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2LEVDD-PSBLAS: a package of high-performance

preconditioners for scienti¯c and engineering applications

Alfredo Buttari¤, Pasqua D'Ambray, Daniela di Sera¯noz, Salvatore Filipponex

Abstract

We present a package of parallel algebraic two-level Schwarz preconditioners,
which has been developed on the top of the Parallel Sparse BLAS (PSBLAS)
library. The package, named 2LEVDD-PSBLAS, currently includes various
versions of additive Schwarz preconditioners that are combined with a coarse-
level correction, in either additive or multiplicative ways, to obtain two-level
preconditioners; a smoothed aggregation algorithm is implemented to build
the coarse-level correction. 2LEVDD-PSBLAS was designed to fully exploit
the basic linear algebra kernels provided by PSBLAS; nevertheless, it required
the implementation of a few more matrix operators, thus leading to an exten-
sion of the original PSBLAS version. The package, used with Krylov solvers
implemented in PSBLAS, was tested on linear systems arising from di®erent
large-scale applications. Performance results are discussed in the paper.

1 Overview

The solution of large and sparse linear systems,

Ax = b; A 2 <n£n; b 2 <n; (1)

is often the main computational kernel of large-scale applications in science and
engineering. These systems generally arise from the discretization of Partial Dif-
ferential Equations (PDEs), but they come also from applications not governed by
PDEs, such as the design and analysis of circuits, chemical engineering processes,
queueing systems and economic models. Krylov iterative solvers coupled with suit-
able preconditioners are the method of choice in many cases, especially when the
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matrix dimension reaches the order of 106¡108, such as in 3D multiphysics and mul-
tiscale simulations. Therefore, much e®ort is put in developing parallel algorithms
and software implementing Krylov methods and preconditioners, in order to provide
computational scientists with e®ective tools for building their application codes.

In this paper we present a package of preconditioners for high-performance archi-
tectures, based on Domain Decomposition algorithms of Schwarz type. The package
is implemented on the top of Parallel Sparse BLAS (PSBLAS) [17], a library for
sparse basic linear algebra operations, that includes parallel versions of most of the
Sparse BLAS computational kernels proposed in [14] and auxiliary routines for the
creation and management of distributed sparse matrices. The choice of PSBLAS
was motivated by the need of having a portable, e±cient and modular software
infrastructure, that provides also a smooth upgrade path for integration in legacy
application codes [2, 18]. Our package currently includes di®erent versions of one-
level and two-level Schwarz preconditioners [6, 7, 9, 20]. A pure algebraic formulation
is considered, as outlined below.

Let G = (W;E) be the adjacency graph of the matrix A in (1), where W and E
are the vertex set and the edge set, respectively. Two vertices are called adjacent
if there is an edge connecting them. Starting from a 0-overlap partition of W ,
i.e. from a set of m disjoint nonempty sets W 0

i ½ W such that [mi=1W
0
i = W , for

± > 0 a ±-overlap partition of W can be de¯ned recursively, by considering the sets
W ±
i ¾ W ±¡1

i obtained by including the vertices that are adjacent to any vertex in

W ±¡1
i . Let n±i be the size of W ±

i and R±i 2 <n
±

i
£n the restriction operator that

maps a vector v 2 <n onto the vector v±i 2 <
n±
i containing the components of v

corresponding to the vertices in W ±
i . The transpose of R±i is a prolongation operator

from <n
±

i to <n. The matrix A±i = R±iA(R±i )
T 2 <n

±

i
£n±

i can be regarded as a
restriction of A corresponding to the set W ±

i .
The classical Additive Schwarz (AS) preconditioner is de¯ned as

M¡1
AS =

mX

i=1

(R±i )
T (A±i )

¡1R±i ; (2)

while the Restricted AS (RAS) and AS with Harmonic extension (ASH) variants
are de¯ned as

M¡1
RAS =

mX

i=1

( ~R0i )
T (A±i )

¡1R±i ; M¡1
ASH =

mX

i=1

(R±i )
T (A±i )

