
 

Consiglio Nazionale delle Ricerche  
Istituto di Calcolo e Reti ad Alte Prestazioni  
 

 
 
 
 
 
 
 
 

 
Discovering Expressive 

Process Models 
by  

Clustering Log Traces 
 

 
Gianluigi Greco1, Antonella Guzzo2, Luigi 
Pontieri2, Domenico Saccà3 

 

 
 
 
 
RT-ICAR-CS-06-04 Aprile  2006
 
 
 
 
 
 
 
 
 
 

 

 
Consiglio Nazionale delle Ricerche, Istituto di Calcolo e Reti ad Alte Prestazioni (ICAR)  
– Sede di Cosenza, Via P. Bucci 41C, 87036 Rende, Italy, URL: www.icar.cnr.it 

 
 



 
 

 

Consiglio Nazionale delle Ricerche  
Istituto di Calcolo e Reti ad Alte Prestazioni  
 

 
 
 
 
 
 
 

 
Discovering Expressive 

Process Models 
by  

Clustering Log Traces 
 

 
Gianluigi Greco1, Antonella Guzzo2, Luigi 
Pontieri2, Domenico Saccà3 

 

 
 
 
 
Rapporto Tecnico N.: 1 
RT-ICAR-CS-06-04 

Data:
Aprile  2006

 
 
 
1 Dipartimento di Matematica, Università degli Studi della Calabria, via P. Bucci 30B, 
Rende (CS) 

2Istituto di Calcolo e Reti ad Alte Prestazioni, ICAR-CNR, Sede di Cosenza, via P. 
Bucci 41C, 87036 Rende(CS) 
3 DEIS,Università degli Studi della Calabria, via P. Bucci 41C, Rende (CS) 
 
I rapporti tecnici dell’ICAR-CNR sono pubblicati dall’Istituto di Calcolo e Reti ad Alte Prestazioni del 
Consiglio Nazionale delle Ricerche. Tali rapporti, approntati sotto l’esclusiva responsabilità 
scientifica degli autori, descrivono attività di ricerca del personale e dei collaboratori dell’ICAR, in 
alcuni casi in un formato preliminare prima della pubblicazione definitiva in altra sede. 



Discovering Expressive Process Models
by Clustering Log Traces

Gianluigi Greco1, Antonella Guzzo2, Luigi Pontieri2, Domenico Saccà3

1Gianluigi Greco is at Dipartimento di Matematica, University of Calabria, Via Bucci

30b, Rende (CS), Italy.

Phone: +39 0984 496429. Fax: +39 0984 496410. E-mail: ggreco@mat.unical.it.

Corresponding author.

2Antonella Guzzo is at ICAR-CNR, Via Bucci 41c, Rende (CS), Italy.

Phone: +39 0984 494618. Fax: +39 0984 839054. E-mail: guzzo@icar.cnr.it.

2Luigi Pontieri is at ICAR-CNR, Via Bucci 41c, Rende (CS), Italy.

Phone: +39 0984 831733. Fax: +39 0984 839054. E-mail: pontieri@icar.cnr.it.

3Domenico Saccà is at ICAR-CNR and DEIS, University of Calabria, Via Bucci 41c,

Rende (CS), Italy.

Phone: +39 0984 494750. Fax: +39 0984 839054. E-mail: sacca@unical.it.

A preliminary version of portions of this paper appeared in Proc. of the 8th Pacific-Asia Conference

“Advances in Knowledge Discovery and Data Mining”, PAKDD 2004, Sydney, Australia, May 26-28,

2004, LNCS 3056, pp. 52-62.



1

Discovering Expressive Process Models

by Clustering Log Traces

Gianluigi Greco, Antonella Guzzo, Luigi Pontieri, Domenico Saccà

Abstract

Process mining techniques have recently received considerable attention in the literature for their

ability to assist the (re)design of complex processes, by means of algorithms that automatically discover

models capable to explain all the events registered in some log traces provided as input. Following this

line of research, the paper investigates an extension of such basic approaches where the identification of

different variants for the process is explicitly accounted for, by means of a technique for clustering log

traces. Indeed, modelling each group of similar executions with a different schema is the proposed solution

to single out “conformant” models for which, in particular, the number of the possible enactments that

are however extraneous to the process semantics is minimized.

Therefore, a novel framework for process mining is introduced, and some relevant computational issues

are deeply studied. Since it is proven that finding an exact solution to such an enhanced process mining

problem requires high computational costs in most practical cases, a greedy approach is devised on the

basis of an iterative, hierarchical refinement of the process model, in which, at each step, traces sharing

similar behaviors are clustered together and eventually equipped with a specialized schema. The algorithm

is designed in a sophisticated way which guarantees that each refinement leads to a sounder schema, so

that a monotonic search is attained. Experimental results evidence the validity of the proposed approach

with respect to both effectiveness and scalability.

Keywords: H.2.m: Process Mining; H.2.8.d: Data Mining; H.2.4.p Workflow manage-

ment; H.2.8.b: Clustering, classification, and association rules.

I. Introduction

Even though workflow management systems are more and more utilized in enterprises,

their actual impact in managing complex processes is still limited by the difficulties en-

countered in the design phase. Indeed, processes have often complex dynamics whose

modelling requires expensive and long analysis, which may be eventually unfeasible under

an economic viewpoint. Therefore, several approaches have been recently proposed in the

literature to accommodate the design of complex workflows by means of process mining

techniques (see Section VII, for an overview of different proposals).



2

(a) (b)

AND

XOR OR

XOR OR

XOR

AND

XOR

OR

XOR

XOR

OR

OR

c)(

Fig. 1. An example process: (a) some traces; (b) workflow schema WS0; (c) an example instance.

These approaches are devoted to automatically derive a model that can explain all the

episodes recorded in the event log (a.k.a. transactional log or audit trail [1]), which is

in fact collected and stored by most information systems while the activities of a given

process are executed — this is the case of transactional information systems such as WFM,

ERP, CRM, SCM, and B2B systems. Eventually, the “mined” model is used to (re)design

a detailed workflow schema, capable of supporting further coming enactments.

Example I.1: As a sample applicative scenario, we shall consider throughout the pa-

per the automatization of the (OrderManagement) process of handling customers’ orders

within a business company. The process consists of the following activities: (a) receiving

the order, (b) authenticating the client, (c) checking in the stock the availability of the re-

quired product, (d) verifying the availability of external supplies, (e) registering the client

in the company database, (f) evaluating the trustworthiness of the client, (g) evaluating

the plan of the production, (h) rejecting the order, (i) accepting the order, (l) contacting

the mail department in order to speed up the shipment of the goods, (m) applying some

discount, and (n) preparing the bill.

