via the Internet, and the
overhead introduced by any cryptosystem is negligible with respect to the network latency;

In enterprise and global grids the related trust domains are composite; they, indeed, are obtained in
a recursive manner, by imposing suitable trust relationships among lower level trust domains in
such a way that both coexistence statements 1 and 2 are satisfied.

It is useful to remark here that the global access control policy for any grid environment of tier n (n
=1,2,3) results in the access control policies enforced at the operating system level, plus »
authentication schemes whose function is solely to guarantee the proper application of such local
policies in the VO's context. Moreover, as implicitly stated Statement 2, some access control could
be performed at some grid level, and eventually for all tiers of a given grid.

3.3.The reference model.

It should be clear from what stated in the previous section, that there are three distinctive and
strictly interlaced characteristics in a grid security architecture:

- the way authentication and authorization is realized at the operating system level;

« how (if any) authorization operates at the grid level,

« how authentication schemes are implemented in the different grid tiers;

Let us consider a grid environment of tier n (n =1,2,3); for the description of its security
architecture, it is useful to distinguish three different logical subsystems: the Virtual Organization
(VO) space, the Trust (T) space and the Process (P) space, as shown in Fig.1.

The VO space is the framework in which VOs are deployed and organized; it consists in the set of
entities which are the subjects or the objects of the grid access control policy 7 at tier n, and in
itself, which ultimate goal is to control accesses of grid processes originated from VO's security
subjects to the VO's security objects (c. §3.2).

The VO is composed of multiple security domains, each security domain being a set of users and
resources which are under the control of the same operating system. Such security domains have
their own local access control policies i, and they are glued together by means of the T space into
the wider trust domain which is at the basis of the overall access control policy m. The T space
consists, in turn, of the set of communication methods and procedures such that any two entities in
the VO can mutually trust each other; and the way those methods and procedures are organized
constitutes the trust model adopted in the grid. Because of the tiered nature of grids, the T space
actually consists of different trust domains; in such a way that at the highest tier n corresponds only
one trust domain and that if a domain related to tier p is embedded into a domain of tier ¢ then
p=q<=n.

With respect to the above trust models, it first comes out that - as for any other complex distributed
environment - public-key techniques offer relevant advantages versus symmetric-key ones,



allowing simplified management, better scalability and enhanced functionality. Indeed, asymmetric
techniques offer “built in” features such as non repudiation and single-source data origin
authentication; moreover, as opposed to secret keys, only authenticity of public key is required,
which can be achieved by means of a trusted off-line service performing key authentication plus an
untrusted on-line server for delivering such authenticated keys to users [MEN97].

Trust Models (Authentication)

Authorization / Privilege Management

Fig. 1 — Two logical subsystem, the T (Trust) space and the P (Process) space surround
the VO space and are related to grid authentication and access control, respectively. The
figure illustrates a special case in which four operating system security domains A,B,C
and D are glued together in the T space in such a way that A and B give rise to a cluster
grid AB, AB and C result in an enterprise grid ABC and, finally, ABC and D realize a
global grid.

Thus, a public key infrastructure (PKI) is mandatory in the T space, and the trust models above
result in some of the existing alternatives to provide a “chain of trust” from a public key that is
known to be authentic through to a specific user's or resource's public key. PKIs are usually
deployed and implemented with respect to the X.509 Internet standard; this is the rule of thumb for
grids too [FOS99, GRIY9], so in the next subsection we will focus on analyzing X.509-based
public-key infrastructures (PKIX).

The last subsystem is the P space, and relates to process management (e.g. : creation, process-to
process interaction, access to resources) in the context of a grid computation. From a security
viewpoint, the P space is concerned with authorization and management of user and process
privileges. This subsystem assures the proper execution of grid aware applications with respect to
the parties and the resources involved, whose identity is corroborated on the basis of the
authentication service implemented in the T space. In this context too, because of the nature of grid
computations, grids demands for tailored security protocols and mechanisms; but, conversely than
in the T space case, now there are not reference standards to adopt.

3.4.The X.509 Internet standard.

The X.509 Internet standard is a subset of the ITU-T X.500 specifications for a directory service,
that is a (possibly distributed) public available database about a set of users and some related
information (such as their network addresses, public-keys, and so on). X.509 concerns the
definition of authentication procedures which are based upon the notion of public key digital



certificate (or digital signature). The use of public key certificates (PKCs), as proposed in
[KOH78], was to securely bind a user's name to his public key, thus providing a means of entity
authentication. This use was subsequently adopted by X.509 v.1 certificates [X509v1] and Pretty
Good Privacy (PGP) certificates [ZIM95]. The application receiving such a certificate could answer
the question “who is wanting to access the service”, concerning authentication, but could not
answer the supplementary question related to authorization or access control, that is “which (level
of) service is this user allowed to access”, without recourse to additional, external access control
information. The nowadays up-to-date version 3 of X.509, issued in 1995, provides some optional
extension fields for PKCs, allowing information related to both authentication and authorization to
be contained in certificates [X509v3].