¡1 ~R0i ;

where ~R0i 2 <
n±
i
£n is obtained by zeroing the rows of R±i identi¯ed by the vertices

in W ±
i nW

0
i . For all the AS preconditioners A±i is assumed to be nonsingular. The

application of the preconditioner (2) with a Krylov solver requires the solution of a
system of the form MASz = v, that corresponds to the following steps

vi = R±i v; i = 1; : : : ;m; (3)
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solve A±iwi = vi; i = 1; : : : ;m; (4)

z =
mX

i=1

(R±i )
Twi: (5)

With RAS R±i in (5) is replaced by ~R0i , while with ASH R±i in (3) is replaced by ~R0i .
The AS preconditioners exhibit an intrinsic parallelism, since the computations

concerning di®erent subdomains can be performed by di®erent processors. On the
other hand, the convergence theory for the AS preconditioners shows that, when they
are used in conjunction with a Krylov subspace method, the convergence rapidly im-
proves as the overlap ± increases, while it deteriorates as the number m of subsets
W ±
i grows. Therefore, in a parallel setting, the AS preconditioners are widely used

in conjuction with some coarse space, where the original linear system can be ap-
proximated to provide a suitable improvement to the solution [8, 9, 20]. The use of
this space introduces some extra work that has a sequential nature, but is necessary
for developing scalable preconditioning algorithms.

In a pure algebraic setting, a coarse-space approximation AC of the matrix A is
usually built with a Galerkin approach. Given a set WC of coarse vertices, with size
nC , and a suitable restriction operator RC 2 <

nC£n, AC is de¯ned as AC = RCAR
T
C

and the coarse-space correction matrix to be combined with the AS preconditioners
is obtained as

M¡1
C = RTCA

¡1
C RC ; (6)

where AC is assumed to be nonsingular. The matrices WC and RC can be built by
using an aggregation technique [5, 22, 23].

MC can be combined with any AS preconditioner (henceforth denoted by M1L)
in either an additive or a multiplicative way to obtain two-level preconditioners. The
additive combination leads to

M¡1
2LA = M¡1

C +M¡1
1L ;

which corresponds to applying the coarse-level correction and the basic AS precon-
ditioner independently and then summing up the results. An example of multiplica-
tive combination is given by the following hybrid preconditioner, that we refer to as
2LH-post :

M¡1
2LH¡post = M¡1

1L +
³
I ¡M¡1

1L A
´
M¡1
C ;

which is obtained by applying ¯rst the coarse-level correction and then basic AS
preconditioner:

w = M¡1
C v;

z = w +M¡1
1L (v ¡Aw):

Other two-level hybrid preconditioners are obtained by applying M1L only before or
before and after the coarse-level correction.
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Figure 1: Software architecture of 2LEVDD-PSBLAS.

2 Software architecture of 2LEVDD-PSBLAS

Our main e®ort was devoted to develop a package of parallel two-level Schwarz
preconditioners based on standard kernels for sparse linear algebra operations. The
package was therefore designed to fully exploit the existing functionalities of the
PSBLAS library. However, its implementation required an extension of the PSBLAS
basic kernels.

The software architecture of 2LEVDD-PSBLAS is shown in Figure 1. Three main
layers can be identi¯ed. The lower layer consists of the original and the new PSBLAS
kernels, the middle layer implements the construction and application phases of the
preconditioners and the upper layer provides a uniform and easy-to-use interface to
all the preconditioners.

2.1 Lower layer

PSBLAS was designed to provide basic operators needed to implement iterative
methods for the solution of sparse linear systems on distributed-memory parallel
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computers. The original 1.0 version was written in a mixture Fortran 77 and C,
with a user interface exploiting modern features of Fortran 95, such as facilities
for data encapsulation, functional overloading and dynamic memory management;
the current development version has been completely reimplemented in Fortran 95.
Inter-process data communications are performed using BLACS [13] and MPI [21].

