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Abstract

The present paper intends to describe some classification methods based on
computational kernels developed in the field of generalized eigenvalue problems.
It will be illustrated how some numerical difficulties can be overcome and how
to obtain a simple iterative algorithm for binary and n-ary classification. Fi-
nally, some hints will be given on how eigenvalues techniques can be used in
mathematical models of learning.

1 Introduction

Mathematical modeling of learning has a key role in many scientific and techno-
logical problems and can be considered as one of the most interesting problems
of this new century.
Supervised learning is referred to the capability of a system to learn from a set
of examples, that is a set of input/output couples; starting from that set, the
system is able to give an answer (output), as soon as a new question (input) is
provided. The term supervised originates from the fact that the desired output
on a set of specific input points is provided by an external teacher.

Systems for supervised learning can find application in many fields. Let’s
suppose a bank needs to classify customer loan requests in ”good” and ”bad”,
depending on their ability to pay back, or an inland revenue tries to discover
more tax evaders starting from the characteristics of known ones. Furthermore,
a car built-in system could detect if a walking pedestrian is going to cross the
street. More examples related to numerical interpolation, handwriting recogni-
tion and Montecarlo methods for numerical integration can be found in [5].

A word about the notation used in the paper. All vectors are column vectors,
unless transposed to row vectors by a prime ′. Scalar product of two vectors
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x and y in IRn will be denoted by x′y, 2-norm of x will be denoted by ‖x‖.
Finally, the unit vector will be denoted by e.
The remainder of the work is organized as follows. Section 2 describes a model
for learning and how that represents a generalization of binary classification
introduced by Support Vector Machine (SVM) methods. In Section 3, it is
shown how a binary classification algorithm can be brought back to a generalized
eigenvalue problem; furthermore, first results on the use of eigenvalue problem
techniques for binary classification are detailed and it is shown how they can
be generalized to n-ary classification. In Section 4, work related to algorithms
for the evaluation of some eigenvalues of large symmetric matrices is reported.
Open problems are described in Section 5 and finally, in Section 6, conclusions
are drawn and future work is proposed.

2 Related work

To provide an answer to problems outlined in the previous section, different
mathematical models of learning have been proposed in literature. In [13],
Poggio and Smale have proposed a simple algorithm to determine, starting from
a data set, a function interpolating data in a predictive way, in analogy with
physical studies, in which models are conceived to forecast physical phenomena.
Given the set of examples Sm = (xi, yi)

m
i=1, with xi ∈ IRn, yi ∈ IR, define a

positive definite kernel K(t, s):

K(x, x′) = e−
‖x−x

′‖2

2σ
2 . (1)

Introduce the following function:

f(x) =
m

∑

i=1

ciK(xi, x). (2)

with c ∈ IRm solution of:
(mγI + K)c = y, (3)

where I is the identity matrix, K is a definite positive matrix with elements
Ki,j = K(xi, xj), and γ is a constant obtained by Tikhonov regularization
method1. The function is such that f(xi) = yi and, for each x 6= xi, returns a
value y that depends on the example set (xi, yi)

m
i=1.

In the remaining of the article, it is shown how the method can be used to deal

1In the paper it is stated that the conditioning of the problem (sensibility of solutions to
input variation, measured in spectral norm with |λmax|/|λmin|) is good for large my. Since
(mγI + K) has the same eigenvalues of K shifted by mγ, if mγ → ∞, the ratio tends to 1,
which is a desirable behaviour, but the numerical solution of the shifted problem has to deal
with a matrix whose elements (extra-diagonal vs. diagonal) can have a difference of many
orders of magnitude.
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with different problems, obtaining results comparable with other classification
methods.

The outlined method can be derived from Tikhonov regularization method,
starting from the identification of the function f minimizing:

1

m

m
∑

i=1

(f(xi) − yi)
2 (4)

and adding a term that assures the problem is well-posed in Hadamard’s sense2:

1

m

m
∑

i=1

(f(xi) − yi)
2 + γ‖f‖2. (5)

In the case in which y is binary and the loss function is V (f(x, y)) =
(f(x) − y)2, we obtain the proximal SVM, and with V (f(x, y)) = (1 − yf(x))+
SVM classification.

On the other side, in a recent technical report by Mangasarian [11], it is
showed how to treat a binary classification problem:

min
w,γ 6=0

‖Aw − γ‖

‖Bw − γ‖
, (6)

in which the solution is a pair of parallel hyperplanes separating A and B sets,
as a generalized eigenvalue problem. Indeed, set:

G = [A − e]′[A − e], H = [B − e]′[B − e], z = [w′ γ]′, (7)

equation (6), becomes:

min
z∈IRm

z′Gz

z′Hz
, (8)

the Raleigh quotient of generalized eigenvalue problem Gx = λHx. If we call
zmin = [w1 γ1] and zmax = [wm γm] the eigenvectors related to the eigenval-
ues of smallest and largest modulo, respectively, it follows that the distance of
each point of A from x′w1 − γ1 = 0 is less that the one from x′wm − γm = 0
and, mutatis mutandis, the distance of each point of B from x′wm − γm = 0 is
less than x′w1 − γ1 = 0.