An X.509 PKC [X509v3] is issued by an entity a which guarantees about the correct binding of a
given user (the subscriber) to his public key. It is basically an electronic document consisting of a
data part and a signature part. The data part contains clear-text information about the identity of the
subscriber (a multi-component, alphanumeric string called Distinguished Name or briefly DN) and
its public key’, plus other (sometimes optional) miscellaneous information such as additional
knowledge (e.g., street or network address) about a, the lifetime of the certificate, its serial number,
additional information about the key (e.g., algorithm and intended use), etc. The version 3
certificate contains some more extension fields which enable to bind public keys to attributes of an
entity other than the entity's identity, such as a role, a title, a creditworthiness information or — as
stated before — an access control information with respect to one or more resources. The signature
part consists of the hash of the data part encrypted with the a's private key. If e is a party and a
issues a public key certificate for it, then X.509 uses the notation a<<e >> to indicate such
certificate. The issuer a is supposed to have, with some minor variations that does not influence our
reasoning, the following behavior:

Cl.manages its private key with integrity and confidentiality protection, assuring that no other
entity can sign certificates with that key;

C2.implements a secure, peer-to-peer channel with each principal in a set E which represents the
set of users that are authorized - as subscribers '’ - to make use of the service offered by a;

C3.delivers its public-key(s) to each ecE and receives €'s public-key(s) via the secure channel
implemented in the previous step;

C4.issues public-key certificates for its subscribers;

CS5.revokes a user's certificate, and issues a new one containing the new replacement public key, in
case that a user's public key becomes comprised, or is lost or stolen;

Cé6.manages the list of revoked certificates (Certificate Revocation Lists, CRL), updating and
signing it regularly to guarantee a valid and up-to-date information;

Because of C1-C3, it follows that (E;r,) is a trust domain generated by the TTP a (c. Def.4), where
T, 1s the relationship defined in the set E, as follows:

Ta € Ta€' iff a<<e'>>

Indeed, T, represents a trust relationship in the sense of Def.1.ii., and precisely a mutual trust

9 There are, however, some exceptions to the above binding among a subscriber user-name and a public-key. Two
of them include devices certificates, in which the subscriber is usually the individual or organization controlling the
device, and anonymous certificates, in which the identity of the individual or organization is not available from the
certificate itself.

10 The above secure channel is provided to a user as a consequence of a registration phase, which requires itself
verification of the identity of the user and its enrollment as subscriber of the service with a DN within a name-space
for the subscribers of the a's service. Those previous two functions may be delegated to entities different than a, in
which case we will have a separate registration authority and name server; conversely, a may carry out both the
function of a registration authority and a name server. In any case, the registration and naming functions have to be
performed in such a way that the DN and the public-key are permanently assigned to only one entity: even after
revocation or expiration, they cannot be reused for another entity.



relationship on E with a as a TTP for E Moreover, since a public-key certificate is a way to
securely bind a public-key to the identity of a subscriber, and because of C4-C6, it follows that a
constitutes a certification authority for E in the sense of Def.6. On the basis of the previous result,
one can implement PKIX-based mutual authentication among principals in E as explained in the
following. Before describing the authentication protocol itself, we need some detail on how public-
private key pairs are managed by principals. Key management for any given principal ecE proceeds
in the following two steps:

K1.The principal e generates a public-private key pair and stores the private key in local storage
with integrity and confidentiality protection. It sends its public key to the certification authority
a, using the secure channel implemented by a in step C2;

K2.The public-key of e and its identifying information (e's distinguished user name) are signed by
a, resulting in the so called €'s public-key certificate a<<e >> issued by a, which is commonly
returned to e.

Finally, authentication of a principal ecE (called in such respect the claimant) to another principal
e' €E (the verifier), proceeds as follows:

Al.the verifier ' obtains the public key of the certification authority a, using the secure peer-to-
peer channel implemented for it by a in step C2, and stores that key with integrity protection.
Then e' sends to the claimant some (random) data D, as a challenge of identity and aliveness (c.
§2.2), storing it locally with integrity protection, too;

A2.the claimant e signs the data D with its private-key; then sends the resulting signature on D and
its public-key certificate a<<e >> to the verifier e';

A3.the verifier uses a's public-key and a<<e >> to obtain evidence of the authenticity of e's public-
key, then decrypts by means of that key the received encrypted D from e. If the output of the
above procedure is D, then e' assumes to be in communication with e, otherwise not.

In order for a certification authority to communicate with its subscribers in a cost-effective and
reliable way, because of (C2), there must be an existing close relationship between them. Generally,
authorities only have a suitable relationship with a limited community; on the other hand, like in
global grids, PKIXs are often required to scale beyond such limits. Therefore, PKIXs with multiple
CAs are required, and the authorities' keys must be shared amongst the participants in a secure
manner: the way of that secure sharing determines the adopted trust model in the PKIX.

