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Abstract

In the present work we describe HPEC (High Performance Eigenvalues Computa-
tion), a parallel software for the evaluation of some eigenvalues of a large sparse
symmetric matrix. It implements a Block Lanczos algorithm efficient and portable
for distributed memory multicomputers. HPEC is based on basic linear algebra op-
erations for sparse and dense matrices, some of which have been derived by ScaLA-
PACK library modules. Numerical experiments have been carried out to evaluate
HPEC performance on a cluster of workstations with test matrices from Matrix
Market and Higham’s collections. A comparison with a PARPACK routine is also
detailed. Finally, parallel performance is evaluated on random matrices, using stan-
dard parameters.
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1 Introduction

The eigenvalue problem has a deceptively simple formulation and the back-
ground theory has been known for many years, yet the determination of accu-
rate solutions presents a wide variety of challenging problems. That has been
stated by Wilkinson [27] some forty years ago, and it is still true.

Eigenvalue problems are the computational kernel of a wide spectrum of appli-
cations ranging from structural dynamics and computer science, to economy.
The relevance of those applications has lead to a wide effort in developing
numerical software in sequential environment. The results of this intensive ac-
tivity are both single routines in general and special purpose libraries, such
as Nag, IMSL and Harwell Library, and specific packages, such as LANCZOS
[7], LANSO [23], LANZ [18], TRLAN [29], and IRBLEIGS [1].

If we look at sequential algorithms, we see that nearly all are based on well
known Krylov subspace methods [22,24]. The reasons of this are the demon-
strated computational efficiency and the excellent convergence properties which
can be achieved by these procedures. In spite of some numerical difficulties aris-
ing from their implementation, they form the most important class of methods
available for computing eigenvalues of large, sparse matrices. It is worth noting
that a broad class of applications consists of problems that involve a symmet-
ric matrix and requires the computation of few extremal eigenvalues. For this
class the Lanczos algorithm [19] appears to be the most promising solver.

The availability and widespread diffusion of low cost, off the shelf clusters of
workstations have increased the request of black box computational solvers,
which can be embedded in easy to use problem solving environments. To
achieve such goal, it is necessary to provide simple application programming
interfaces and support routines for input/output operation and data distri-
bution. At present, little robust software is available, and a straightforward
implementation of the existing algorithms does not lead to an efficient paral-
lelization, and new algorithms have yet to be developed for the target architec-
ture. The existing packages for sparse matrices, such as PARPACK package
[20], PNLASO [28], SLEPc [16] and TRLAN, implement Krylov projection
methods and exploit parallelism at matrix-vector products level, i.e. level 2
BLAS operation. Nevertheless, for dense matrices, some packages have been
implemented with level 3 BLAS [26].

In this work we present an efficient and portable software for the computa-
tion of few extreme eigenvalues of a large sparse symmetric matrix based on a
reorganization of block Lanczos algorithm for distributed memory multicom-
puters, which allows to exploit a larger grain parallelism and to harness the
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computational power of the target architecture.

The rest of this work is organized as follows: in section 2 we describe the
block version considered and we show how we reorganize the algorithm in
order to reduce data communication. In section 3 we deal with its parallel im-
plementation, providing computational and communication complexity and
implementation details. In section 4 we focus on the specification and archi-
tecture of the implemented software. In section 5, we present the numerical
experiments that have been carried out to compare the performance of HPEC
with PARPACK software on test matrices from Matrix Market and Higham’s
collections. Finally, parallel performance evaluation, in terms of efficiency on
random matrices, is also shown.

2 Block Lanczos Algorithm

The Lanczos algorithm for computing eigenvalues of a symmetric matrix A ∈
IRm×m is a projection method that allows to obtain a representation of the
operator in the Krylov subspace spanned by the set of orthonormal vectors,
called Lanczos vectors. In this subspace the representation of a symmetric
matrix is always tridiagonal. Assuming m = rs, the considered Block Lanczos
algorithm, proposed in [11], generates a symmetric banded block tridiagonal
matrix T having the same eigenvalues of A:

T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

M1 BT
1

B1 M2 BT
2

. . . . . . . . .