In this scenario, some execution traces may be available, for they are collected by the

information systems of the business company (e.g., the log in Figure 1.(a)). And, in fact,

the aim of process mining techniques is to look at these traces and to automatically identify

a model for the OrderManagament process. �
Actually, since several alternative models may be possibly singled out for any fixed log,

techniques have been proposed for identifying the most conformant one, i.e., the model

which is the best “aligned” with the log. In this respect, the most widely considered

requirement for conformance is the completeness of the model (fitness in [2]) that is,

roughly speaking, the percentage of the traces stored in the log that may be the result of



3

some enactment supported by the mined model. Then, differences among various proposals

for process mining often come in the language used for representing process models, and

in the specific algorithms used for mining the best fitting one.

In this paper, we continue on the way of enhancing the process mining framework by

particularly taking care of the following two key issues:

(i) A good completeness of the model does not necessarily entail its conformance with the

underlying process P . For instance, a fully complete model may support not only all

the traces provided in input, but also an arbitrary number of execution patterns that

are not registered in the log. In many cases, such a situation might strongly under-

mine the significance of the mined model w.r.t. the application needs. Therefore, it

is recommended to focus on models that are not too generic and that appropriately

encode the behavior of the process. This can be accomplished by taking care of an-

other parameter, called soundness (minimality or behavioral appropriateness in [2]),

which measures the percentage of enactments of the mined model that do find some

correspondence in the log. Intuitively, the lower is the factor, the more extraneous

(w.r.t. the process semantics) executions the model supports.

(ii) The output of process mining techniques is usually too complex for being practically

exploited by the designer, as it emerged in several real applications domains (see, e.g.,

[3], [4]). This aspect is particularly relevant in the case of processes consisting of a large

number of activities, with several specific execution-scenarios and complex behavioral

rules, for which the mined models may be made of hundreds of tasks and constraints.

Nonetheless, very few efforts have been paid to support some kinds of abstraction (e.g.,

techniques in [5], [6], [7] are able to produce models that focus on the main behavior as

reported in the log, by properly dealing with noise). In this respect, a viable solution

for a better understanding of the process semantics is to take care of the existence of

variants of the process, so that each variant may be independently mined and equipped

with a specialized model. Clearly, the most relevant variants should be identified only,

in order to prevent the model for becoming too much specific. Then, suitable strategies

supporting some kinds of trade-off in the identification of the variants and, possibly,

the ability of incrementally refining the model should be conceived.

Though some of the approaches in the literature already exploit some minimality condi-

tions for increasing the soundness (e.g., [8], [9]), very few efforts have been paid to discover



4

variants and usage scenarios (cf. [10], [11]). However, the isolation of the variants would

allow to make it clear the “implicit” model (cf. [9]) underlying a process, i.e., the knowl-

edge (organizational/behavioral rules) that actors have in mind during the enactments. In

particular, if variants for the process are not discovered and properly classified, the mined

model will eventually mix different usage scenarios and, hence, will likely be unsound.

A. Overview of the Approach and Contributions

In this paper, we face the above issues by proposing a novel process mining algorithm

that is able to cope with complex processes, by discovering conformant (both sound and

complete) models. This is carried out by producing a clear and modular representation of

the process, where its relevant variants are explicitly singled out by means of a technique for

clustering log traces. Specifically, each variant is modelled by means of a distinct workflow

schema WS i, so that the resulting model for the whole process, called disjunctive workflow

schema, is precisely the set of all these individual schemas.

Actually, the higher expressiveness of disjunctive schemas comes with a cost. Indeed,

the problem of computing conformant disjunctive schemas and the problem of checking

whether a given disjunctive schema at hand is sound enough turn out to be intractable.

Therefore, we pragmatically face the process mining problem by means of a greedy

strategy based on an iterative, hierarchical refinement of a disjunctive schema WS∨, in

which, at each step, a schema WS i ∈ WS∨ is selected, and the traces supported by WS i

are partitioned into clusters. Eventually, each cluster is equipped with a refined workflow

schema, which is meant to model a specific usage scenario specializing WS i. Notably, the

algorithm is designed in a sophisticated way guaranteeing that each refinement leads to a

sounder schema for the given process, so that a monotonic search is attained.

Moreover, in order to efficiently partition traces into clusters by means of well-known

methods, we investigate an approach for producing a “flat” relational representation of the

traces, by projecting them onto a set of suitable features, which are meant to characterize

the traces which are not properly modelled by the current workflow schema being refined.

Therefore, the paper also accounts for the definition of an abstract representation for the

features, and of an efficient level-wise algorithm for their computation.

We conclude by noticing that all the algorithms above have been implemented, and the

results of a thorough experimental activity are also discussed in the paper.



5

B. Organization

The rest of the paper is organized as follows. In Section II we report a few preliminaries

on workflows, processes, and logs. The problem of discovering a disjunctive process model

from some log data is introduced in Section III, where some relevant computational issues

have been also studied. In Section IV a solution for the basic case where the mined

model is non-disjunctive is discussed. Its generalization is reported in Section V, where

the clustering-based approach to process mining and the feature extraction algorithm are

illustrated. The two next sections, i.e., Section VI and Section VII, are devoted to present

results of experiments and major related works in the literature, respectively. A few

concluding remarks are, finally, sketched in Section VIII.

II. Formal Framework: Workflow Schema and Logs

In this section, we introduce the basic notions and notations for formally representing

process models that will be used throughout the paper. We point out that a comprehensive

formalization of all the facets of workflow modelling is beyond the scope of this paper; the

reader interested in expanding on this subject is referred to, e.g.,[12], [13], [14], [15], [16],

[17]. Specifically, the modelling language is kept simple and less expressive than other

existing languages, such as Petri nets [18] or event driven process chains EPCs [19], [20].

For instance, it does not account for loops, i.e., recursive workflow schemas and iterated

executions, which can be instead coped with, e.g., by the WF-net model and the α-

algorithm [21], and — as commonly done in the process mining framework — it forces all

outgoing and ingoing edges of a given node to have the same type. On the other hand,

the modelling language allows for the definition of non-free choice constructs, which are

generally avoided in other formalizations related to process mining.