The X.509 standard does not insist on any particular trust model [X509], since as an international
standard it should be able to cater for all requirements; it only establishes the following one more
capability for an issuer:

C7.a CA can eventually manage trust relationships with other CAs;

and introduces the notion of certificate chain as the basis to propagate trust from a public key that is
known to be authentic through to a specific user's or resource's public key.
Let e , e' be subscribers for authorities a and a', respectively; if there exist a sequence a=at,

a2, ., an=a' of CAs by means of those it is possible to establish a chain of X.509 certificates, then e
trusts e’

e te' if: at<<az >>ap<<az>>..an-1<<an >>

where T is again a trust relationship in the sense of Def.1.ii, which has to be considered as an
extension of T, beyond the set E. The above result is a straightforward consequence of the fact that
a1, a2, ., an are all certification authorities in the sense of Def.6.

Because of Internet's massive growth and recent developments in theory and practice of complex



distributed systems (such as computational grids), the X.509 standard is actually quickly evolving,
especially with respect to certificate formats and types. It is possible to recognize two main trends
in this evolution.

The first one can be traced back to some preliminary work developed at the IETF SPKI working
group, which addressed the issue of name-key bindings in PKCs and realized that such certificates
were of extremely limited use for the emerging needs of the Internet community as respect to trust
management [RFC2692, RFC2693]. Versions 1 and 2 of the X.509 standard, issued in 1988 and
1993 respectively, provide only for PKCs, whereas version 3 introduces attribute certificates
(ACs). ACs have a structure similar to PKCs, but are not intended to provide authentication, and
for such reason contain no user's public keys. The main motivation for the introduction of X.509
ACs is that the placement of authorization information in PKCs is usually undesirable because of
the two following reasons:

authorization information usually have a shorten lifetime of authentication information;
the PKC issuer is not usually authoritative for the authorization information.

ACs may contain attributes that specify group membership, role, security clearance, or other
authorization information associated with the AC holder; they are intended to represent a suitable
token for role-based access control decision functions. Yet, when making an access control decision
based on an AC, it may need to ensure that the AC holder is the entity that has requested access;
thus ACs incorporate a reference to a PKC for the AC holder. ACs are currently used in GT4
implementations.

The second trend in the evolution of the X.509 standard refers to the introduction of a further new
type of certificates, called proxy certificates, to realize identity delegation (impersonation) in the
Globus environment (c. §3.2); since proxy-certificate profile is nowadays only a proposed Internet
standard [RFC3820], we will discuss about it in the next section, devoted to the security
architecture of Globus.

4.The Grid Security Infrastructure.

The main aim of this paper is to establish where and how current grid security technologies fail to
meet the environmental requirements illustrated in §2.1, indicating possible alternatives and areas
of future research. In deploying our analysis, we choose the Globus Toolkit (GT) [GLOB] as a
concrete grid implementation of reference, since it represents the de facto standard for global
grids. Thus, it takes relevance to state beforehand a brief description of its security architecture, the
Grid Security Infrastructure.

The Grid Security Infrastructure (GSI) implements all the security services discussed in §2.2,
enabling cross-domain mutual authentication, message integrity protection, (optional) message
content protection and access control to VO resources from VO users. Actually, there are different
versions of the Globus Toolkit (from the oldest GT 1, introduced in 1998 [FOS98, GLOB], to the
current GT 4 version [,GLOB]) and, with the only exception from GT 1 to GT 2, GSI has evolved
at every GT upgrade. These three GSI versions differs both in the provided services and in their
implementation, and in the following we refer to them as GSI 1-2, GSI 3 and GSI 4, respectively.
Despite of these differences, however, all GSIs are built upon the Transport Layer Security (TLS)
protocol, an IETF proposed standard for end-to-end security over TCP/IP derived from SSL v.3
[RFC2246]. SSL (TLS) authentication services makes use of a PKIX, and all GSIs adopt a
proprietary mechanism (which can slightly vary from one version to another) to perform identity
delegation. GSI 3 is based on and largely compatible with GSI 1-2, but has been improved
(especially in the delegation mechanism; c. §4.1.1) and augmented to be compliant with the Web
Services (WS) approach [W3CWS]; indeed, it supports the Simple Object Access Protocol (SOAP)
[BOX00], providing context establishment, message authentication and message confidentiality.
Like GSI 3, GSI 4 provides distinct WS and pre-WS authentication and authorization functionalities
for backward compatibility with GSI 1-2. Again, GSI 4 has been updated and augmented with
functions aimed at securing a services based architecture: its main new features with respect to GSI



3 are the compliance with WS emerging standards, and the introduction of the Delegation Service
(see below).