Br−2 Mr−1 BT
r−1

Br−1 Mr

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where Mj ∈ IRs×s and Bj ∈ IRs×s are upper triangular. T is such that

QT AQ = T,

where

Q = [X1 X2 . . . Xr], Xi ∈ IRm×s

is an orthonormal matrix, and its columns are the Lanczos vectors. A direct
way to evaluate Mj, Bj and Xj [11,24] is described below.

3



Choose X1 ∈ IRm×s such that

XT
1 X1 = Is, X0 ≡ 0, B0 ≡ 0

M1 = XT
1 AX1

for j = 1 to r − 1

Rj = AXj − Xj−1B
T
j−1 − XjMj

Rj = Xj+1Bj (QR factorization)

Mj+1 = XT
j+1AXj+1

endfor

Algorithm 1: Block Lanczos Algorithm (I version)

At step j Algorithm 1 produces a symmetric banded block tridiagonal matrix
Tj of order (j + 1) × s satisfying the equivalence

QT
j AQj = Tj (Qj = [X1 X2 . . . Xj+1]),

where QT
j Qj = I. In facts, when j grows Tj extremal eigenvalues, called Ritz

values of A, are increasingly better approximation of A extremal eigenvalues.

Block versions allow approximations of eigenvalues with multiplicity greater
than one, while in single vector algorithms difficulties can be expected since
the projected operator, in finite precision, is unreduced tridiagonal, which
implies it cannot have multiple eigenvalues [11].
Numerical stability of Block Lanczos algorithm [2,21] can derived from the
one for single vector version. As we have shown in [15], the following theorem
holds:

Theorem 2.1 (Block Lanczos Error Analysis)
Let A be a m × m real symmetric matrix with at most nza nonzero entries
in any row and column. Suppose the Block Lanczos algorithm with starting
matrix X1 ∈ Rm×s, implemented in floating-point arithmetic with machine
precision εM , reaches the j-th step without breakdown. Let the computed M̃j,
B̃j and X̃j+1 satisfy
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AQ̃j = Q̃jT̃j + X̃j+1B̃jE
T
j + Fj

where Ej = [0, 0, . . . , Is]
T ∈ Rs×sj,

Q̃j = [X̃1, . . . , X̃j],

and

T̃j =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

M̃1 B̃T
1

B̃1 M̃2 B̃T
2

. . . . . . . . .

B̃j−2 M̃j−1 B̃T
j−1

B̃j−1 M̃j

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Then,

|Fj| ≤ [m(1 + sG1) + 3]γ|A||Q̃j| + [s(1 + sG1) + 3]γ|Q̃j||T̃j| + O(ε2
M)

with ‖G1‖F = 1 and γ = max{εM , cmεM

1−cmεM
}, where c is a small integer constant

whose value is unimportant.
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3 Parallel Implementation

3.1 Modified Block Lanczos Algorithm

In previous works [13,14] we proposed a parallel implementation of the sym-
metric Block Lanczos algorithm for MIMD distributed memory architectures
configured as a 2-D mesh. We showed that a direct parallelization of the Algo-
rithm 1 has efficiency values, in the considered computational environments,
that deteriorate when sparsity decreases. This loss of efficiency is due to the
amount of communication, with respect to computational complexity, required
in the matrix-matrix multiplication, when the first factor is A sparse. This be-
havior depends on ScaLAPACK [4] implementation choices for matrix-matrix
operations, since the first matrix is involved in global communications and the
second one only in one-to-one communications. Then, to avoid this phenom-
ena, we reorganized the algorithm in such a way the sparse A is the second
factor in all matrix-matrix products, so that it is not involved in global com-
munications. This was achieved formally substituting each matrix appearing
in the Algorithm 1 by its transpose. Since A is a symmetric matrix, and so
Mj, j = 1, . . . , r − 1, we obtained the following version of the Block Lanczos
algorithm.

Choose XT
1 ∈ IRs×m such that

XT
1 X1 = Is, X0 ≡ 0, B0 ≡ 0

M1 = XT
1 AX1

for j = 1 to r − 1

RT
j = XT

j A − Bj−1X
T
j−1 − MjX

T
j

Rj = Xj+1Bj (QR fact., obtaining XT
j+1)

Mj+1 = XT
j+1AXj+1

end for

Algorithm 2: Block Lanczos Algorithm (II version)
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Substituting the sparse matrix-matrix operation AXj by the evaluation of the
product XT

j A, we obtained that XT
j was involved in communication instead of

A and therefore, there was a reduction in terms of execution times, communi-
cation complexity and a gain in terms of speed-up and efficiency, as shown in
[14]. Algorithm 2 has the same numerical properties of Algorithm 1, since the
use of transposed factors does not alter its behavior with respect to round-off
errors.