Those hyperplanes are incident and therefore different from the ones ob-
tained with SVM. Studies devoted to non separable problems [1, 2] still hold
and it is simple to deduce a formulation in case of eigenvalues.

2Following Hadamard, the problem of finding solutions to the equations f(x) = y is said
to be well-posed provided solutions exist, are unique, and depend continuously on n.
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Example 1

Let:

A =

[

2 0
2 1

]

, B =

[

0 0
1 1

]

, (9)

Building G and H as in (7), we obtain:

G =





8 2 −4
2 1 −1

−4 −1 2



 , H =





1 1 −1
1 1 −1

−1 −1 2



 (10)

Smallest and largest eigenvalues of the problem Gx = λHx are λ1 = 0 and
λ3 = ∞ and the respective eigenvectors:

x1 = [ 1 0 2 ], x2 = [ 1 −1 0 ].

The resulting lines are x = 2 and x−y = 0, which precisely describe the starting
sets A and B.

Example 1a

Consider the same problem of Example 1 embedded in IR3 and suppose points
lay on the hyperplane z = 0, then the same result is obtained in terms of
eigenvalues and eigenvectors, with the only difference that those ones will be:

x1 = [ 1 0 0 2 ], x2 = [ 1 −1 0 0 ],

Note A and B can be rank-deficient matrices, as in the previous examples.
Matrices G and H are always rank-deficient, since the product of matrices of
dimension n + 1 × n is of rank at least n, which introduces a difficulty from a
numerical point of view, since we need to deal with an infinite eigenvalue.

A solution to this problem is proposed in [11]3, determining parameter δ in
case of Tikhonov regularization of the problem:

min
w,γ 6=0

‖Aw − γ‖ + δ‖z‖

‖Bw − γ‖ + δ‖z‖
. (11)

In fact, the regularized problem has the same eigenvectors of the starting prob-
lem iff δ = 14. In order to have the same eigenvectors, a shifting technique is
needed, which transforms problem (11) in:

min
w,γ 6=0

‖Aw − γ‖ + δ‖Bz‖

‖Bw − γ‖ + δ‖Az‖
. (12)

This is a particular instance of the problem to determine a not degenerate
matrix pair G1 and H1 such that G1y = µH1y has the same eigenvectors of the
starting problem. It is possible to prove the following theorem:

3In a more recent version of the same report a slightly different approach is proposed
4Problem (A + δ)x = λ(B + δ)x has the same eigencouples (λ, x) of the starting problem

iff Ax + δx = λBx + λδx, i.e. iff δx = λδx, which is equivalent to δ = 1.
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Theorem 2.1 Consider the generalized eigenvalue problem Gx = λHx and the
transformed G1x = λH1x defined by:

G1 = τ1G − σ1H, H1 = τ2H − σ2G, (13)

for each choice of scalars τ1, τ2, σ1 and σ2, such that the 2 × 2 matrix

Ω =

(

σ2 τ1

τ2 σ1

)

(14)

is nonsingular. Then the problem G1x = λH1x has the same eigenvectors of the
problem Gx = λHx.

Proof 2.1 See [14], p. 288.

Equation 12 is obtained applying previous theorem with σ1 = σ2 = −δ e
τ1 = τ2 = 1.

Example 2

Let:
G1 = G + 8 ∗ H, H1 = H + 2 ∗ G,

we have:

G1 =





16 10 −12
10 9 −9
−12 −9 18



 , H1 =





17 5 −9
5 3 −3
−9 −3 6



 (15)

G1 and H1 are not degenerate and the smallest eigenvalue is transformed in
µ1 = 0.5, while the largest in µ3 = 8.

3 Preliminary results

As it has been shown in the previous section, the problem of determining
costants in (14), so that det(Ω) 6= 0, still holds. A choice can be:

σ1 = max(diag(G)), σ2 = max(diag(H)). (16)

and τ1 = τ2 = 1.

In this way, if σ1σ2 6= 1, matrix Ω is not degenerate.