PSBLAS supports a general row-block distribution of sparse matrices, with con-
formal distribution of vectors and dense matrices. Two main data structures, imple-
mented as Fortran 95 derived data types, are used to hold the information concerning
a distributed sparse matrix: the Sparse Matrix and the Communication Descriptor.
The former includes all the information about the local part of a distributed sparse
matrix and its storage mode, while the latter contains a representation of the set of
indices involved in the parallel data distribution, including the indices identifying
the 1-overlap layer.

The PSBLAS basic routines can be divided into computational and auxiliary rou-
tines [17]. The former implement parallel algorithms for most of the Sparse BLAS
(SBLAS) computational kernels proposed in [14], while the latter provide support
for parallel sparse matrix management. In PSBLAS 1.0 the set of computational
routines includes the sparse matrix by dense matrix (or vector) multiplication, the
sparse triangular system solution (only for block diagonal matrices), the dense ma-
trix sum, the dot product and some vector and matrix norms. An implementation of
the SBLAS speci¯cations in [14] is also provided to perform the serial sparse matrix
computations required by the parallel kernels. The auxiliary routines of PSBLAS
1.0 implement the operations for allocating, building and updating sparse and dense
distributed matrices and the typical data communications involved in parallel sparse
matrix computations.

The construction of the basic (one-level) AS preconditioners required the exten-
sion of the set of auxiliary routines, to build the matrices A±i . A new routine was
developed to enlarge A0i in each processor, i.e. to gather the rows of the matrix A
that correspond to the indices in W ±

i nW
0
i . This functionality was put in the PS-

BLAS layer since it can be used in a more general context, e.g. to build extended
stencils, that are often required by numerical simulations involving PDEs. The con-
struction of the coarse-level matrix AC and its application required the extension
of the set of PSBLAS sequential kernels with routines performing sparse matrix
diagonal scaling, sparse matrix transpose and sparse matrix by sparse matrix mul-
tiplication. The last two operations were implemented by integrating into PSBLAS
the SMMP software [1]. We note that, although the sparse matrix multiplication
is not considered in the last SBLAS standard, the possibility of its future inclusion
was foreseen by the BLAS Technical Forum [15]. Further details on the extension
of PSBLAS can be found in [3, 10].
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2.2 Middle layer

The middle layer of 2LEVDD-PSBLAS, written in Fortran 95, consists of the rou-
tines that implement the construction and the application phases of the precon-
ditioners. A key issue in the implementation of this layer was the de¯nition of a
Preconditioner data structure that contains all the items needed by the precondition-
ers, but reuses the basic PSBLAS data structures to exploit the functionalities of the
PSBLAS computational and auxiliary routines. Inside this structure the matrices
A±i , AC and RC are represented by using the Sparse Matrix and the Communica-
tion Descriptor data types; a representation of the operator R±i is provided by the
Communication Descriptor of A±i , that includes a representation of the indices in
W ±
i nW

0
i .

The construction of the one-level preconditioners was implemented in two main
steps: the identi¯cation of the overlap indices needed to build A±i , through the al-
gorithm described in [3], and the enlargment of the matrix A0i , through the new
auxiliary PSBLAS routine mentioned in Section 2.1. For the construction of the
coarse matrix AC the smoothed aggregation technique [5, 23] was chosen. This re-
quired the implementation of three main tasks [10]: a parallel decoupled aggregation
procedure, to build the coarse-space vertex set WC from the original vertex set W ;
the application of a damped Jacobi smoother to a simple piecewise constant inter-
polation operator, to obtain the coarse-to-¯ne prolongation operator RC ; the con-
struction of the coarse matrix AC = RCAR

T
C , where AC can be distributed among

the processors or replicated on each of them. The latter two steps were performed
by using the new sequential sparse matrix operators integrated into PSBLAS.

The routines for the application of the preconditioners were implemented by ex-
ploiting di®erent PSBLAS kernels. Sparse matrix management routines are used to
perform the steps (3) and (5) of the basic AS preconditioners, while parallel sparse
matrix by vector multiplications and dense vector sums are applied to apply the
coarse-level correction matrix (6) and to combine it with the one-level precondi-
tioners. The solution of the system (4), involving the matrices A±i , is accomplished
by either the ILU or the LU factorization. The sequential ILU routine available in
PSBLAS 1.0 is used in the former case; an interface to UMFPACK [11], version 4.4,
and to SuperLU [12], version 3.0, was developed to deal with the latter case. The
same options are available for the system involving AC , when this matrix is repli-
cated among the processors. On the other hand, to solve the coarse-level systems
when AC is distributed, a block-Jacobi routine was developed, that uses the ILU or
LU factorizations on the diagonal blocks of the coarse matrix held by the processors.