3.2 Data distribution

Now, in order to obtain good performances on different MIMD distributed
memory architectures, in particular on cluster architectures, we have to con-
sider a suitable connection topology, and, consequently, an appropriate data
distribution of the matrices among the nodes.

We assume the target architecture to consist of p nodes, logically configured
as a P × Q grid, indexed by an ordered pair (I, J), where 0 ≤ I < P and
0 ≤ J < Q. Each node is equipped with CPU and local memory. The nodes
are connected by some communication network that allows broadcasting of
messages within rows and columns, in addition to point-to-point communica-
tion. In this environment it is natural to develop a parallel algorithm in terms
of loosely synchronous processes performing the same task on different nodes.

Since in Algorithm 2 basic operations are level 3 BLAS [8], and the considered
connection topology is 2-D mesh, we choose the block scatter decomposition
[4] for all matrices involved in the algorithm, including the sparse one, since
this strategy allows the use of ScaLAPACK. For the memorization scheme of
A sparse we use a data structure, per process, usually referenced as CSC -
Compress Sparse Column (see for example [24]), consisting of three arrays,
respectively containing:

(1) the non-zero entries of A columns parts in the subblocks that are assigned
to the process;

(2) the rows indices in A of each element in the first array;
(3) pointers to the position in the first array of the first non-zero entry of

each column part.

Therefore, the global sparse matrix storage is a block scattered CSC. This
memorization scheme is redundant for a symmetric matrix, but it allows a
faster memory access to data, an easier localization of a whole column and a
decrease in global communication.
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3.3 Implemented algorithm

If we look at Algorithm 2, we see that the linear algebra operations involved are
essentially matrix-matrix multiplications, eventually with a transposed factor
or a sparse factor, and a QR factorization. Before implementing Algorithm
2, according to the described 2-D mesh approach, we observe that a global
transposition of the matrix RT

j is neeeded at each iteration before evaluating
the QR factorization. Since transposition operations in a message passing en-
vironment are extremely time consuming, due to the accesses needed to non
local memories, we substitute the QR factorization by the LQ factorization
that allows to access the matrix RT

j without transposition. Then, the imple-
mented algorithm is the following:

Choose XT
1 ∈ IRs×m such that

XT
1 X1 = Is, X0 ≡ 0, B0 ≡ 0

M1 = XT
1 AX1

for j = 1 to r − 1

RT
j = XT

j A − Bj−1X
T
j−1 − MjX

T
j

RT
j = BjX

T
j+1 (LQ fact.)

Mj+1 = XT
j+1AXj+1

end for

Algorithm 3: Block Lanczos Algorithm (III version)

The proposed Algorithm 3 represents the computational kernel of the software,
which will be described in detail in the next section.
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3.4 Computational and communication complexity

In this section we deal with the computational and communication aspects of
the implemented Block Lanczos algorithm.
Let nza be the number of non-zero entries of the sparse A ∈ IRm×m and s the
number of Lanczos vectors, the operation count for each complete step of the
sequential Block algorithm asymptotically is:

7m × s2 + 2nza × s − 2s3/3 floating − point operations.

The cost of a complete step of the parallel implementation of Algorithm 3, for
each of p computing nodes, is:

(7m × s2 + 2nza × s − 2s3/3)/p floating − point operations,

4m × s + 2nza one − to − one communications,

m × s + s2 one − to − all communications.

When nza increases the number of operations involving the sparse factor be-
comes dominant. It is also worth noticing that the operation count is not af-
fected by parallelization. Furthermore, the communication complexity is one
order of magnitude less than computational complexity, that is generally con-
sidered a target in linear algebra parallel algorithms.

4 Software Description

4.1 Software architecture

HPEC uses standard message passing libraries, i.e. BLACS [9] and MPI [12]
and standard numerical linear algebra software, PBLAS [5] and ScaLAPACK,
obtaining a software as portable as PARPACK.