If βG+αH happens to be singular for every α and β, the probability matrices
G1 and H1 are singular is null. Indeed, if the number m of points (rows) of each
matrix is greater then the dimension n of the space of characteristics, and those
matrices have full rank, resulting matrices will be rank deficient iff G and H

have the same null space, i.e. iff ∃x : Gx = 0∧Hx = 0, which can happen with
probability 0. That can be empirically verified with a simple Matlab macro:
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for i=10:110

for j=1:1000

a=rand(i,i);

b=rand(i,i);

G=[a -ones(i,1)]’*[a -ones(i,1)];

H=[b -ones(i,1)]’*[b -ones(i,1)];

G1=G+max(diag(G))*H;

H1=H+max(diag(H))*G;

if (rank(G1) + rank(H1) < 2*(i +1))

G, H;

end

end

end

The macro generates 100.000 random matrices of variable dimension between
10 and 110 and it checks matrices G1 and H1 are not deficient. The 100.000
tests that have been carried out have not produced a degenerate matrix.

A problem arises when G and H , which are singular by definition, have a non-
trivial intersection of their null spaces, i.e. when m � n. In this particular case,
it is possible to project the operators in the complement of such intersection,
which can be done provided we can compute a basis of the common null space,
a task that can be computationally unfeasible for large matrices.

In short, whatever is the applied regularization technique, the problem is
solvable with eigenvalue based techniques if and only if input matrices A and B

have maximum rank, i.e. if there is a number of independent input points for
learning at least equal to the number of characteristics.

This regularization technique, which derives from Theorem 3.1, has been ap-
plied to the data set generated by NDC (http://www.cs.wisc.edu/dmi/svm/ndc/).
Using the macros made available by the authors Musicant and Mangasarian,
300 points with 7 characteristics have been produced, divided by the generator
in two classes of 156 and 144 points each. For the learning phase, a subset of 30
points have been used to determine the hyperplanes describing such sets. The
method has correctly classified 87,6% of cases, which is comparable with 86,7%
obtained with Tikhonov regularization.

Now it is worthwhile noting that it is possible to generalize the binary clas-
sification problem to an n-ary one in a very simple way. Let’s start with a few
examples.
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Example 3

Consider the following data sets:

A =

[

1 1
2 2

]

, B =

[

2 1
3 2

]

, C =

[

3 1
4 2

]

, (17)

Starting from A and B, evaluate G and H :

G = [A − e]′[A − e] H = [B − e]′[B − e],

with e unit vector in IR2:

G =





5 5 −3
5 5 −3

−3 −3 2



 , H =





13 8 −5
8 5 −3

−5 −3 2



 ,

Computing G1 = G + max(diag(G)) ∗ H e H1 = H + max(diag(H)) ∗ G, we
obtain:

G1 =





70 45 −28
45 30 −18

−28 −18 12



 , H1 =





78 73 −44
73 70 −42

−44 −42 28



 ,

from which λmax = 5, λmin = 0.0769 and the respective eigenvectors:

xmax = [−1, 1, 0], xmin = [1,−1, 1],

which describe the lines x − y = 0 and x − y = 1 to which points in A and B

belong.
Repeating the same procedure with C and B we obtain:

xmax = [1,−1, 2] xmin = [1,−1, 1],

while with A and C we have

xmax = [−1, 1, 0] xmin = [1,−1, 2].

What we can infer from the previous example is xmax eigenvector depends
on A and xmin on B. From those observations it is possible to deduce a simple
algorithm for n-ary classification. Let Ai, i = 0, k − 1 be matrices of separable
points of dimension m × n × k.

for i=0:k-2

G=[A(:,:,i) -ones(m,1)]’*[A(:,:,i) -ones(m,1)];

H=[A(:,:,i+1) -ones(m,1)]’*[A(:,:,i+1) -ones(m,1)];

G1=G+max(diag(G))*H;

H1=H+max(diag(H))*G;

[Lambda, x] = eig[G1, H1] # Lambda of largest modulo

end
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4 Algorithms for eigenvalue problems

At the end of 90s there has been a wide effort devoted to the implementation
of algorithm for the efficient computation of eigenvectors corresponding to ex-
tremal eigenvalues of large, sparse and symmetric matrices. Among those there
is the method proposed by Lancozs (see, for example [3]), which uses a projec-
tion of the operator M on a Krylov subspace, i.e. the space spanned by the
vectors computed by the power method:

Kk(M, v) = span{v, Mv, . . . , Mk−1v}.

In such subspace the operator assumes a tridiagonal form:

T =



















α1 β1

β1 α2

. . .

. . .
. . .

. . .

. . .
. . . βk−1

βk−1 αk



















.

It is possible to prove, for increasing values of k, T extremal eigenvalues are in-
creasingly better approximations by defect of extremal eigenvalues of matrix M .

Since T is tridiagonal, and of much smaller dimension with respect to M , it
is possible to iteratively solve huge problems fast and accurately.
What can seem a trivial generalization of a slow algorithm, results in one among
the most successful methods for the solution of such problems, especially in the
hermitian case. Furthermore, Lanczos method can be easily extended to gener-
alized problems.