2.3 Upper layer

At the upper layer of 2LEVDD-PSBLAS two routines encapsulate all the function-
alities for the construction and the application of the preconditioner, respectively. A
further routine is provided to set the preconditioner options according to the choice
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subroutine psb_prcset(prec,ptype,iv,rs,rv,info)

type(psb_dprec_type), intent(inout) :: prec

character(len=*), intent(in) :: ptype

integer, optional, intent(in) :: iv(:)

real(kind(1.d0)), optional, intent(in) :: rs

real(kind(1.d0)), optional, intent(in) :: rv(:)

integer, optional, intent(out) :: info

end subroutine psb_prcset

subroutine psb_prcbld(a,prec,desc_a,info,upd)

integer, intent(out) :: info

type(psb_dspmat_type), intent(in), target :: a

type(psb_dprec_type),intent(inout) :: prec

type(psb_desc_type), intent(in) :: desc_a

character, intent(in), optional :: upd

end subroutine psb_prcbld

Figure 2: APIs of the routines for the preconditioner setup.

of the preconditioner made by the user. These routines make available, through
simple Fortran 95 APIs, the various basic AS and two-level preconditioners. The
Krylov solvers provided in PSBLAS 1.0 [17] were also slightly modi¯ed to use the
preconditioners. More details on the upper layer interface are given in the next
section.

3 Example of use

From the point of view of the 2LEVDD-PSBLAS user, building a preconditioner re-
quires two basic steps: setting the preconditioner options, and creating and de¯ning
the Preconditioner data structure. In order to perform these steps, two black-box
routines are available, psb_prcset and psb_prcbld, whose Fortran 95 APIs are
shown in in Figure 3.

In the psb_prcset API, the main input parameters are the Preconditioner data
structure, named prec, and the ptype string variable, de¯ning the choice of the
preconditioner made by the user. Currently, the possible values for ptype are:
noprec (no preconditioner), diagsc (diagonal preconditioner), bja (Block-Jacobi
preconditioner, which is a special case of AS), asm (one-level Schwarz preconditioner)
and ml (two-level Schwarz preconditioner).

The di®erent items of the iv optional array are used to specify various param-
eters of the Schwarz preconditioners. For the one-level preconditioners, the entries
specify the number of overlap layers, the type of restriction (R±i or ~R0i ), the type of
prolongation and the type of factorization to be employed. For the two-level pre-
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subroutine psb_prcaply(prec,x,y,desc_data,info,trans,work)

type(psb_desc_type), intent(in) :: desc_data

type(psb_dprec_type), intent(in) :: prec

real(kind(0.d0)), intent(inout) :: x(:), y(:)

integer, intent(out) :: info

character(len=1), optional :: trans

real(kind(0.d0)), intent(inout), optional, target :: work(:)

end subroutine psb_dprecaply

Figure 3: APIs of the routine for the preconditioner application.

conditioners, the user must ¯rst set the parameters of the ¯ne level, and afterwards
he/she can set the parameters concerning the coarse-level correction. The user can
specify the type of two-level framework (additive or multiplicative), details of the ag-
gregation algorithm, the \position" of the one-level preconditioner (before, after, or
before and after the coarse-level correction), the coarse matrix storage (distributed
or replicated), the type of solver to be employed at the coarse level and related
details. Default values are provided for all the optional parameters.

The application of a Schwarz preconditioner at each iteration of a Krylov solver
is obtained by calling the black-box routine psb_prcaply, which has the API shown
in Figure 3. This routine has a slightly more general interface than required by
the usual preconditioner application, since it computes a vector update of the type
y = ¯y + op(M¡1) x, where M is a previously built preconditioner, stored in the
prec data structure, and op(B) denotes B or its transpose, according to value of
trans.