PBLAS routine used in Algorithm 3 is PDGEMM to evaluate matrix-matrix
multiplications with dense factors.

Routines for matrices factorization are not included in PBLAS, but they are
covered by ScaLAPACK. The evaluation of Bj, at each iteration, is then per-
formed by using the routine PDGELQF, and the routine PDORGLQ is used
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to compute the matrix XT
j+1 of the LQ factorization.

We developed PDMASPMA routine to evaluate matrix-sparse matrix prod-
ucts, using the same scattered decomposition on which PDGEMM is based.
On each node the computational kernel is a sequential matrix-sparse matrix
product in which the access to the elements of the sparse factor is done ac-
cordingly to the data layout scheme. The advantage is that, since sparse factor
is not involved in communication, the overhead does not depend on sparsity.
On the other hand, performance depends on the distribution of the nonzero
entries in the sparse matrix; if those elements are uniformly distributed, each
processor will execute a comparable number of operations, thus balancing the
workload.

Since all matrices involved in the algorithm are distributed among processing
nodes, no replication of data occurs.

4.2 Software specification

The proposed HPEC is implemented in C and Fortran 77. It uses reverse
communication strategy for the sparse matrix A. The driver routine is named
LANCZOS, and its stub is the following:

SUBROUTINE LANCZOS (S, M, A, LMA, AI, AJ, XT1, LDXT1, MB, CONTXT,
1 NUMSEA, NUMAUT, W, ORFAC, ABSTOL, NMAX, IFND, IIFAIL)

DOUBLE PRECISION A(*), XT1(LDXT1,*), W(*), ORFAC, ABSTOL
INTEGER S, M, LMA, AI(*), AJ(*), LDXT1, MB, CONTXT
INTEGER NUMSEA, NUMAUT, NMAX, IFND(*), IIFAIL

User needs to provide the sparse matrix A in block CSC format, an initial
block XT1 consisting of S Lanczos’ vectors, and the required absolute tolerance
ABSTOL. With respect to other packages, such as PARPACK, which require an
user supplied matrix-vector product, HPEC user needs to provide the sparse
matrix A either in a data file, or via a function to compute A blocks, for given
rows and columns indexes.
HPEC supports different input sparse matrix formats:

Compress Sparse Column : described in section 3.2.
Coordinate Storage Scheme : it records each nonzero entry together with

its row and column index.
RSA Harwell-Boeing format : each column is held as a sparse vector, rep-

resented by a list of row indices of the entries in a integer array and a list
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of corresponding values in a separate array; a multiple line header contains
information about the matrix.

HPEC has two utility routines for the management of distributed matrices:
PDMATDIS implements the block scattered decomposition and distribution
of a dense matrix on a 2D mesh topology, while PDSPMDIS executes the same
operations on a sparse matrix.

5 Numerical Experiments

All numerical experiments described in the present section refer to a clus-
ter of 8 AMD Athlon XP 2400+ processors with 384MB DDR RAM con-
nected by a 100 Megabit/s Fast Ethernet switch, operated by the University
of Naples Parthenope; clustering middleware is Oscar 3.0, which includes gcc-
3.3.2, MPICH 1.2.5.10, BLACS 1.1 and ScaLAPACK 1.7.
We firstly compare numerical results and execution times of HPEC and PDSDRV1

PARPACK driver on two test matrices. We briefly recall PARPACK is a
parallel version of ARPACK software and it is targeted for multicomput-
ers. It is written in Fortran 77 and implements Implicitly Restarted Arnoldi
Method for solving large sparse eigenvalue problems. PARPACK uses single-
vector version of the algorithm, thus exploiting parallelism at matrix-vector
products level. PDSDRV1 needs a parallel sparse matrix-vector routine coher-
ent with PARPACK internal data distribution. Among available software,
we decided to use F11XBFP routine from the de facto standard NAg Par-
allel Library (http://www.nag.com/numeric/FD/manual/html/FDlibraryma-
nual.asp). Our choice has been motivated by the fact it uses the same cyclic row
block distribution as PARPACK. We wish to emphasize that for an unskilled
user the task of finding and using a parallel sparse matrix-vector code can
be difficult, since software publicly available, such as P-SPARSLIB [25] and
PSBLAS [10], has been motivated by particular numerical problems and im-
plemented within larger software projects, and thus computational kernels are
not easy to include in other packages. Parallel software libraries that contain
general purpose low level modules, such as NAg parallel software library and
PESSL (http://publib.boulder.ibm.com/doc link/en US/a doc lib/sp34/essl/
essl02.html), are commercial products.