Moreover, an important feature of our approach is that there is no conceptual limi-

tation in accommodating more sophisticated models and techniques for their manipula-

tion, because it is to large extent independent of the underlying workflow model, which

mainly affects the way each cluster of traces is equipped with a schema (cf. algorithm

MineWorkflow in Section IV). In this respect, the proposed approach is modular and

may allow to use any pre-existing process mining algorithm (provided, as we shall see in

the following, it satisfies the properties in Theorem IV.3). And, in fact, the assumptions



6

exploited in the paper have been required by the necessity of starting from a simple model

enjoying these properties, yet covering important features in workflow specification.

Definition II.1: Let P be a process. A workflow schema WS for P is a tuple

〈A,E, a0, AF , Fork, Join〉, where A is a finite set of activities (also called nodes, or tasks),

E ⊆ (A − AF ) × (A − {a0}) is an acyclic relation of precedences among activities (whose

elements are simply called edges), a0 ∈ A is the starting activity, and AF ⊆ A is the set

of final activities. The tuple 〈A,E, a0, AF 〉 is often referred to as the control flow graph

of WS: it states the orderings among the activities involved in P that must be respected

during their execution.

The functions Fork : (A−AF ) �→ {AND, OR, XOR} and Join : (A−{a0}) �→ {AND, OR}, also

called local constraints in the literature, relate the execution of activities that are neighbor

of each other in the control flow graph. A node a with Join(a) = OR (resp. AND) is an

or-join (resp. and-join); moreover, a node a with Fork(a) = OR (resp. AND, XOR) is an

or-fork (resp. and-fork, xor-fork). ��
An example workflow schema is reported in Figure 1.(b) by means of an intuitive graph-

ical notation. Actually, this is a schema (possibly, the result of some process mining

algorithm) for the OrderManagement process presented in the Introduction.

Each time a workflow is enacted in a workflow management system, it produces an in-

stance, that is a suitable subgraph I = 〈AI , EI〉 of the schema satisfying all the constraints.

Intuitively, AI contains those activities that are executed in I and that, therefore, activate

their outgoing edges. Notice that the target of these edges are not required to be exe-

cuted as well, i.e., some branches of the control flow graph may be only partially executed

because a final activity, belonging to another branch, was completed in the meanwhile.

Therefore, in the following definition, these kinds of task that are not executed in the

instance I are explicitly distinguished and included in the set A′
I .

Definition II.2: Let WS = 〈A,E, a0, AF , Join, Fork〉 be a workflow schema. Let I ′ =

〈AI ∪A′
I , E

′
I〉 be a connected subgraph of 〈A,E〉, such that the following conditions hold:

(i) a0 ∈ AI ; (ii) AI ∩ AF �= ∅; (iii) {(a, b) | (a, b) ∈ E ′
I ∧ a ∈ A′

I} = ∅;
(iv) for each (a, b) ∈ E ′

I , a ∈ AI and b ∈ (A′
I ∪ AI);

(v) for each a ∈ AI ∪ A′
I − {a0}, {b | (b, a) ∈ E ′

I ∧ b ∈ AI} �= ∅;
(vi) for each a ∈ (AI − {a0}) s.t. Join(a) = AND, {(b, a) | (b, a) ∈ E} ⊆ E ′

I ;



7

(vii) for each a ∈ (AI − AF ) s.t. Fork(a) = AND, {(a, b) | (a, b) ∈ E} ⊆ E ′
I ;

(viii) for each a ∈ (AI − AF ) s.t. Fork(a) = XOR, |{(a, b) | (a, b) ∈ E ′
I}| = 1; and

(ix) for each a ∈ (AI − AF ) s.t. Fork(a) = OR, |{(a, b) | (a, b) ∈ E ′
I}| ≥ 1;

Then, the graph I = 〈AI , E
′
I ∩ (AI ×AI)〉 is an instance of WS (denoted as WS |= I). ��

An example instance for the OrderManagement process is reported in Figure 1.(c),

according to a graphical notation where dashed nodes and edges represent activities and

precedences that are activated but not included in the instance. In particular, the instance

models a case where the order is rejected (activity h is executed) because the client is not

reliable (checked by f). However, given that the required product is available in the stock,

the activity i is the target of an activated edge, but it is never executed.

We point out that most process-oriented commercial systems only store partial infor-

mation about process instances, by tracing some events related to the execution of its

activities. In particular, the logs stored by such systems may range from a simple task

sequence (recall, e.g., Figure 1.(a)) to richer formats (evidencing, e.g, the start and/or the

completion of a task). We next describe an abstract representation of a process log which

is commonly adopted in the literature.

Let A be the set of task identifiers for the process P ; then, a workflow trace s over A is

a string in A∗, representing a sequence of task executions. Given a trace s, we denote by

s[i] the i-th task in the corresponding sequence, and by length(s) the length of s. The set

of all the tasks in s is denoted by tasks(s) =
⋃

1≤i≤length(s) s [i ]. Finally, a workflow log for

P , denoted by LP , is a bag of traces over A, i.e., LP = [ s | s ∈ A∗ ].

We conclude this section by relating the notion of trace with that of instance.

Definition II.3: Let I = 〈AI , EI〉 be an instance of a workflow schema WS =

〈A,E, a0, AF , Join, Fork〉 for a process P , and let s be a trace in LP . Then, s is com-

pliant with WS through I, denoted by s |=I WS, if s is a topological sort of I. ��
For instance, the trace abfcgh is compliant with the instance reported in Figure 1.(c),

while the traces afbcgh and abflm are not.

Notice that the definition above entails that if s |=I WS, then: s[1] = a0, i.e., the first

task in s is the initial activity in WS; s[length(s)] ∈ AF , i.e., the last task in s is a final

activity in WS; and, tasks(s) = AI , i.e., all the tasks in s are executed in I.

We conclude by saying that s is simply compliant with WS, denoted by s |= WS, if



8

there exists I such that s |=I WS. The reader may check, for instance, that the traces in

Figure 1.(a) are compliant with the workflow schema in Figure 1.(b), as each of them is a

topological sort of some instance of that schema.

Before leaving the section, we note that, while logs in real life are often characterized by

multiple executions of the same task, our workflow model admits only one execution for

each activity in the schema. However, multiple executions can be coped with by means

of a syntactic expedient. Let P be a process and let LP be a log for it where multiple

executions of the same activity are allowed in the same trace. Let a be an activity in

P , and let n(a) ≥ 0 be the maximum number of times it is executed over all the traces

in LP . Then, we can mine a workflow schema WS, where each activity a is (virtually)

substituted by n(a) distinct activities, say a1, ..., an(a), by exploiting the log LP derived

from LP by replacing the i-th occurrence of a in any trace by ai. By construction, WS
contains no duplicated activities and, hence, it conforms Definition II.1.