An example of use of 2LH-post, with RAS (overlap 1) as basic preconditioner,
distributed coarse matrix, four Block-Jacobi sweeps and UMFPACK LU factoriza-
tion, coupled with the BiCGSTAB solver implemented in PSBLAS is sketched in
Figure 4. More details on the use of the routines for the setup and the application
of the preconditioners can be found in [4].

4 Performance results

We have tested our software by solving linear systems with coe±cient matrices
arising from simulations of the thermo-°uidynamics in an automotive engine and of
the thermal di®usion in some solids.

The automotive engine test cases are snapshots from the simulation of a direct
injection diesel engine, from a commercial automotive manufacturer. The matrices
arise from the discretization of the pressure correction equation in the implicit phase
of a semi-implicit algorithm (ICED-ALE [19]) for the solution of unsteady Navier-
Stokes equations for compressible °ows, as implemented in the KIVA application

8



! 2LEVDD-PSBLAS example program

!

use psb_sparse_mod

!

! sparse matrices

type(psb_dspmat_type) :: a

type(psb_dprec_type) :: pre

!

! communication data structure

type(psb_desc_type) :: desc_a

!

! preconditioner optional parameters

integer, pointer :: iv(:)

!

! other parameters

...

!

! read and assemble the matrix A and the right-hand

! side vector b

...

!

! set preconditioner options

novr = 1

nsweep = 4

call psb_precset(pre,'asm',iv=(/novr,halo_,none_/))

call psb_precset(pre,'ml',&

& iv=(/mult_ml_prec_,loc_aggr_,smth_omg_,mat_distr_,&

& post_smooth_,f_umf_,nsweep/))

!

! build preconditioner

call psb_precbld(a,pre,desc_a,info)

!

! set solver parameters

...

!

! solve Ax=b with preconditioned BiCGSTAB

call psb_bicgstab(a,pre,b,x,tol,desc_a,info)

!

...

Figure 4: Example of use of 2LEVDD-PSBLAS.

software modi¯ed to make use of the PSBLAS linear solvers [18]. The discretization
mesh contains approximately 100000 control volumes; during the simulation the size
of the actual domain varies, because mesh layers are activated/deactivated following
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the piston movement. The matrices correspond to di®erent positions of the piston
inside the engine cylinder; they have a symmetric sparsity pattern, with no more
than 19 non-zero entries per row. We report here the results concerning two matrices,
named kivap1 and kivap2, with dimensions 86304 and 42204, respectively.

Two other matrices were considered, that arise from the discretization of the
steady-state thermal di®usion equation in solids. The ¯rst one, named therm2D, is
of dimension 600000 and comes from a 2D model of a homogeneous plate, with a
central ¯nite-di®erence discretization scheme on a regular mesh. The second matrix,
therm3D, has about 1 million rows and has been extracted from an experimental
¯nite volume code that deals with the steady thermal conduction in materials with
variable conductivity. A central discretization scheme is used in the code, including
the deferred-correction approach proposed in [16] for handling non-orthogonal com-
putational meshes. The simulation considered here concerns an aluminium Diesel
engine piston discretized by using a tetrahedral mesh, with prescribed heat °ux on
the piston head and prescribed temperatures on the remaining surfaces.

The tests discussed here were carried out on a cluster with dual-processor nodes,
installed at the Innovative Computing Laboratory of the University of Tennessee at
Knoxville. Each node has an AMD Opteron dual-processor (model 240, 1.4 GHz),
running the Debian Linux 3.1 operating system with kernel 2.6.13, and 2 GBytes
of memory; the nodes are connected with Myrinet network interfaces. The tests
were run on 32 nodes, i.e. on 64 processors. A development snapshot of the GNU
compilers version 4.2, including both the C and Fortran 95 compilers, was used in
conjunction with the speci¯c MPI implementation for the Myrinet interface.