Numerical experiments have been performed on two test matrices taken from
Matrix Market [3] and Test Matrix Toolbox for Matlab [17].
Matrix Market provides convenient access to a repository of test data for use
in comparative studies of algorithms for numerical linear algebra. Matrices
as well as matrix generation software and services are provided. Test Matrix
Toolbox has been implemented by N.J. Higham. Not only does it contain test
matrices, but also provides various tools for visualising and generating test
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Table 1
Test matrices characteristics
Name Size nza average nza longest shortest Frobenius

per col. col. (nza) col. (nza) norm

PLATZ1919 1919 32399 17 682 (19) 63 (3) 22

WATHEN(100,100) 30401 471601 8.2 3 (11) 30401 (1) 1.5 e+04

Fig. 1. PLATZ1919 pattern and elements magnitude

problems in Matlab.

The two selected matrices have size, number of non zero entries, sparsity
patterns and conditioning, as shown in Table 1.

PLATZ matrix [6] is a finite-difference model for the shallow wave equations
for the Atlantic and Indian Oceans (Fig. 1). The original matrix is derived as
the (negative) square of a purely imaginary skew-symmetric matrix. Hence,
the eigenvalues occur in pairs (except for an isolated singleton at zero).

Tables 2 and 3 show execution times in seconds obtained on 1 and 4 proces-
sors respectively, to seek 1, 2, 4 and 10 largest eigenvalues in magnitude of
PLATZ1919 with PARPACK and HPEC, with a fixed user tolerance in the
order of machine (double) precision for the computed eigenvalues.

We report the best execution time of PARPACK using 16, 32, 64 and 128
Arnoldi’s vectors, and in brackets, the number of vectors for which it has been
obtained. A similar methodology has been used to determine the number of
Lanczos’ vectors for HPEC, and very often the best choice is 16 vectors. The
block algorithm implemented by HPEC allows to computed multiple eigenval-
ues at the same time, as it can be observed in Table 2.

We observe that in all cases execution times of the two tested software are com-
parable. Finally, since the problem is very small, no significant performance
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Table 2
Execution times in seconds for PLATZ1919 matrix on 1 processor

Eigenvalues 1 2 4 10

PARPACK 12.02 (32) 12.25 (64) 16.89 (32) 31.51 (32)

HPEC 9.40(16) 9.40 (16) 9.40 (16) 10.24 (32)

Table 3
Execution times in seconds for PLATZ1919 matrix on 4 processors

Eigenvalues 1 2 4 10

PARPACK 4.60 (64) 4.65 (64) 6.34 (32) 10.04 (32)

HPEC 6.42 (16) 6.42 (16) 7.17 (16) 10.24 (16)

Fig. 2. WATHEN(100,100) nonzero pattern

gain has been observed on a larger number of processors.

WATHEN(NX,NY) is a sparse random N-by-N finite element matrix where N
= 3*NX*NY + 2*NX + 2*NY + 1.
It is precisely the ‘consistent mass matrix’ for a regular NX-by-NY grid of 8-
node (serendipity) elements in 2 space dimensions. WATHEN(NX,NY) is sym-
metric positive definite for any (positive) values of the ‘density’, RHO(NX,NY),
which is chosen randomly in this examples. In particular, if D = DIAG(DIAG(A)),
then 0.25 ≤ EIG(INV (D) ∗ A) ≤ 4.5 for any positive integers NX and NY
and any densities RHO(NX,NY).

Since the eigenproblems have a worst conditioning with respect to the pre-
vious examples, user tolerance has been set to .1D-7, to limit the number of
iterations.
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Table 4
Execution times in seconds for WATHEN(100,100) matrix on 1 processor

1 2 4 10

PARPACK 6042 (32) 8642 (32) 15611 (32) 24691 (32)

HPEC 1210 (32) 1533 (32) 2874 (64) 5402 (32)

Table 5
Execution times in seconds for WATHEN(100,100) matrix on 8 processors

1 2 4 10

PARPACK 782 (64) 1104 (32) 1507 (64) 6567 (64)

HPEC 580 (32) 732 (32) 1320 (32) 2504 (64)

As reported in Tables 4 and 5, excution time decreases as the number of pro-
cessors increases. On one processor, HPEC execution time is sensibly less than
PARPACK, due both to greater granularity in dense operations and the ab-
sence of reorthogonalization steps.