In order to obtain a sufficient computational power to solve huge problems
in a short period of time, distributed memory multiprocessors, such as clusters
of workstations, need to be used.

Lanczos algorithm, in its initial formulation, is not suited for an efficient
implementation for that class of computers. For this reason, it has been taken
into account its block formulation, which uses a block of s vectors for the pro-
jection. It has been proposed a new parallel block algorithm for the target
architecture, in which processors are logically configured as a ring. It is based
on a block-column wrap around data distribution among processors, which con-
sists, in case of a matrix, in cyclically assigning blocks of columns of equal size
to each processor. Such data decomposition is well suited for the underlying
logical topology.

In accordance with such distribution, an efficient parallelization of basic
linear algebra computational kernels, such as dense matrices products and QR
factorizations, are used.
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Performance results confirm the benefits of the proposed approach; results
have been firstly reported at Cornelius Lanczos International Conference [6],
and then in [8]. In [9], it is shown how to deal with variable sparsity of the
matrices.

In [7] a parallel algorithm for the hermitian case is proposed. It can be
implemented on a multicomputer logically configured with a mesh topology. It
can benefit from the use of de facto standard parallel computational kernels,
as the ones can be found in ScaLapack (http://www.netlib.org/scalapack), which
is an ongoing project at UTK for the development of algorithms and software
for numerical parallel dense linear algebra problems. Moreover, an algorithm is
proposed for the nonsymmetric case, which is based on a block oblique projection
over a Krylov subspace.

The implementation of the modified block Lanczos algorithm, and its per-
formance evaluation have been presented in [10].

5 Open problems

Well-posedness of a problem does not imply well conditioning. On the other
hand, the determination of a problem formulation in which the function map-
ping input data to solutions is Lipshitz, with a small constant, assures less
sensitivity of the problem to input data perturbation and better computed so-
lutions. At a first glance, formulations involving eigenvalue problems have an
advantage: conditioning of eigenvectors depends on the distance of the relative
eigenvalue from the rest of the spectrum. Since we are interested in extremal
eigenvalues, techniques already exist to enhance that characteristic.
The previous considerations motivate the identification of a link between eigen-
value problems, classification problems and supervised learning theory. The
problem can be formulated as follows:

1. Is it possible to find a connection, as it has been done with binary clas-
sification and generalized eigenvalue problems, between Smale Poggio theory on
supervised learning and eigenvalue problems?

In classification problems there can be some characteristics that influence
the process more then others, and others that don not have any effect at all
on computed solutions. The problem of identifying main characteristics can be
stated as:

2. Is it possible to determine a solution of a classification problem minimiz-
ing the dimension of characteristics space in which the solution is analyzed?

This problem has been stated and solved in [4, 12], giving a method that dis-
cerns, in case of medical diagnosis, the examinations that permit to classify
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patients in healthy and ill, automatically detecting those not influencing the di-
agnosis. That is achieved requiring the solution (descriptor vector of separating
hyperplanes) to have as many zero components as possible.

If we consider Examples 1 and 1a, it is clear that if the problem is projected
in a space of greater dimension, eigenvector components related to the added
dimensions will still be zero. Therefore, with respect to starting problems, use-
less characteristics would not be taken into account in solution vectors. This
leads to suppose that a formulation based on eigenvalues has, for its nature, the
characteristic to determine the optimal subspace in which the initial problem
has to be projected to be solved, without loss of information.

Another question regards the minimum number of examples needed to obtain
a certain kind of learning. Often, the number of available examples for training
is small and we want to make a decision from a few examples, which is somehow
similar to the human cognitive process.

3. What can be said on the quality of a computed solution, starting from the
knowledge at hand? If data are available, for which a solution is not known,
how can they be used?

Krylov subspace methods determine a subspace in which the projection of the
operator maintains information about the eigenvectors of the starting operator
related to extremal eigenvalues and, as the dimension grows, increasingly better
approximation can be computed. That characteristic could be used to find the
minimum number of examples needed to obtain a certain classification, using
information provided from all input data, and not only from a part that has been
chosen in some way. This feature can be introduced in the proposed algorithm,
obtaining an iterative procedure.

6 Conclusions and future work

Research activities related to mathematical models of learning have an impor-
tant role in the near future.

They find application both in the filtering of multimensional media, with re-
spect to analysis, classification, segmentation of media, and in the development
of global knowledge and ubiquitous services, in the case of learning techniques in
the field of knowledge discovery and distribution. A schedule for a short term
activity could be:

• Verification of the possibility of reformulating Smale Poggio theory in
terms of eigenvalue/eigenvectors.
Evaluation of gains in terms of conditioning and computational complex-
ity.
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• Testing of generalized eigenvalue problems techniques to discern the im-
portance of every characteristic in problem solution.

• Testing of iterative projection methods with respect to quality assesment
of computed solutions.
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