4.1.Authentication
As previously stated in §3.2, identity delegation (or impersonation) is the way adopted in Globus to
enable computations to be spawned among multiple trust or security domains. Processes that
constitute a Globus computation are fundamentally of two kinds, and are respectively designed as
user proxy and resource proxy. A user proxy is a session manager process given permission to act
on behalf of a user for a limited period of time; analogously, a resource proxy is a process that has
permission to act temporarily on behalf of a resource [FOS98]. It could be useful to remark here
that the notion of user proxy in the context of a grid application is somewhat the counterpart to that
of user process in the case of standalone operating systems. User and resource proxies were
introduced as suitable interfaces among VO' s components, which make possible to carry out their
mutual interactions during the execution of grid applications, according to the environmental
requirements depicted in §2.1, first of all the single sign-on facility and the interoperability with
local computing environments.
Delegation is realized via the Globus delegation protocol and the Globus proxy certificates. The
Globus delegation protocol provides a process (called acceptor) the ability to run on behalf of
another entity (called initiator), so that the acceptor can make requests to a third party as for the
initiator. It is intended to be an add-on to the set of TLS protocols which operate upon the Record
Layer [RFC2246]. The protocol can be started by both the initiator and the acceptor and, in case the
acceptor agrees to satisfy the initiator request, it ends up with a delegating identity token
transmitted from the initiator to the acceptor. The token can be based on both Globus proxy-
certificates and Kerberos forwardable tickets [KOHL94]. A proxy-certificate (PC) is an X.509 v3
PKI certificate with the following properties [RFC3820]"" :
- its issuer is another PC or a X.509 End Entity Certificate (EEC), that is an X.509 PKC issued for
an end entity, such as a user or a service, by a CA ;
« it can sign just another PC and cannot sign an EEC;
« it possesses its own public-private key pair;
- its DN is obtained by appending a Single Common Name component to the DN of the initiator,
in such a way that it has a unique identity derived from the identity of the EEC;
- it has one more extension field that indicates that a certificate is a proxy certificate and whether
or not the issuer has placed any restrictions on its use.

To create a proxy-certificate, If the PC request is valid, then a PC signed by the private key of the
EEC or by another PC is created. When a PC is created as part of a delegation from an initiator A to
an acceptor B, then the following actions are performed as part of the delegation protocol:

- B generates a new couple of public-private keys and uses such keys to create a request for a PC
that conforms to the certificate profile sketched above;

B passes the PC request to A over an authenticated, integrity checked channel;

« A verifies that the requested PC is valid and, if that is the case, the PC signed with A's private
key is returned back to B. To be valid, a PC has not to be an ECC and its fields must be
appropriately set (in particular, the binding between the PC public key and its DN has to be
correct).

It is useful to remark here that a proxy certificate is generally less secure than the ECC that issued
it; indeed, for single sign-on purposes the private key of a PC has to be stored unencrypted, so that
it is protected only by file-system security mechanisms. Anyway, because of the delegation

11 Actually, GSI 3 and 4 support two kinds of PC: the old Globus proxy-certificate (introduced with GT 1) and the
RFC3820 compliant proxy-certificate (introduced with GT 3), which is a revised version of the first one and, as
previously stated, is nowadays a proposed Internet standard, which is intended to be an extension to X.509
[RFC3820]. The main difference between these two PC formats is that the new one supports the use of policy
statements to restrict the set of delegated privileges. Other than enabling a more selective use of privileges, that
improves security in case of a stolen proxy certificate.



protocol design, neither A gets knowledge about B's private key nor B about that of A. Moreover,
because of the PC validity checks performed by the initiator A in step 3 above, a PC cannot be
used to sign an ECC or PC for a user different from A. Further, a compromised PC can only be
misused for a single user's privileges, and within the bounds of the lifetime and the restriction
policy which are set up for that PC.

Pre-WS (that is, GSI 1-2) authentication services are implemented via the GSS-API [RFC2743,
RFC2744], extended with the functions described in the GSS-API Extensions document
[RFC3820]. The GSS-API is a generic API for doing client-server authentication, based upon
SSL/TLS protocol, and [RFC3820] extend the standard path validation mechanism to handle proxy-
certificates and X.509 extensions (c. §3.5). Below the GSS-API layer there are multiple APIs
which perform various operations upon which the GSS layer relays. The general design principle
guiding these APIs is data encapsulation: the state of the system is captured via suitable data
structures (handles and attributes), which are then acted upon by various setters and getters, as well
as other functions.

GSI 3 implements SOAP with XML-Signature [BAR02] and XML-Encryption [EAS02] for
authentication and message protection, and WS-SecureConversation protocol [DEL02] for context
establishment.

In GSI 4, authentication and authorization message-level security was updated to reflect both
OASIS standard 1.0 [OASIS] for WS Security and published IBM/Microsoft specification for WS-
SecureConversation [WSSC1.1] (WS-SecureConversation implementation released with GSI 3 is
now deprecated). Moreover, GT 4 provides the Delegation Service, a new component designed to
act as an interface for delegation of credentials to an hosting environment and the management of
such credentials. This service enables a single delegated credential to be shared across multiple
invocations of services on the hosting environment, and provides a means for credential renewal.
The Delegation Service is built upon the TLS protocol, the Globus delegation protocol and the
proxy-certificate profile [GT4SD].

