Consiglio Nazionale delle Ricerche
Istituto di Calcolo e Reti ad Alte Prestazioni

On the reduction of
datasets dimensionality
In a classification method
based on
generalized eigenvalue
problems

Mario R. Guarracino

RT-ICAR-NA-2005-15 Novembre 2005

Consiglio Nazionale delle Ricerche, Istituto di Calcolo e Reti ad Alte Prestazioni (ICAR)

| “—' ] — Sede di Napoli, Via P. Castellino 111, 1-80131 Napoli, Tel: +39-0816139508, Fax: +39-
g, —

0816139531, e-mail: napoli@icar.cnr.it, URL: www.na.icar.cnr.it



Consiglio Nazionale delle Ricerche
Istituto di Calcolo e Reti ad Alte Prestazioni

On the reduction of
datasets dimensionality
In a classification method
based on
generalized eigenvalue
problems

Mario R. Guarracino®

Rapporto Tecnico N.: Data:
RT-ICAR-NA-2005-15 Novembre 2005
LICAR-CNR

I rapporti tecnici dell’lCAR-CNR sono pubblicati dall’Istituto di Calcolo e Reti ad Alte Prestazioni del
Consiglio Nazionale delle Ricerche. Tali rapporti, approntati sotto I’esclusiva responsabilita scientifica
degli autori, descrivono attivita di ricerca del personale e dei collaboratori dell’ICAR, in alcuni casi in un
formato preliminare prima della pubblicazione definitiva in altra sede.



On the reduction of datasets dimensionality
in a classification method based on
generalized eigenvalue problems

Mario R. Guarracino®

! High Performance Computing and Networking Institute,
National Research Council, Italy

Abstract

Scientific experiments continuously produce huge amount of data that are
used as input for analysis.The task of keeping those data coming from new
experiments updated can become a cumbersome task. Various techniques
have been devised in the field of machine learning to solve this problem.
In the present work we propose an algorithm to determine a subset of a
training set which can be used to compute the classification function using
ReGEC, a generalized eigenvalue based technique. It has the advantage it
can analyze new data of the training set and update the classification in
a fast and reliable way. Numerical experiments show that this technique
makes ReGEC competitive with respect to state of the art methods in terms
of accuracy and execution time.

1 Introduction

Supervised learning refers to the capability of a system to learn from a set of
examples, which is a set of input/output couples. This set is called the training
set. The trained system is able to provide an answer (output) for a new question
(input). The term supervised originates from the fact that the desired output for
the training set of points is provided by an external teacher.

Supervised learning systems can find applications in many fields. A bank
prefers to classify customer loan requests as “good” or“bad” depending on their
ability to pay back. The Internal Revenue Service tries to discover tax evaders
starting from the characteristics of known ones. As another example, a built-in
system in a car could detect if a walking pedestrian is going to cross the street.
There are many applications in biology and medicine. The tissues that are prone
to cancer can be detected with high accuracy, or the new DNA sequences or pro-
teins can be tracked down to their origins. Given its amino acids sequence, finding
how a protein folds provides important information on its expression level. More
examples related to numerical interpolation, handwriting recognition and Monte-
carlo methods for numerical integration can be found, for example, in [4, 6].
Support Vector Machine (SVMs) algorithms [23] are the state-of-the-art for the
existing classification methods. These methods classify the points from two lin-
early separable sets in two classes by solving a quadratic optimization problem in



order to find the optimal separating hyperplane between these two classes. This
hyperplane maximizes the distance from the convex hulls of each class. These
techniques can be extended to the nonlinear cases by embedding the data in a
nonlinear space using kernel functions [20].

SVMs have been one of the most successful methods in supervised learning with
applications in a wide spectrum of research areas, ranging from pattern recognition
[11] and text categorization [9] to biomedicine [12, 3, 14], brain-computer interface
[22, 7], and financial applications [25, 21]. The robustness of SVMs originates from
the strong fundamentals of statistical learning theory [23]. The training part re-
lies on optimization of a quadratic convex cost function. Quadratic programming
(QP) is an extensively studied field of mathematics and there are many general
purpose methods to solve QP problems such as quasi-newton, primal-dual, and
interior-point methods. The general purpose methods are suitable for small size
problems, whereas for large problems chunkingsubset selection [15] and decompo-
sition [17] methods use subsets of points to optimize SVMs. SVM-Lite [10] and
LIBSVM [5] are among the most preferred implementations that use chunking-
subset selection and decomposition methods efficiently. There are also efficient
algorithms that exploit the special structure of the optimization problem such as
Generalized Proximal SVMs (GEPSVM) [13].