III. The Process Model Discovery Problem

In this section, we preliminary introduce and discuss the problem of automatically

(re)constructing a workflow schema modelling a given process, on the basis of some log

data collected from previous executions. Afterwards, a number of variants of the process

mining problem are defined and studied from a computational point of view.

A. Disjunctive Schemas

Let A be the set of task identifiers for the process P . We assume that the actual

workflow schema for P is unknown, and we consider the problem of properly identifying

it, in the set of all the possible workflow schemas having A as set of activities. To this

aim, we first derive from the log traces an initial workflow schema, and we subsequently

iteratively refine it into a number of specific schemas, each of them modelling a class

of traces having the same behavioral characteristics. Therefore, the resulting model is a

collection of workflow schemas as defined below.

Definition III.1: Let P be a process. A disjunctive workflow schema for P , denoted by

WS∨, is a set {WS1, ...,WSm} of workflow schemas for P . The number m is referred to

as the size of WS∨, denoted by |WS∨|. ��



9

Any instance I of some WSj ∈ WS∨ is also said to be an instance of WS∨, denoted

by I |= WS∨. And, in fact, the schema is said disjunctive precisely because the set of its

instances is the union of the sets of the instances of each workflow schema in WS∨.

Similarly, a trace s is compliant with WS∨, denoted by s |= WS∨, if s is compliant with

some WSj ∈ WS∨. Note that, since a trace s does not provide any information about

the edges exploited to execute the registered activities, deciding whether s is compliant

with the schema WS∨ may be, in principle, a complex task. Indeed, while constructing

an instance for s, it is crucial that activating edges are properly chosen to satisfy all

the local constraints (in particular, difficulty is with the mixing of exclusive choices with

synchronization) and to execute all the activities in the trace. The following proposition,

whose proof is in [22], makes it clear that a smart strategy can be conceived to this aim, so

that deciding whether a trace s is compliant with a schema WS∨ can be done in polynomial

time (in the size of the schema).

Proposition III.2: Let WS∨ = {WS1, ...,WSm} be a disjunctive workflow schema, and

s be a trace. Let e, nf , and ef denote the maximum number of edges, xor-fork nodes and

edges originating in xor-fork nodes, respectively, over all schemas in WS∨. Then, deciding

whether s |= WS∨ is feasible in O(m × max(e, nf × ef )).

Let us now assume that a log LP for the process P is given. Then, we aim at dis-

covering the disjunctive schema WS∨ for P which is as “close” as possible to the actual

unknown schema that generated LP . In the following, the quality of the mined model is

evaluated according to two different criteria, namely the completeness and the soundness,

constraining the discovered model to admit exactly the traces in the log. In particular, a

(fully) complete workflow is such that all traces in the log at hand are compliant with some

instance of it, whereas a (fully) sound workflow is such that all of its possible enactments

have been actually registered in the log. These two criteria are formalized below.

Definition III.3: Let WS∨ be a disjunctive workflow model, and LP be a log for the

process P . We define:

• soundness(WS∨,LP) = |{s|s∈LP ∧ s|=WS∨}|
|{s|s|=WS∨}| , i.e., the percentage of traces compliant with

WS∨ that have been registered in the log – the larger the sounder;

• completeness(WS∨,LP) = |{s|s∈LP ∧ s|=WS∨}|
|{s|s∈LP}| , i.e., the percentage of traces in the log

that are compliant with WS∨ – the larger the more complete.



10

WS∨
1 WS∨

2

Fig. 2. The two schemas constituting the disjunctive workflow schema WS∨.

Given two real numbers α and β between 0 and 1 (desirable values should be close to 1),

we say that WS∨ is α-sound w.r.t. LP , if soundness(WS∨,LP) ≥ α; moreover, WS∨ is

β-complete w.r.t. LP , if completeness(WS∨,LP) ≥ β. ��
We next apply the notions introduced above to a simple explicative example.

Example III.4: Consider again the workflow schema WS0 in Figure 1.(b). We leave to

the careful reader the task of checking that WS0 admits 20 instances and 276 traces. Let L

be the log shown in Figure 1.(a). Thus, we have: soundness({WS0}, L) = 16
276

= 5.797%,

and completeness({WS0}, L) = 16
16

= 100%.

A sounder representation for the traces in L is given by the disjunctive workflow

schema which consists of the two workflow schemas shown in Figure 2. In fact, we have:

soundness({WS∨
1 ,WS∨

2 }, L) = 11
97

= 11.34%, and completeness({WS∨
1 ,WS∨

2 }, L) = 11
16

=

68.75%. Indeed, {WS∨
1 ,WS∨

2 } models 97 distinct instances, 64 through WS∨
1 and 33

through WS∨
2 . However, the completeness value is lower than 1 as some traces in L

(namely s8, ..., s12) are not compliant with {WS∨
1 ,WS∨

2 }. Interestingly, this example

shows how the soundness of a given schema can be increased by replacing it with a set of

more specific schemas. Such a strategy is exploited in the mining algorithm presented in

Section V, which also prevents completeness losses. �
Since soundness and completeness are the parameters to be taken into account while

mining process models, it is relevant to study their “intrinsic” complexity. As proven

next, checking soundness is a hard task, surprisingly even in the case the model is given at

hand and does not need to be discovered. The result evidences that our mining problem is

structurally harder than traditional learning problems, where the functions to be optimized

can be checked in polynomial time for any candidate solution.

Proposition III.5: Let WS∨ be a disjunctive workflow model, and LP be a log for a

process P . Then, deciding whether WS∨ is 1-complete w.r.t. LP is feasible in time



11

O(|{s | s ∈ LP}| × m × max(e, nf × ef )),
1 with one scan of LP only. Moreover, deciding

whether WS∨ is 1-sound w.r.t. LP is co-NP-complete. Hardness holds even for |WS∨| = 1.

Proof: To check 1-completeness, we can repeat the procedure in Proposition III.2,

for each trace s in LP ; therefore, the result easily follows.