For sake of space, we present timing and speedup results only for RAS, with
overlap 0 (Block-Jacobi) and 1, and for two variants of the two-level hybrid pre-
conditioner 2LH-post, using RAS wih overlap 1 at the ¯ne level. The coarse-space
matrix is distributed among the processors and four Block-Jacobi sweeps are applied
to the corresponding system; the ¯rst variant uses the ILU factorization on the diag-
onal blocks, while the second uses the LU factorization implemented in UMFPACK.
In all the preconditioners, the systems arising in the application of RAS are solved by
ILU. The preconditioners are applied as right preconditioners with the BiCGSTAB
solver available in PSBLAS, choosing the null vector as starting guess. The iter-
ations are stopped when the ratio between the 2-norms of the residual and of the
right-hand-side is less than 10¡6; a maximum number of 1000 iterations is also set,
but it is never reached in the tests. A row-block distribution of the matrices is
used, where each processor holds (approximately) equal-sized blocks of consecutive
rows, according to the well-known BLACS one-dimensional pure-block mapping. A
conformal distribution is applied to the right-hand side and solution vectors. This
choice implicitly de¯nes a domain decomposition such that the number of subdo-
mains is equal to the number of processors. Results of a comparison of our package
with well-established software implementing Schwarz preconditioners, carried out
on the engine simulation and the 2D thermal di®usion matrices using other Linux
clusters, are reported in [3, 10].
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For all the matrices we show, in Tables 1-4, the number of BiCGSTAB iterations
(It), the execution times for the preconditioner setup (Setup) and for the solution
of the preconditioned system (Solve), and the total times (Total), for NP = 1, 2, 4,
8, 16, 32, 64 processors. All the times are measured in seconds and are mean values
over six executions. With therm3D we could not run the version of 2LH-post using
the LU factorization for NP = 1, 2, because of the high memory requirements.

As expected, for kivap1 and kivap2 the best execution times are obtained with
the RAS preconditioner, since the coarse-level correction is known to have a mild
impact on matrices that do not come for pure elliptic problems. For the kivap
matrices we see that both the two-level preconditioners lead to a reduction of the
iterations with respect to RAS, but this reduction is not strong enough to balance the
larger execution times needed for building and applying the coarse-space corrections.
The two-level preconditioners are more e®ective on therm2D and therm3D, that
arise from the discretization of elliptic PDEs. However, while for therm2D the
smallest execution times are obtained by using 2LH-post with the LU factorization,
on therm3D the two-level preconditioners are outperformed by RAS, except in a few
cases. A closer look at the execution times of 2LH-post with LU shows that this
preconditioner requires a much greater setup time than the RAS variants, because
of the very large size of the matrix and of the sparsity structure, arising from a nine-
point discretization stencil; conversely, the solution time is smaller for the two-level
preconditioner. This is interesting in real applications for two reasons. First, we
can reuse some of the aggregation and coarse matrix data structures in all the cases
where the aggregation is purely topological and the matrix pattern has not changed
between two successive invocations of the solver. Moreover, it may be feasible to
reuse the same preconditioner for a number of outer iterations of a nonlinear solver
if the coe±cient matrix does not change too much.

In Figures 5-8 we plot the speedups of the four selected preconditioners for
each of the test matrices; the values concerning 2LH-post with the LU factorization
on therm3D are missing, since we could not run this test for NP = 1, 2. The
speedups were computed using the total times, including the time needed to build
the preconditioner. The overall results are a®ected by the increase in the number
of BiCGSTAB iterations that can be observed with the increase in the number of
processors.