The binary classification problem can be formulated as a generalized eigenvalue
problem [13]. This formulation differs from SVMs since, instead of finding one hy-
perplane that separates the two classes, it finds two hyperplanes that approximate
the two classes. The prior study requires the solution of two different eigenvalue
problems. The aim of this work is to present a subset selection technique to be
used in conjunction with Regularized General Figenvalue Classifier (ReGEC)[8], a
classification method based on generalized eigenvalue problem. This new method,
which we will call CReGEC greatly reduces execution times, while providing com-
parable accuracy results. The execution times are now competitive with the fastest
methods available.

The notation used in the paper is as follows. All vectors are column vectors,
unless transposed to row vectors by a prime ’. Scalar product of two vectors x
and y in R™ will be denoted by z’y, 2-norm of = will be denoted by ||z| and the
unit vector will be denoted by e.

The remainder of the the paper is organized as follows. Section 2 describes how
the generalized eigenvalue classifier differs from the generic SVM methods. In
Section 3 the subset selection technique is presented. In Section 4, numerical ex-
periments are reported, and finally, in Section 5, conclusions are drawn and future
work is proposed.

2 Related work

SVM algorithm for classification consists of finding a hyperplane that separates
the elements belonging to two different classes. The separating hyperplane is
usually chosen to maximize the margin between the two classes. The margin can
be defined as the minimum distance between the separating hyperplane and the
points of either class. The optimum hyperplane is the one that maximizes the
margin. The points that are closest to the hyperplane are called support vectors,



and are the only points needed to train the classifier. Consider two matrices
A € R™™ and B € R¥*™, that represent the two classes, each row being a point
in the feature space. The quadratic linearly constrained problem to obtain the
optimal hyperplane (w, b) is:

w'w

2

(1)

min f(w) =
s.t. (Aw+1b) > e
(Bw+b) < —e.

Mangasarian et al. [13] proposes to classify these two sets of points A and B
using two hyperplanes, each closest to one set of points, and furthest from the
other. Let 2w — v = 0 be a hyperplane in R™. In order to satisfy the previous
condition for the points in A, the hyperplanes can be obtained by solving the
following optimization problem:

Aw — 2
min 7H v e’yHQ' (2)
w2000 [Bw = en]

The hyperplane for the B can be obtained by minimizing the inverse of the
objective function in (3). Now, let

G=[A —¢|[A —¢, H=[B —¢€|[B —¢], z=[u" 4], (3)

then equation (2), becomes:
min 2 Gz
zeRm 2/ Hz'

(4)

The expression in (4) is the Raleigh quotient of the generalized eigenvalue
problem Gz = AHx. The stationary points are obtained at and only at the
eigenvectors of (4), where the value of the objective function is given by the
eigenvalues. When H is positive definite, the Raleigh quotient is bounded and it
ranges over the interval determined by minimum and maximum eigenvalues [16].
H is positive definite under the assumption that the columns of [B  — e] are
linearly independent. The inverse of the objective function in (4) has the same
eigenvectors and reciprocal eigenvalues. Let zpim = [w1 1] and zmee = (w2 2]
be the eigenvectors related to the eigenvalues of smallest and largest modulo,
respectively. Then z’w; — ;1 = 0 is the closest hyperplane to the set of points in
A and the furthest from those in B and x’ws — 72 = 0 is the closest hyperplane
to the set of points in B and the furthest from those in A.

Mangasarian et al. proposes to use Tikhonov regularization applied to a two-
fold problem:

[Aw — e[ + 9|z

min , 5
w40 | Bw — ev||? (5)

and 2 | 5.2
Bw—e z
BN L o
wa0  [[Aw — ey
where ¢ is the regularization parameter and the new problems are still convex.
The minimum eigenvalues-eigenvectors of these problems are approximations of




the minimum and the maximum eigenvalues-eigenvectors of equation (4). The
solutions (w;,;),7 = 1,2 to (5) and (6) represent the two hyperplanes approxi-
mating the two classes of training points.