Let us now prove that checking for 1-soundness is co-NP-complete. Consider the com-

plementary problem, say soundness, of deciding whether there is a trace s such that

s |= WS∨ and s �∈LP . Problem soundness is obviously in NP; we next show that it is

NP-complete. To this purpose, we recall that in [23] it has been proven that deciding

whether a given workflow schema WS admits an instance is NP-complete. We construct

the following instance of the problem soundness: WS∨ = {WS} and LP = ∅. Then, the

answer of soundness is “yes” if and only if WS admits an instance; hence soundness is

NP-complete as well. It turns out that deciding 1-soundness is co-NP-complete.

B. Exact and Maximum Process Discovery

Armed with the framework depicted so far, we are in the position of formalizing the

problem we want to deal with. Basically, we aim at discovering a disjunctive schema

WS∨ for a given process P which is α-sound and β-complete, for some given α and β.

However, it is easy to see that a trivial schema satisfying the above conditions always exists

(even for α = 1 and β = 1), consisting in the union of exactly one workflow modelling

each distinct trace in LP . Unfortunately, such a model would be an overly detailed and

complex representation of the process P , for its size being |WS∨|=|LP | = |{s | s ∈ LP}|.
We therefore introduce a bound on the number of schemas in WS∨ for defining the basic

problem we shall study in the paper.

Let LP be a workflow log for the process P . Given two real numbers α and β, and a

natural number m > 0, the Exact Process Discovery problem, denoted by EPD(LP ,α,β,m),

consists in finding (if any) an α-sound and β-complete disjunctive workflow schema WS∨,

such that |WS∨| ≤ m. Actually, we can show (see [22]) that the Exact Process Discovery

problem can be solved in polynomial time only for trivial cases (unless P = NP).

Theorem III.6: Given a log LP for a process P and a natural number m > 0,

EPD(LP ,1,1,m) always admits a trivial solution if |LP | ≤ m. Otherwise, i.e., if |LP | > m,

deciding whether EPD(LP ,1,1,m) admits a solution is in ΣP
2 and NP-hard.

1See notation in Proposition III.2.



12

Since, it could happen that EPD does not have solutions (cf. Theorem III.6), and since

it is difficult to check whether we are in such a situation (cf. Proposition III.5), we restate

the process discovery problem in a way it always admits a solution. Specifically, we allow

to sacrifice enough portions of soundness to get a result; however, we impose a strict bound

on the completeness (which is usually 1), since modelling all the traces in the log often is

an important requirement for the mined schema.

Definition III.7: Let LP be a workflow log for the process P . Given a natural num-

ber m, the Maximum Process Discovery problem, denoted by MPD(LP ,m), consists in

finding a 1-complete disjunctive workflow schema WS∨, such that |WS∨| ≤ m and

soundness(WS∨,LP) is the maximum over all the 1-complete schemas. ��
However, also the problem MPD is untractable by a straightforward reduction from EPD.

Moreover, we suspect an hardness result for the second level of the polynomial hierar-

chy. Therefore, it comes no surprise that we pragmatically face the problem by using a

heuristic approach, in which we mine a preliminary, possibly not sound enough, model,

and iteratively refine it. In particular, the approach is designed in a way that each time a

refinement is done, the model is guaranteed to become sounder than before. The careful

reader at this point may understand the importance of this property, since it allows to

monotonically search in the space of the solutions by never checking for the soundness of

the current model, which is unfeasible.

IV. Mining a Workflow Schema

In this section, we start the description of the algorithm for MPD(LP ,m) by proposing a

solution for the case m = 1. Our approach is simple, but it enjoys some nice properties that

are crucial for the extension to the case m > 1, and which have been not fully considered

while designing previous approaches in the literature.

Throughout the section we assume that a log LP for the process P over the tasks A is

given. For the sake of exposition, we assume that each trace contains the initial activity a0

as the first task. We start by introducing notions for expressing precedence relationships

between activities, which are derived from occurrences in the logs:

• The dependency graph for LP is the graph DLP
= 〈A,E〉, where E = {(a, b) | ∃s ∈

LP , i ∈ {1, ..., length(s) − 1} s.t. a = s [i ] ∧ b = s [i + 1 ]};
• Two activities a and b in A are parallel in LP , if they occur in some cycle of DLP

.



13

Fig. 3. Example IV.1: (a) Dependency graph; (b) Control flow graph.

• Given two activities a and b in A, we say that a precedes b in LP , denoted by a → b, if

a and b are not parallel, and there is a path from a to b in DLP
.

Example IV.1: Consider the log L = {abcde, adbce, ae}, concerning a process P . The

dependency graph for L is shown in Figure 3.(a). Notice, for instance, that a, b and c are

parallel activities in L, and that a → c and b → e hold. �
Armed with these notions, we can now describe the algorithm MineWorkflow which is

shown in Figure 4. The algorithm starts by constructing the dependency graph which is

subsequently modified in Steps 2–11 in order to remove the cycles, which in fact correspond

to bunches of parallel activities. Actually, removing an edge is a critical step, since it

must be carried out by preserving connectivity. Therefore, each time an edge, say (a, b),

is removed from E, we preserve the paths by connecting a and b with some preceding

activity (Step 5) and with some following one (Step 8), for each of the traces in LP .

Notice that there are several alternative graphs that may support all the log at hand;

the algorithm has been designed for introducing as less spurious traces as possible, so that

soundness is heuristically maximized. For instance, a schema with a0 connected to all the

other activities will be a complete schema as well; but it is likely to be terribly unsound.

Our idea is instead to preserve the paths in the flow (ideally, in absence of cycles we can

get even 1-sound schemas). Accordingly, in the Steps 12–18, the algorithm builds the local

constrains by applying the most stringent possible choices, for each activity. In particular,

notice that or-forks and or-joins are likely to deteriorate the soundness, and should be

therefore avoided if possible.

Example IV.2: Let us turn back to Example IV.1, and apply the MineWorkflow algo-

rithm. In the Steps 2–10, the edges (b, c), (c, d), and (d, b) are removed from the graph

in Figure 3.(a), since they are parallel in L. The connectivity of the graph is reestablished

by connecting a to c, and b to e; actually, other edges are processed that were already

in the graph. In Step 11, a becomes the starting activity and e the only final one. The



14

Input: A log LP .