As expected, RAS with overlap 0 generally shows good speedup values. The
only exceptions are provided by kivap2 on 32 and 64 processors; in this case the
speedup tends to saturate because of the relatively small size of the matrix. The
highest speedup value on 64 processor is close to 35 and is obtained with therm2D.
By using RAS with overlap 1, a speedup decrease can be observed on the engine
simulation and the 3D thermal di®usion matrices; speedup values comparable with
those corresponding to overlap 0 are obtained on therm2D, which has a sparsity
pattern coming from a simple discretization stencil. For kivap1 and kivap2 the
speedup of 2LH-post with ILU has a very close behaviour to that of RAS with
overlap 1. On therm2D, 2LH-post with ILU shows a small speedup increase with
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respect to RAS, with a value close to 40 on 64 processors. On therm3D, instead, the
speedup for 2LH-post with ILU is lower than for the RAS cases; this is mainly due to
the size and the sparsity structure of the matrix. The situation is di®erent for 2LH-
post with LU. The highest speedup is now achieved on kivap1, for which the number
of BiCGSTAB iterations is approximately constant, but the time required by the
LU factorization signi¯cantly reduces in going from 1 to 64 processors. On kivap2
the speedup behaviour is comparable with that of the other two-level preconditoner,
while on therm2D a strong speedup reduction is observed, which is mainly due to
the large increase of the iterations, and hence of the solve time, as the number of
processors grows.

5 Conclusions and future work

In this paper we described 2LEVDD-PSBLAS, a package of two-level algebraic
Schwarz preconditioners for high-performance computers, based on the PSBLAS
library. We provided a general overview of the package, focusing on its software ar-
chitecture, functionalities and user interface. We presented also performance results
obtained with di®erent preconditioners implemented in 2LEVDD-PSBLAS on a set
of test problems arising from large-scale applications.

Our workplan includes the extension of the package to multilevel Schwarz pre-
conditioners and the integration and testing of the preconditioners inside engineering
applications. Work will be also devoted to including other factorizations, such as
ILU(n) and ILU with threshold, and more sophisticated aggregation algorithms.
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kivap1

RAS, overlap 0 RAS, overlap 1
NP It Setup Solve Total It Setup Solve Total
1 12 .2645 1.0830 1.3475 12 0.2658 1.1260 1.3918
2 16 0.1296 0.7101 0.8396 13 0.1613 0.6258 0.7871
4 16 0.0636 0.3706 0.4342 13 0.1170 0.3474 0.4643
8 20 0.0311 0.2276 0.2587 14 0.0789 0.2046 0.2834
16 22 0.0157 0.1330 0.1488 15 0.0579 0.1281 0.1860
32 23 0.0081 0.0777 0.0858 14 0.0528 0.0828 0.1356
64 24 0.0045 0.0388 0.0433 14 0.0446 0.0610 0.1056

2LH-post, Block-Jacobi with ILU 2LH-post, Block-Jacobi with LU
NP It Setup Solve Total It Setup Solve Total
1 6 1.5660 1.0760 2.6420 7 4.4300 1.5160 5.9470
2 6 0.8857 0.5305 1.4160 7 1.3360 0.8590 2.1950
4 6 0.4909 0.2881 0.7790 6 0.5737 0.3558 0.9295
8 7 0.2924 0.1876 0.4800 6 0.3207 0.1761 0.4968
16 7 0.1837 0.1129 0.2966 6 0.1915 0.0990 0.2905
32 7 0.1372 0.0814 0.2186 7 0.1412 0.0804 0.2215
64 7 0.1194 0.0626 0.1820 7 0.1213 0.0613 0.1826

Table 1: Iteration numbers and execution times, in seconds, for kivap1.

kivap2

RAS, overlap 0 RAS, overlap 1
NP It Setup Solve Total It Setup Solve Total
1 38 0.1250 1.6560 1.7810 38 0.1251 1.7060 1.8310
2 55 0.0610 1.1490 1.2100 44 0.0762 1.0030 1.0790
4 55 0.0292 0.5909 0.6201 45 0.0639 0.5913 0.6552
8 73 0.0145 0.3982 0.4127 66 0.0394 0.4719 0.5114
16 87 0.0071 0.2476 0.2547 65 0.0294 0.2768 0.3061
32 95 0.0034 0.1104 0.1139 77 0.0253 0.2060 0.2313
64 126 0.0018 0.1116 0.1134 95 0.0216 0.1550 0.1766