In practice, if BG — aH is nonsingular for every a and (3, it is possible to
transform the problem into another problem that is nonsingular and that has the
same eigenvectors of the initial one, as proved by Y. Saad ([19], p. 288). In the
linear case, the regularized problem becomes

4w — 1|2 + 61| Bw — en]?

m S 5 (7)
w#0 || Bw — ey||? + d2]|Aw — er||

The spectrum is now shifted and inverted so that the minimum eigenvalue
of the original problem becomes the maximum of the regularized one, and the
maximum becomes the minimum eigenvalue. Choosing the eigenvectors related
to the new minimum and maximum eigenvalue, we still obtain the same ones of
the original problem.

This regularization works for the linear case if we suppose that in each class
of the training set there is a number of linearly independent rows that is at least
equal to the number of the features. This is often the case and, since the number
of points in the training set is much greater than the number of features, Ker(G)
and Ker(H) have both dimension 1. In this case, the probability of a nontrivial
intersection is zero.

A standard technique in SVMs to obtain a greater separability between sets
is to embed the points into a nonlinear space, via kernel functions. In this work
we use the Gaussian kernel,

2
_ il

K(zj,xj)=e & . (8)

In (8), ; and x; denote two points in the feature space. This technique usually
allows one to obtain better results, as shown in several applications. Results
regarding nonlinearly separable problems [1, 2] still hold and a formulation for
the eigenvalues problem can easily be derived.

In the nonlinear case the situation is different. Using the kernel function (8),
each element of the kernel matrix is

_114—B; 12

K(A, B)i,j =€ 4 . (9)

Let

then, problem (2) becomes:

min . 10
M K (B, Cu— ey P 10)




Now the associated eigenvalue problem has matrices of order n + k + 1 and rank
at most m. This means a regularization technique is needed, since the problem
can be singular.

We propose to generate the following two proximal surfaces:

K(z,C)u; — 711 =0, K(xz,C)ug —y2=0 (11)
by solving the following problem

KA, CJu— ey + 6| K — en]?
w320 |[K (B, C)u — ey + 6 Ku — er]?

(12)

where K4 and Kp are diagonal matrices with the diagonal entries from the ma-
trices K (A, C) and K (B, C). The perturbation theory of eigenvalue problems [24]
provides an estimation of the distance between the original and the regularized
eigenvectors. If we call z an eigenvector of the initial problem and z(§) the cor-
responding one in the regularized problem, then |z — z(J)| = O(J), which means
their closeness is in the order of 4.

As mentioned before, the minimum and the maximum eigenvalues obtained
from the solution of (12) provide the proximal planes P;, i = 1,2 to classify the
new points. A point x is classified using the distance

_ K (@, C)u—A?

dist(xz, P;) = e . (13)

and the class of a point = is determined as

class(z) = argmin;— o{dist(x, P;)}. (14)

3 A subset selection technique

The idea behind the proposed subset selection technique is to find a subset of the
training set which classifies the training set with sufficient accuracy. To evaluate
classification we use ReGEC. Since the training set is a sample of the popula-
tion, the subset should be able to retain the information needed to classify the
whole population. The algorithm starts to evaluate the classification with one
point from each class in the chunked training set. Each point is then tested with
respect to the chunked set and is added if ¢) when added to the chunked set, it
still classifies the previous chunked set with accuracy 1, and i) the accuracy of
classification of the new chunked set on the training set is greater of the previous
chunked set.

In this way, a point is added iff the new set still correctly classifies all previ-
ously added points, and it is capable to provide more accurate classification of
the training set.

Before starting this procedure, a sorting process is needed in order to feed the
algorithm in such a way the overall classification is comparable with the initial
one. We have empirically found that, if we sort the features of centers of gravity
of each class in descending order, with respect to their absolute value, and we use



dataset train test
Diabetis 468 300
German 700 300 20
Flare-solar 666 400 9
Titanic 150 2051 3

| B

Table 1: Datasets

dataset | train o0 ReGEC | chunked o0 CReGEC | SVM
Diabetis 468  500. 74.56 12 492. 73.85 | 76.21
German 700  500. 70.26 24 10. 73.65 | 75.66
Flare-solar 666 3. 58.23 11 400. 63.19 | 65.80
Titanic 150 150. 75.29 4 50. 75.04 | 77.36

Table 2: Classification accuracy using gaussian kernel

this ordering to sort the training set, we obtain classification accuracy that are,
as it will be shown in the next paragraph, comparable with the one obtained with
the whole training set.

In the next section we present comparisons of accuracy and speed of the pro-
posed method to the original generalized proximal classifier as well as the widely
used SVMs implementations.