We note the number of Arnoldi’s and Lanczos’ vectors to optimize the execu-
tion time, is something strictly related to the problem and cannot be estimated
a priori, as we can see from Tables 4 and 5, and indeed software libraries usu-
ally leave to users the choice.
All tests confirm that the algorithm implemented in HPEC preserves the same
well known numerical properties of the Block Lanczos algorithm, and in partic-
ular the ability to evaluate multiple eigenvalues, and the capability of evaluate
eigenvalues of ill conditioned problems.

5.1 Parallel performance evaluation

In this section we evaluate the performance of the parallel implementation,
using standard parameters. In particular we want to estimate the gain, in
terms of execution time, when an increasing number of processors is used,
fixed the problem size, sparsity and number of Lanczos’ vectors. Since their
number cannot be chosen to fit all problems, we tested different block sizes.

The following tests have been performed, on randomly generated matrices of
order m = 8192, 16384, 32768, with a percentage of non-zero entries nzp =
.5%, 1%, and three values for the number of Lanczos’ vectors s = 32, 64, 128.
The performance of the algorithm is evaluated using p = 1, 2, 4, 8 nodes logi-
cally configured as a grid of 1×1, 1×2, 2×2 and 2×4 nodes, respectively. To
evaluate the effect of parallelization, we use the classical parameter efficiency
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Fig. 3. Efficiency values on p = 2, 4, 8 nodes, for s = 32, nzp = .5%,
m = 8192, 16384, 32768

Efficiency (s = 32, nzp = .5%)

0,20

0,40

0,60

0,80

1,00

2 4 8

Number of processors

m=8192 m=16384 m=32768

(Ep):

Ep =
T1(m, s, nzp)

p · Tp(m, s, nzp)
,

where Tj(m, s, nzp) is the execution time of the 10th iteration on j nodes for a
fixed size problem 1 . As we showed in section 3.4, the operation count for each
iteration of the algorithm depends on s2, and therefore the execution time of
the single iteration increases accordingly. For this reason, we choose the 10th

iteration, which provides a sufficient granularity for the dense operations to
justify the use of multiple processors.

We note efficiency values on 2 nodes for all tests, never drop below 0.75, while
it is at least 0.47 on 4 nodes and at most 0.60 on 8 processors. The efficiency
values grows, fixed m and s, when nzp increases: this is an expected result,

1 All the execution times have been obtained using MPICH routine MPI WTIME().
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Fig. 4. Efficiency values on p = 2, 4, 8 nodes, for s = 64, nzp = .5%,
m = 8192, 16384, 32768

Efficiency (s = 64, nzp = .5%)

0,20

0,40

0,60

0,80

1,00

2 4 8

Number of processors

m=8192 m=16384 m=32768

since in the analysis of communication and computation complexity shown in
section 3.4, one to all communication does not involve sparse factor A. Further,
efficiency increases for larger values of m, which provides a hint software can
be efficient for a growing number of processors.

All results show the implemented parallelization strategy allows to reduce the
execution times using more than 1 processor and that HPEC is efficient on
the target architectures for problems of adequate dimension.

6 Summary

In present work we present HPEC, a freely available parallel software, based
on a variant of the Block Lanczos algorithm for the real, sparse symmetric
eigenvalue problem. The software is based on the linear algebra library ScaLA-
PACK and BLACS communication library. It provides a simple application
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Fig. 5. Efficiency values on p = 2, 4, 8 nodes, for s = 128, nzp = .5%,
m = 8192, 16384, 32768

Efficiency (s = 128, nzp = .5%)
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programming interface and supplies decomposition and distribution routines
for dense and sparse matrices.

Results of numerical experiments and performance evaluation, confirm the
numerical and efficiency qualities of the proposed software.
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Fig. 6. Efficiency values on p = 2, 4, 8 nodes, for s = 32, nzp = 1%,
m = 8192, 16384, 32768
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