2LH-post, Block-Jacobi with ILU 2LH-post, Block-Jacobi with LU
NP It Setup Solve Total It Setup Solve Total
1 19 0.7097 1.4400 2.1500 12 1.0910 1.0290 2.1210
2 20 0.3922 0.8013 1.1940 16 0.4615 0.8029 1.2640
4 20 0.2460 0.4728 0.7188 16 0.2623 0.3973 0.6596
8 25 0.1364 0.3271 0.4634 19 0.1415 0.2542 0.3958
16 26 0.0875 0.2142 0.3017 24 0.0908 0.1950 0.2858
32 29 0.0669 0.1649 0.2318 29 0.0693 0.1664 0.2357
64 37 0.0550 0.1713 0.2263 40 0.0552 0.1864 0.2416

Table 2: Iteration numbers and execution times, in seconds, for kivap2.
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therm2D

RAS, overlap 0 RAS, overlap 1
NP It Setup Solve Total It Setup Solve Total
1 614 0.2193 172.9000 173.1000 614 0.2212 187.5000 187.7000
2 749 0.1183 108.5000 108.7000 834 0.1229 130.0000 130.1000
4 775 0.0621 54.7900 54.8500 970 0.0682 75.0900 75.1600
8 751 0.0341 26.9400 26.9700 741 0.0410 29.4700 29.5100
16 884 0.0214 15.4100 15.4300 783 0.0285 15.2000 15.2300
32 778 0.0141 6.7300 6.7440 680 0.0220 6.7170 6.7390
64 906 0.0113 5.0490 5.0600 812 0.0225 5.6390 5.6610

2LH-post, Block-Jacobi with ILU 2LH-post, Block-Jacobi with LU
NP It Setup Solve Total It Setup Solve Total
1 183 3.1180 95.8900 99.0100 5 10.2500 3.8210 14.0700
2 182 1.8420 59.2900 61.1300 18 4.0710 12.8300 16.9000
4 190 0.9694 30.6400 31.6100 26 1.8180 8.6890 10.5100
8 184 0.4858 15.0500 15.5300 34 0.7927 5.3530 6.1460
16 171 0.2641 6.8410 7.1050 57 0.3766 3.9230 4.2990
32 175 0.1621 3.4830 3.6460 76 0.2042 2.1980 2.4020
64 176 0.1165 2.4460 2.5620 106 0.1343 1.6330 1.7680

Table 3: Iteration numbers and execution times, in seconds, for therm2D.

therm3D

RAS, overlap 0 RAS, overlap 1
NP It Setup Solve Total It Setup Solve Total
1 56 0.4348 27.2500 27.6800 56 0.4259 29.8300 30.2500
2 63 0.2237 15.7600 15.9900 55 0.2484 15.0400 15.2900
4 57 0.1270 10.3400 10.4700 61 0.1770 12.2400 12.4200
8 66 0.0773 6.3240 6.4010 57 0.1327 6.2150 6.3470
16 63 0.0383 2.1370 2.1760 58 0.1014 2.4040 2.5050
32 70 0.0247 1.2200 1.2440 59 0.0895 1.3940 1.4830
64 95 0.0185 0.9156 0.9341 71 0.0874 1.0920 1.1800

2LH-post, Block-Jacobi with ILU 2LH-post, Block-Jacobi with LU
NP It Setup Solve Total It Setup Solve Total
1 16 8.1740 16.0600 24.2300 { || || ||
2 16 4.9520 11.1000 16.0500 { || || ||
4 16 2.9370 7.8240 10.7600 7 158.8000 22.9800 181.8000
8 16 1.7560 4.3310 6.0870 8 44.1400 10.8800 55.0200
16 16 0.8118 1.8100 2.6220 10 10.2800 4.9550 15.2400
32 16 0.5323 1.0990 1.6310 13 2.4140 2.3730 4.7870
64 19 0.3962 0.8329 1.2290 17 0.8027 1.3300 2.1330

Table 4: Iteration numbers and execution times, in seconds, for therm3D.
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Figure 5: Speedups for RAS with overlap 0.
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Figure 6: Speedups for RAS with overlap 1.
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Figure 7: Speedups for 2LH-post with four Block-Jacobi sweeps and ILU factoriza-
tion of the blocks.
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Figure 8: Speedups for 2LH-post with four Block-Jacobi sweeps and LU factorization
of the blocks.
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