4 Numerical results

The aforementioned method has been tested on benchmark data sets publicly
available. Results regard their performance in terms of classification accuracy
and execution time when using a non linear kernel. We used data from IDA
repository [18]. That repository is widely used to compare the performance of
new algorithms to the existing methods. For each data set, it offers 100 prede-
fined random splits into training and test sets. For several algorithms, results
obtained from each trial, including SVMs, are recorded. The accuracy results for
the non linear kernel from [18]. Execution times and the other accuracy results
have been calculated using an Intel Centrino CPU 1.6GHz, 512MB RAM running
Windows XP, Matlab 6. Matlab function eig for the solution of the generalized
eigenvalue problem has been used for ReGEC. The latest releases for LIBSVM [5]
and SVMlight [10] have been used to compare these methods with SVMs.

In Table 1, for each dataset, name, dimension of the train and test sets, and
number of features are reported. In Table 2, classification accuracy using gaussian
kernels has been evaluated for CReGEC, ReGEC and SVM. For the first two
methods the dimension of the train and o have been given. As it can be seen, the
dimension of the training set is dramatically reduced, while accuracy is almost
the same.

In Table 3, elapsed time is reported. In all cases, CReGEC outperforms ReGEC.
To better understand the execution times of all considered methods, in Table 4,



Let A € R™*® and B € R™** the training points in each class.
Choose appropriate § and o € IR
Set acc = 1, acc_glob = 0 and acc_glob_old = 0.

% Compute centers of gravity of A and B
bar A = sum(A,1)/m;
barB = sum(B,1)/n;

% Sort A and B wrt features of centers of gravity
[order A, Iorder A] = sort(abs(barA));
[order B, Iorder B] = sort(abs(barB));
A = sortrows(A, (sort(IorderA.71)).71);
B = sortrows(B, (sort(Iorder B.71)).71);

kA =2; % index of A point to add

kB = 2; % index of B point to add

ttr = [A(1,:); B(1,:)];

ttr l = [1;—1];

while(acc_glob ~=1 && kA <=m && kB <= n)

% Check whether the next point to A has to be added
if (kA ~=m && acc_glob ~=1)
temp = [ttr; A(KA,:)];
temp_l = [ttr_; 1];

% Compute classification accuracy of chunked dataset
acc = regec(temp, temp_l, ttr ttr_1,0,6);
if(acc==1)

% Compute accuracy of classification on the trainset
accglob = regec(temp, temp_l, train, train_l, o, 9);
if(acc_glob > acc_glob_old)

acc_glob_old = acc_glob;
ttr = temp;
ttr_l = temp_L;
end
end
kA=kA+1;
end
% Check whether the next point to B has to be added

end

Figure 1: ReGEC algorithm




Dataset CReGEC ReGEC

Diabetis 0.0499 2.5437
German 0.0824 8.1464
Flare-solar 0.0641 4.6579
Titanic 0.3019 1.8936

Table 3: Elapsed time in seconds using gaussian kernel

Dataset CReGEC ReGEC LIBSVM

Diabetis 1 50.9759 5.8777
German 1 98.8640 7.3934
Flare-solar 1 72.6661 5.5419
Titanic 1 6,2722 0.7461

Table 4: Relative execution time

we set to 1 the execution time of CReGEC, and we evaluate the execution time
ratio between CReGEC and ReGEC. In order to compare those results, with
the ones reported in [8] and obtained on a processor with a different speed, we
have evaluated the ratio between ReGEC and 1ibSVM execution times. From
the quotient of those two quantities we can evaluate the relative execution time
of each method with respect to the others. For example, we can see that on
Diabetis dataset ReGEC takes 50.9759 times longer than CReGEC to evaluate
the classification, and that SVM is only 5.8777 times slower than CReGEC. Only
in the case of Titanic dataset, SVM outperforms CReGEC. We note that the gain
grows with the number of points in the training set.

5 Conclusions and future work

Research activities related to supervised learning have an important role in many
scientific and engineering applications. In the present work a novel subset selec-
tion technique and its application has been proposed and tested against other
methods on a number of datasets. Results show that the proposed method 7) has
a classification accuracy comparable to other methods, i) has a computational
performance comparable to most of the other methods, and #ii) is much faster
then the others.

In the last years there has been a wide effort devoted to the implementation of
algorithms for the efficient computation of algorithms for the selection of features
that influence classification. We will investigate techniques that can applied to
the generalized eigenvalue classification methods.
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