4.2.Authorization.

GSI adopts different mechanisms to accomplish resource authorization, including a custom
authorization handler, a grid-mapfile access control list, an access control list defined by a service
and access to an authorization service via the SAML protocol.

The pre-WS security framework provides two authorization APIs: the generic authorization API
and the gridmap APIL. The generic authorization API allow developers to implement custom
authorization modules. The gridmap API provides a default authorization and mapping mechanism
based on a local file, called the gridmap file, but allows also for custom callouts to be plugged in
and override the default behavior. The gridmap file maps Globus identities to local user identities:
it is a simple ASCII file in which each row contains the distinguished name of a Globus user (as
reported in the DN field of the X.509 PKC used to authenticate that user; c. §3.3), and a valid user-
name for the local system, separated by one or more blank spaces.

WS-style authorization framework include an access control list defined by a service and an access
to an authorization service via the SAML protocol.

All the above mechanisms require that a Globus user is registered as a standard local user on an
operating system s to access a resource which results under the control of s. As we detailed in §3,
that is not a limitation of the Globus approach, but an unavoidable consequence of grid's
environmental requirement of coexistence with local security. The advantage that GSI can be
layered on top of existing operating systems without undermining their local security mechanisms
comes at high price: that of constraining access control expressiveness and scalability on the size
of the VO to be mutually exclusive alternatives. Various mechanisms have been proposed to
mitigate that drawback, but the only one included in the GT distributions (starting from version 2)
is the Community Authorization Service.

The Community Authorization Service (CAS) is intended to reduce administrative overhead by
separating VO's administration from specific resources' administration. With CAS, resource's
administrators can grant bulk rights to communities (which can coincide with an entire VO or be



smaller groups inside a given VO), and CAS administrators then decide what subset of a
community rights an individual member will have. Group members authenticate to grid resources
with a group credential which has restrictions applied to it narrowing the individual's rights to a
subset of the rights the community has at the resource. The limitations imposed on the rights the
group account has at the resources are enforced at the grid level by the Globus application. In CAS,
the requirements for existing local user accounts is eased through shared group accounts and the
community is given the flexibility to manage membership and member's privileges without
resources administrators. However, this approach has three main drawbacks. The first is that it
violates the least-privilege principle [SAL74], since CAS enabled services execute with wide access
rights and need to self-restrict their use of the underlying resources. Second, it requires
enforcement of authorization and access control within the grid middleware, thus creating a need
for trusted application code. Third, it is based on a preexistent group owned infrastructure
component (the CAS server) and a community administrator.

5.A tiered approach to grid security.

If, on the basis of what detailed in the introduction, one agrees in coming to the conclusion that it is

useful to design and implement grids as tiered objects, then the same should be applied to their

security architecture; that is, the overall grid security infrastructure should reflect such tiered

structure. The aim of this section is to go beyond this statement, showing that one main advantage

in considering tiered grids is because this suggests a security approach which allows to overcome

some of the drawbacks found in current grid implementations (c. §4).

Following a tiered approach, grid security should be implemented in a modular fashion, such that

the security mechanisms satisfy the following requirements:

- for any tier, they must be reliable, efficient, easy to use and appropriate;

- attier n (n =2,3), they are implemented by reusing (as much as possible) mechanisms for the tier
n-1 and making them to operate mutually via an extension module for tier n.

The first requirement is the quintessence of the Principle of Effectiveness [PFLO3]; whereas the
second one is a direct consequence of the Economy of Mechanisms Principle [SAL74], which itself
requires some explanation. Economy of mechanisms means to keep their design and
implementation as simple and small as possible. That requirements applies in general in systems
development, but deserves emphasis for security mechanisms because of the critical role they play
and their exposure to security exploit. Since the goal of an exploit is to find an unusual, unforeseen
interaction with a mechanism in order to subvert its normal flow of operations, then it follows that
techniques such as line-by-line code inspection and software formal verification must be used. Of
course, the simpler and smaller is a mechanism, the easier is to apply those techniques.
The above modular approach to grid security lead us to consider an operating system as a
“degenerate” grid of tier 0. Indeed, some mechanisms of the grid security infrastructure have to be
implemented at the operating system layer, so it is natural to extend the second requirement in such
a way to encompass the case n =/. That in turn rises some interesting questions:
- What is (if any) the correct layering of security services and tools with respect to those four grid
tiers?
+ Should grid add-on security facilities be implemented only as grid middleware, or it would be
better to realize them by extending operating systems security services, too?