Output: A workflow schema WS = 〈A, E, a0, AF , Join, Fork〉.
Method: Perform the following steps:

1 〈A, E〉:=DLP
; //nodes and edges are initially those of the dependency graph

2 for each (a, b) ∈ E s.t. a and b are parallel in LP do //remove cycles

3 E := E − {(a, b)};
4 for each s ∈ LP s.t. {a, b} ⊆ tasks(s) do //update edges

5 pre := s[i], where s[i] → a ∧ s[i] → b and not exists s[k] with k > i s.t. s[k] → a ∧ s[k] → b;

6 E := E ∪ {(pre, a)} ∪ {(pre, b)};
7 post := s[j], where a → s[j] ∧ b → s[j] and not exists s[h] with h < j s.t. a → s[h] ∧ b → s[h];

8 E := E ∪ {(a, post)} ∪ {(b, post)};
9 end for

10 end for

11 a0 := s[1], no matter of which trace s ∈ LP is selected; AF := {a ∈ A | � ∃b ∈ A s.t. a → b};
12 for each a ∈ A do //construction of local constraints

13 if ∀s ∈ LP s.t. a ∈ tasks(s), it holds that ∀c s.t. (a, c) ∈ E, c ∈ tasks(s) then Fork(a) = AND;

14 else if ∀s ∈ LP s.t. a ∈ tasks(s), |{c | (a, c) ∈ E ∧ c ∈ tasks(s)}| = 1 then Fork(a) = XOR;

15 else Fork(a) = OR;

16 if ∀s ∈ LP s.t. a ∈ tasks(s), (c, a) ∈ E ⇒ c ∈ tasks(s) then Join(a) = AND;

17 else Join(a) = OR;

18 end for

19 return 〈A, E, a0, AF , Join, Fork〉;
Fig. 4. Algorithm MineWorkflow: A solution for MPD(LP ,1).

resulting control flow is shown in Figure 3.(b). Finally, the associated constraints are such

that: Fork and Join both assign the value AND to each of the activities b, c, and d, for they

having just one predecessor and one successor. Moreover, the initial activity a (resp. the

final activity e) is associated with an OR value by the Fork (resp. Join) function, since the

trace ae in the log contains only one of the successors of a (resp. predecessors of e). �
We can now conclude the description of the algorithm, by stating a number of relevant

properties. First, it is not difficult to see that the mined schema is 1-complete; more

interestingly, we are able to show (see [22]) that it satisfies a kind of “monotonicity”

property that is crucial for guaranteeing the correctness of the greedy strategy we shall

exploit in the following section for the general problem MPD(LP ,m), with m > 1.

Theorem IV.3: The MineWorkflow algorithm on input LP computes a workflow schema

WS in linear time in the size of LP and satisfies the following conditions:

Maximum Completeness Condition: WS is a 1-complete workflow schema w.r.t. LP



15

Monotonicity Condition: Let L′
P be a log such that L′

P ⊆ LP , and let WS ′ be the output

of MineWorkflow on input L′
P . Then, the set of traces compliant with WS ′ is a subset

of the set of traces compliant with WS, i.e., {s | s |= WS ′} ⊆ {s | s |= WS}.
As a further remark, note that the proposed algorithm can be extended to cope with noise

by slightly modifying the construction of the dependency graph. Specifically, we can use

a threshold �, such that an edge (a, b) is in a suitable dependency graph, say D�

LP
, if and

only if a occurs before b in at least � × |LP | traces. Clearly enough, this construction

avoids the introduction of spurious dependencies that are unfrequent in LP .

V. Clustering Workflow Traces

In order to solve the MPD(LP ,m) problem, we exploit the idea of iteratively and incre-

mentally refining a schema, starting with a preliminary non-disjunctive model which can

be mined by the algorithm MineWorkflow. In a nutshell, we propose a greedy solution,

implemented in the algorithm ProcessDiscover, that computes the mined schema WS∨

through a hierarchical clustering in which the current disjunctive schema (equipped with

a subset of the input log) is stepwise refined into k clusters of traces modelled by possi-

bly different schemas, with the aim of increasing its soundness yet preserving maximum

completeness. In this section, we discuss the details of such an algorithm.

A. Algorithm ProcessDiscovery

The algorithm ProcessDiscover is shown in Figure 5. It first mines, in Step 1, a

workflow schema WS1
0, by means of the procedure MineWorkflow described in Section IV.

Such a workflow is associated with all the traces in LP and becomes the starting point of the

computation; indeed, the disjunctive workflow schema WS∨ initially contains WS1
0 only

(see Step 2). Then, the algorithm starts refining the schema. In particular, each workflow

schema, say WSj
i , eventually inserted in WS∨, is identified by the number i of refinements

occurred since the beginning of the computation and by an index j for distinguishing the

schemas at the same refinement level. Each schema WSj
i is also equipped with a set of

traces that WSj
i is able to model, denoted by L(WSj

i ). Such sets of traces can be viewed

as clusters of the original log.

At each step, ProcessDiscover selects a schema WSj
i ∈ WS∨ for being refined (Step 4)

by exploiting the function refineWorkflow. To this aim, the most natural strategy is



16

Input: Problem MPD(LP ,m), natural numbers maxFeatures, k and �, thresholds σ and γ.

Output: A process model.

Method: Perform the following steps:

1 WS1
0 :=MineWorkflow(LP ); //See Section IV

2 WS∨ := {WS1
0}; L(WS1

0) := LP ; noRefinement = false;

3 while |WS∨| < m or noRefinement = true do

4 WSj
i :=selectSchema(WS∨);

5 oldSize := |WS∨|;
6 refineWorkflow(i,j,k,σ,γ,�,maxFeatures) //See Theorem V.1

7 if oldSize = |WS∨| then noRefinement = true;

8 end while

9 return WS∨; //See Theorem V.1

Procedure refineWorkflow(i: refinement, j: schema, k: branching factor, σ,γ: thresholds, �,maxFeatures: natural numbers)

P1 F :=IdentifyRelevantFeatures(L(WSj
i ),WSj

i ,σ,γ,�,maxFeatures); //See Section V-B

P2 if |F| > 1 then

P3 R(WSj
i ) :=Project(L(WSj

i ),F); //See Section V-B

P4 h := max{h | WSh
i+1 ∈ WS∨};

P5 〈L(WSh+1
i+1 ), ...,L(WSh+k

i+1 )〉 := k -means(R(WSj
i ));

P6 WS∨ := WS∨ − {WSj
i};

P7 for each WSh
i+1 do

P8 WSh
i+1 :=MineWorkflow(L(WSh

i+1)); //See Section IV

P9 WS∨ = WS∨ ∪ {WSh
i+1};

P10 end for

P11 end if ;

Fig. 5. Algorithm ProcessDiscover

to select the schema having the minimum value of soundness over all the schemas in

WS∨. In order to get an efficient implementation, we pragmatically suggest to exploit an

approximation of such an approach, where the schema having the maximum number of

or-forks is chosen — these nodes introduces, in fact, nondeterminism and possibly spurious

traces. Notably, in our current implementation (see Section VI), the user is allowed to

interactively select at each step the cluster to refine, so that any arbitrary, application-

dependent strategy may be adopted.