Perhaps exceedingly influenced by the aim to not interfere with local security implementations,
Globus theorists and designers [FOS98, FOS99] simply leaved unchanged security mechanisms at
the operating system layer, putting all in the middleware layer. That appears to be not only the
strategy currently followed in the design of security services and tools for grid environments, but
the general trend followed in realizing modern distributed systems, which has its main motivation
in that middleware allows different networks and systems to interact transparently via standard
interfaces and protocols. However, operating systems are evolving environments like grids, and
today's products often have a modular architecture which provides for open (eventually de-facto)



standard interfaces for security. Moreover, since operating systems are the building blocks of grids,

on which grids expressiveness, scalability and functionalities must ultimately rely, it seems unlikely

that grid, and operating system technologies will evolve separately. Finally, we believe that right

management and access control mechanisms should not be implemented outside of operating

systems, whenever possible, because of the following two reasons:

« resource management is performed by operating systems, so implementation of the above
mechanisms at this layer guarantees maximum possible control over resources;

- enforcing right management and access control at the application layer results in some code
duplication and, as previously detailed, creates a need for trusted application code.

The resulting layering of the overall grid security infrastructure is sketched in Fig.2: a separate
software module, which performs tier-specific functions, is provided for each grid tier, and one
more module implements suitable extensions to operating system security codes.

M )
L "3 | tier 3
Mz Mz Mz tier 2
tier 1
tier O

Fig. 2 — Systems belonging to the same grid cluster (e.g. S; and S,) interact by means of:
(1) a suitable extension M, of general-purpose operating system security code C and (2)
a software module M, implemented at the cluster grid tier. Interactions in enterprise grid
and global grids require their own software modules (denoted as M, and M, respectively),
as depicted above. For example, interactions among S; and S, (via a global grid
environment) require both My,M, ,M, , and M; modules.

In the following, we outline a possible alternative to the security approach followed in Globus. Our
proposal is developed with respect to the model introduced in §3.3, so we discuss basically about
design and implementation issues for the T and P spaces, respectively; more precisely, we deal with
trustworthiness in §5.1 and with authorization and management of user and process privileges in
§5.2. We stress that what follows should be only considered a preliminary work, aimed to suggest
possible areas of future research and software development and testing.

5.1.Trust models.

In this subsection we try to determine which are the most suitable models of trust in the T space,
depending on the tier of grid considered; and what should be the overall trust architecture for that
space as a consequence of the results for each tier and the modular approach depicted previously.
We said in §3.2 that in enterprise and global grids the related trust domains are composite, since
they are obtained in a recursive manner from lower level trust domains: cluster-grid trust domains
are glued together into enterprise-grid trust domains, which in turn are composed to realize global-
grid trust domains. Conversely, cluster-grid trust domains are simple, because the security domain
(ERm) associated to an operating system doesn't result in a trust domain. If one could relate (ER )



to a trust domain enforced at the operating system layer, then it would be possible to use the same
kind of publicly available authentication token (that is, some flavor of a PKC) for authenticating a
user directly to any system in a grid environment, and also to authorize a user to perform some
action on a system (via a suitable “incarnation” of an AC). More important, asymmetric
authentication allows for a direct user-to-user delegation of privileges (c. §5.2).
As we have seen in §3.4, a PKIX in its most basic form consists in a trust domain (E', t,), in which
a set E' of principals shares a trust relationship 7, with a single certification authority a. Thus, a
natural way to associate a trust domain to a given operating system s seems that of requiring that s
acts as a PKIX certification authority for the set U of users registered on s, in such a way that any
ueU (or, eventually, any user belonging to a suitable subset of U, as established by the system
administrator) can authenticate to s via his/her public-key certificate. The above authentication
proceeds simply as the authentication of a principal to another principal in a PKIX context, the only
difference being that now the verifier is the system s (c. §3.4 ). Of course, that is not intended to be
used for an interactive log on, but only during a process-to-process interaction; thus it cannot
replace password-based authentication methods. As in the case of password-based methods, a user
with multiple accounts on different systems in the same (cluster or enterprise) grid should need
just a single private-public key pair. Indeed, that key pair should be related to the identity of an
individual in the context of an organization or institution to which he/she belongs. Thus, the
previous requirement can be satisfied if:
- s acts as a CA of local user-names;
s relays on another CA (which we refers therein as administrative CA) for the binding of the
user public-keys to their identities.

In this way, the service offered by s as a CA results in binding securely user public-keys to user-
names, together with their privileges and resources on s. Of course, that requires a chain of trust
between s and the administrative CA.

Suppose now that system s gets involved in a cluster grid C. C consists precisely of a set of
operating systems and, for each of such systems s, of the set of users, services'? and resources of s
which are enrolled in C. Authentication at the C layer can be implemented via a CA as follows. A
system s belongs to C if and only if the cluster CA has issued a public-key certificate fors, as a
consequence of a registration phase which is carried out by the system administrator under the
responsibility of the cluster administrator. Users can get independently and individually enrolled in
C by carrying out a registration phase that results in public-key certificates issued for each of such
users u by the cluster CA. The function of the previous public-key certificates is that of binding
securely the public-key of a system s or a user u to the public-key of the cluster CA; that is, the
assertion “s (or u ) belongs to C” is realized via the signature of s (or u) public-key by the cluster
CA. Again, all the above requires a chain of trust between the cluster CA and the administrative
CA.