The refinement is carried out by ‘partitioning’ the traces associated with WSj
i in a way

that guarantees the resulting schema to become sounder than before. Actually, in order

to reuse classical clustering methods, and specifically in our implementation the k-means

algorithm, the procedure refineWorkflow translates the log L(WSj
i ) into flat relational

data, denoted by R(WSj
i ), by means of the procedures IdentifyRelevantFeatures and

Project, which will be discussed in Section V-B. The basic idea is to identify a set of

relevant features that are assumed to characterize the traces in the cluster, thereby leading



17

to view each trace as a boolean tuple over the space of such features. In particular, if more

than one feature is identified, it computes the clusters WSh+1
i+1 , ...,WSh+k

i+1 , where h is the

maximum index of the schemas already inserted in WS∨ at the level i+1, by applying the

k -means algorithm on the traces in L(WSj
i ), and add them to the disjunctive schema WS∨.

Finally, for each schema added to WS∨, the procedure MineWorkflow described in

Section IV is applied, so that the control flow and the local constraints are mined as well.

Note that a main point of the algorithm is fixing the number k of new schemas to be

added at each refinement step. The range of k goes from a minimum of 2, which will

require several steps for the computation, to an unbounded value, which will return the

result in only one step. One could then expect that the latter case is the most desirable.

This is not necessarily true; rather there are three basic reasons for preferring a hierarchical

computation, with several refinements:

1) Exploiting a large value for k would be beneficial only if it were possible to encode

traces in a metric space by guaranteeing that standard clustering algorithms produce a

solution maximizing the soundness; recall, indeed, that our basic aim is to identify bunches

of execution traces which can be soundly modelled by a workflow schema. However,

given that the notion of soundness is computationally intractable (cf. Proposition III.5),

and that the MPD problem is likely to be hard for the second level of the polynomial

hierarchy (cf. Theorem III.6), we believe that this cannot be done efficiently. To see

this from another perspective, we can say that, differently from traditional clustering

problems where the compactness of the clusters is measured according to the same metric

used for evaluating the similarity between pair of entities (e.g., euclidean distance in a

metric space), in the MPD problem the objective function (soundness) cannot be related in

a straightforward manner with some kind of likeness among traces. An iterative approach

based on stepwise refinements guaranteeing that each refinement leads to a sounder schema

is quite an effective solution to this problem. Moreover, it allows to monotonically search

in the space of the solutions by never checking for the soundness of the current model.

2) The result of the hierarchical clustering is a taxonomy of workflow schemas whose leaves

encode, in fact, the mined disjunctive model (recall that each workflow is in fact equipped

with a level i and is the result of a refinement of some workflow with level i − 1). Such

a tree-based representation is relevant because it gives more insights on the properties of



18

the modelled workflow instances and provides an intuitive and expressive description of

the process behavior at different levels of detail. The exploitation of this structure for

semantic knowledge consolidation tasks has been recently discussed in [24].

3) Disjunctive models can be used not only to get an effective comprehension of complex

processes, but also as executable models supporting further coming instances of the pro-

cess. Indeed, as soon as there is a new enactment, the most appropriate mined variant

of the process should be selected based on the environment (e.g., users and data values).

Clearly enough, shifting the choice of the variant to the very first step of the enactment

may be undesirable in several situations (see, e.g., studies on branching bisimulation [25],

[26]). And, in fact, an interesting strategy to support the enactment is to exploit the

hierarchical structure of the mined model. At the very beginning, the most general model

(i.e., the root of the hierarchy) may be selected for being enacted. Then, as soon as soon

as a choice is done which allows to univocally determine the specific variant (of the cur-

rent schema) being actually executed, the hierarchy can be traversed, and one child of

the current node can be selected to be the actual workflow schema. The technique can

be iterated till a leaf of the hierarchy is selected. Therefore, the more the schema has a

tree-like structure, the more we are free to decide the actual moment in which a specific

schema has to be associated with the current enactment.

We can now conclude the description of the algorithm ProcessDiscover by stating its

main properties. The careful reader will notice that the properties of MineWorkflow are

in fact crucial now.

Theorem V.1: Let WS∨ be the output of ProcessDiscover applied on input

MPD(LP ,m). Then, (1) WS∨ is 1-complete w.r.t. LP . (2) Let WS∨
b be an α-sound

disjunctive schema, and let WS∨
a be the α′-sound disjunctive schema obtained updating

WS∨
b by means of the invocation of refineWorkflow in Step 6. Then, α′ ≥ α. (3) The

main loop (Step 3–8) is repeated m times at most.

Proof: (1) Assume that the output WS∨ of ProcessDiscover on input MPD(LP ,m) is

of the form {WS1, ...,WSn}. Recall, preliminary, that each schema WS i is also equipped

with a subset of LP , denoted by L(WS i). It is easy to see that the logs L(WS1),...,L(WSn)

form, in fact, a partition of LP . Indeed, the traces associated with WS1
0 coincide with

those in LP (see, Step 2); moreover, each time a schema is refined, its associated traces are



19

simply clustered in step P5, so that the property of being a partition of LP is preserved

after any invocation of the refineWorkflow procedure.

Finally, the result follows because of the 1-completeness (by the property of

MineWorkflow in Step 1 and Step P8) of each schema WS i ∈ {WS1, ...,WSn}.
(2) Let WS∨

b be an α-sound disjunctive schema, and let WS∨
a be the α′-sound disjunctive

schema obtained updating WS∨
b by means of the invocation of refineWorkflow. Let us

preliminary recall that: α = |{s|s∈LP∧s|=WS∨
b }|

|{s|s|=WS∨
b }| ; α′ = |{s|s∈LP∧s|=WS∨

a }|
|{s|s|=WS∨

a }| .