Things go about in the same way for enterprise grids. Since an enterprise grid E consists of a set of
cluster grids C, authentication at the E layer can be implemented via a CA, whose function is that of
realizing the assertion “C belongs to E” via the signature of C public-key. That requires, as usual, a
chain of trust between the enterprise CA and the administrative CA.

Since in cluster and enterprise grids there is a single Authority Policy (c. Deff.6, 7), it is natural to
associate the administrative CA to it. Eventually, the administrative CA could coincide with the
enterprise CA.

Let, finally, consider the case of global grids. Again, global grids G are sets of lower tier (that is,
enterprise and cluster) grids; but now, conversely than in the previous two cases, they are
characterized by the absence of a root Authority Policy (c. Def.8). Thus, given a global grid G,
authentication at the G layer cannot be easily implemented by realizing the assertion “E belongs to
G” via the signature of E public-key with the G private key, as it is impractical and unsafe to

12 Sometimes, a system service is impersonated by a fictitious user (e.g. the login user on Unix systems) and in such
case we must regard it as an accounting profile (s. below).



collectively manage such private key. In this case, we require that any administrative CA which
belongs to the grid has got the list of the public keys of all the grids which compose G, and that the
above list is signed by the administrative CA itself. One more again, the different administrative
CAs which belong to G must cooperate via a network-of-trust.

We can summarize our approach to trustworthiness in grids as follows. Let (U,S) be a cluster or an
enterprise grid. A trust domain for (U,S) can be realized via a single entity a, which results a CA for
the set E=UUS, where U is the set of users and S is the set of operating systems which belong to the
grid. The trust relationship r issuchthat p + g for any p and g, where p, ¢ may denote both users
involved into the grid, processes running on behalf of such users and operating systemsinS. Any
seS hasits own certificate (which could be issued by a, as a consequence of aregistration phase of
s to a, or - aternatively — could be a certificate self signed by s and validated by a viaareverse-
type certificate [RFC3647]). Any user ueU has his’lher EEC (c. 84.1) issued by a, but he/she has
also a certificate relative to his’/her account (if any) on an operating systems, which is obtained
binding the u public key to the accounting information ons with the s private key.

The above sounds quite different than the authentication approach followed in Globus; indeed, in
GSI end entity authentication is provided for users and services, not for operating system.
Moreover, our approach subordinates users accounts and resources of a system s to its authority. It
is important here to point out that users, in this respect, are not only considered as resource
consumers, but as resource owners, too: they precisely own resources of s (e.g. files, cpu-time, disk
quotas), as defined by their accounting profiles. As such, they can be enabled to delegate a subset of
their own resources to other users, thus acting as resource providers, too. That kind of delegation
(called direct delegation) is at the basis for the enforcement of the tramsient collaborations
requirement (c. §2.2), which till today is not supported in Globus, and has been firstly introduced
in the prototypical middleware PRIMA [LOR04]. We are going to spend some more word about
our proposal for direct delegation in §5.2.

At this point, it may be worthwhile to word how entity authentication takes place in the previous
framing, remarking that in our case one has to distinguish not only about user-to-user, user-to-
process, and process-to-process authentication, but also about system-to-process and process-to-
system authentication’. We illustrate those authentication scenarios with respect to the simple
global grid environment depicted in Fig.3.

Fig. 3 — A simple grid environment to illustrate different authentication scenarios.

13 User-to-system authentication is not considered here, since it is realized by standard mechanisms such as those
relying on passwords.



Fig. 3 shows two grids, E1 and E2, which composes a global grid. Each Ei has its own
administrative CA, detoted by Ai, and enrolls an operating system Si and a user Ui, who has an
account on Si with UID denoted by UID Ui. As a starting point to set up the authentication
framing, each entity in Ei has to generate its own public-private key pair. Then, using suitable
integrity-protected channels (c. §3.4), each Ai can send its authentic public-key K Ai to both Ui
and Si, and can receive back their authentic public-keys K Ui and K Si. After that, all the required
certificates can be issued; they are sketched in Fig. 3 as couples such as (U1, K_U1), which denotes

a certificate issued by Al and establishing a secure binding among the identity of user Ul and

his/her public key. More generally, a couple (A,B) sketched in entity C indicates a certificate issued

by C and having A and B as its main fields. That premised, the authentication scenarios are as
follows:

« user-to-user authentication. If user Ul wishes to authenticate himself to user U2, then the
authentication protocol A1-A3 (c. §3.4) is run with Ul as claimant and U2 as verifier, and (U],
K Ul) has to be checked;

. user-to-process authentication. If user Ul wishes to authenticate himself to a system process on
S2, then:

- if the process is impersonated by a user, then it results in a user-to-user authentication;

- else, the authentication protocol A1-A3 is run with Ul as claimant and S2 as verifier, and
(U1, K _U1) has to be checked;

. process-to-process authentication. If a process on S1 wishes to authenticate himself to a process
on S2, then:

- If the identifier of process running on S1 is equal to UID Ul, then the authentication protocol
A1-A3 1s run with S1 as claimant and S2 as verifier, and (K Ul, UID Ul) has to be
checked;

- else, the authentication protocol A1-A3 is run with S1 as claimant and S2 as verifier, and
(S1, K _S1) has to be checked;

. system-to-process authentication. If S1 wish to authenticate himself to a process on S2, then the
authentication protocol A1-A3 is run with S1 as claimant and S2 as verifier, and (S1, K S1) has
to be checked;

. process-to- system authentication. If a process on S1 wishes to authenticate himself to S2, then
things go in the same way than in process-to-process authentication.

In any case, Al and A2 are both involved in the protocol as certification authorities, and (K _Al,
K A2) acts as a reverse-type certificate for both of them.

It should be clear from the previous observation that, if a certificate is not an EEC and is issued in
the enterprise layer, then it is used to manage trust relationships among CAs in a global grid
context. What about non EECs which are related to grid tiers and are considered with respect to a
cluster or an enterprise grid? If, as supposed, grid entities refers to a single CA for the enforcement
of identities, then the above certificates aren't used at all in the authentication processes. However,
they are publicly available and contain integrity-protected information about grid resources; thus
they can be used by resource brokers to collect reliable information about available resources for a
given computation. Moreover, authentication at the different grid tiers can be used to enforce
authentication-based routing from one tier to another, thus leveraging overall grid security.

5.2.Authorization and access control.

VOs are created when computational and intellectual resources from separate organizations are
shared to tackle problems that require combined efforts and resources; as such, VOs can range from
small, ad-hoc groups that may exist for only a short period of time, to larger, well-structured and
persistent collaborations.

Recent works in the field of grid technologies (e.g. [LORO04]), indicate that such ad-hoc, transient
collaborations strongly depend on the facility of direct delegation of user's rights, that is the
capability of users to delegate some other entities (users or processes) their rights concerning
resource usage in a transparent and automatic fashion, avoiding administrative intervention.



Actually, today's operating systems support for direct delegation of user's rights via access control
lists and related mechanisms, but they rely on system-wide authentication schemes which only
provide identity delegation. As a consequence, an operating system s can support for rights
delegation from an entity a to another entity b, only if both a and b are registered users in s or
processes which act on behalf of such users. That, in turn, constitutes a drawback in case of
distributed, transient collaborations: if an user a, registered on s , wishes to grant an individual b
(which is not a user registered on s) to use the resource of s according to his/her accounting
profile, then an account for b must be provided. Direct delegation is especially powerful when
combined with fine-grained access rights. The ability to delegate access rights directly is also
needed to provide for the necessary scalability of grid security solutions. If delegation is only
supported via indirect (third party) means, the overhead required to delegate authorization creates
barriers to the scalability of such a system.

The approach to system authentication outlined in the previous subsection can provide for the
direct delegation of privileges both in user-to-user and user-to-system interactions. Indeed, using
suitable ACs, both an operating system s (through its administrator) and users which have an
account on s can delegate an entity e to have some rights on the resources of s. When e submits to
s an AC which delegates to it some privileges on s, then s checks the AC with respect to the AC
issuer identity (that is, an user account u on s or s itself) and grants rights to e on the basis of the
privilege specifications stated in the AC. Since at the operating system level users are identified
through UIDs (c. §3.2), if e hasn't an accounting profile on s, then s could supply at runtime an
ephemeral UID and a related ephemeral allocation profile (built on the basis of the privilege
specifications stated in the AC) to enable (processes acting on behalf of) e to perform actions on
the resources controlled by s.

6.Conclusions

In this paper we try to establish if, where and how current grid security technologies fail to meet the
requirements imposed for such computing environments, indicating possible alternatives and areas
of future research.

We carry out our analysis using an abstract model for grid security architecture which takes into
account the Globus Toolkit as a concrete grid implementation of reference, but thinks of global
grids as computing environments layered into three logical levels of deployment, depending on
their functional and dimensional scale.

Our analysis shows that the main drawbacks of current grid implementations depend basically on
the absence of adequate authorization mechanisms for accessing and managing grid resources, and
that those mechanisms should be implemented at the operating system layer, because of various
security constraints.

Finally, we outlined a tiered approach to grid security which aims to overcome the above
drawbacks by extending the PKIX authentication and authorization framings to operating systems,
in order that their security mechanisms became fully inter operable with those implemented in the
grid middleware. The adoption of PKIX extensions goes towards the use of open standards and
protocols, which is an imperative requirement in the design of distributed systems.
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