Then, by property 1 above, both WS∨
b and WS∨

a are 1-complete. Therefore,
|{s|s∈LP∧s|=WS∨

b }|
|{s|s∈LP }| = |{s|s∈LP∧s|=WS∨

a }|
|{s|s∈LP }| = 1. Now, it is the case that α′

α
= |{s|s|=WS∨

b }|
|{s|s|=WS∨

a }| . As-

sume now, w.l.o.g., that refineWorkflow finds at least two features, otherwise WS∨
b = WS∨

a

holds. Then, let WS∨
b = {WS1, ...,WSn}, and let WSn be the schema refined by re-

fineWorkflow, so that WS∨
a = {WS1, ...,WSn−1,WSn+1, ...WSn+k} is the disjunctive

schema after that the refinement of WSn is performed — notice that we are assuming,

w.l.o.g., that WSn is the schema chosen for being refined. Now, observe that {s | s |=
WS∨

b } =
⋃

i=1..n{s | s |= WS i}, and {s | s |= WS∨
a} =

⋃
i=1..n−1,n+1..n+k{s | s |= WS i}.

Recall that each schema of the form WS i, with n + 1 ≤ i ≤ n + k, is obtained by mining

L(WS i) by means of MineWorkflow, and that {L(WSn+1),...,L(WSn+k)} is a partition

of L(WSn), by result of clustering in Step P5. It follows that L(WS i) ⊆ L(WSn), for

each index i with n + 1 ≤ i ≤ n + k. Then, since MineWorkflow satisfies the mono-

tonicity condition (cf. Theorem IV.3), the set {s | s |= WS i} is contained in the set

{s | s |= WSn}. Clearly, this entails that {s | s |= WS∨
a} ⊆ {s | s |= WS∨

b }, and,

consequently, |{s | s |= WS∨
a}| ≤ |{s | s |= WS∨

b }|. Thus, α′
α
≥ 1 holds as well.

(3) Termination in m iterations at most is guaranteed by the check in Step 3.

B. Dealing with Relevant Features

The last aspect to be analyzed in the algorithm ProcessDiscovery is the way the

procedures IdentifyRelevantFeatures and Project are carried out. Roughly speaking,

the former identifies a set F of relevant features, whereas the latter projects the traces

into a vectorial space whose components correspond to such features. This is done with

the aim of reducing the problem of clustering workflow traces to a standard clustering

problem, for which efficient algorithms have been already proposed in literature.

Actually, the idea of representing the data set at hand by using a proper set of features



20

has been exploited for efficiently handling data mining problems (see, e.g., [27], [28], [29],

[30], [31]); as an instance, in [30], the problem of classifying sequences is dealt with by

considering frequent subsequences of them as relevant features.

Clearly enough, changing the domain of interest dramatically affects the notion of rele-

vant feature, which is strongly application dependent. In particular, in the case of workflow

executions, the identification of relevant features is aimed at having clusters which can be

modelled by means of sound schemas. Generally, a schema with a low value of soundness

is such that it mixes different execution scenarios that cannot be kept separate by means

of dependencies in the control flow and local constraints, only. Thus, a simple way for

increasing the soundness is to precisely single out those kinds of (frequent) ‘behavior’ that

are not properly modelled by the workflow schema. This is explained below.

Example V.2: Consider again the sample workflow schema and the associated log re-

ported in Figure 1. Let us try to identify some relevant features to be used for the cluster-

ing. Consider, for instance, the sequences abefi and im, and notice that they frequently

occur in the log (five times each). However, their combination, i.e., abefim, never occurs

in the log, which is unexpected by looking at the control flow only. Similar considerations

apply also when noticing the absence in the log of the sequence acdgil, which is strange

due to frequent occurrence of both the sequential patterns acdgi and il.

Intuitively, the situations above witness some kinds of behavioral constraint. For in-

stance, it may be the case that a fidelity discount is not applied for new clients and that

the mail department can be contacted only when it was not necessary to check the avail-

ability of external suppliers. As a result of these behaviors, since both abefim and acdgil

are expected but not in the log, the workflow schema is likely to be unsound. The notion

of relevant feature reported below is aimed at capturing such scenarios. �
Let LP be a log, WS = 〈A,E, a0, AF , Fork, Join〉 be a workflow schema and σ be a

threshold, i.e., a real number such that 0 ≤ σ ≤ 1. Then, we say that a sequence

a1a2...ah of activities (i.e., a string in A∗) is σ-frequent in LP if for each pair of consecutive

activities (ai, ai+1), with 1 ≤ i ≤ h− 1, there exists a path from ai to ai+1 in 〈A,E〉, and

if |{s ∈ LP | a1 = s[i1], ..., ah = s[ih] ∧ i1 < ... < ih}|/|LP | > σ.

Definition V.3: A discriminant rule (or feature) with threshold 〈σ, γ〉 in a log LP is an

expression φ of the form [a1...ah] ����〈σ,γ〉 a such that: (i) a1...ah is σ-frequent in LP , (ii)



21

aha is σ-frequent in LP , and (iii) a1...aha is not γ-frequent in LP . ��
Notice that in the above definition, we considered a second threshold (γ) for evaluating

whether the resulting string is frequent: the lower γ, the more unexpected the rule. In the

extreme case, i.e., γ = 0, the workflow mixes two scenarios that are completely independent

of each other. This is the case, for instance, of the schema and the log in Figure 1, where

both [abefi] ����〈σ,0〉 m and [acdgi] ����〈σ,0〉 l are discriminant rules for σ < 5/16.

Actually, while discovering discriminant rules we are interested in those satisfying some

additional minimality requirements.

Definition V.4: A feature φ : [a1...ah] ����〈σ,γ〉 a is minimal if the following conditions

(aimed at avoiding redundancies) are satisfied:

(iv) does not exist b with [a1...ah] ����〈σ,γ〉 b, such that ab is σ-frequent in LP , and

(v) does not exist [c1...ck] ����〈σ,γ〉 a, such that tasks(c1...ck) ⊆ tasks(a1...ah). �

Once that minimal features have been discovered, the procedure Project maps each

trace s in the log LP into a point of a suitable vectorial space where the k-means algorithm

can operate. The vectorial space has as many dimensions as the number of features

considered, and each trace s is mapped to the point −→s as follows. Let φ : [a1...ah] ����〈σ,γ〉 a

be a feature computed by IdentifyRelevantFeatures, then the value of the component

of −→s associated with φ is: 0, if a ∈ tasks(s), or
∑

i |{s[i]}∩{a1,...,ah}|×length(s)length(s)−i

∑
i length(s)length(s)−i , otherwise.

Intuitively, Project tries to map the traces by splitting them according to the occurrence

of the feature φ. Indeed, the lowest value (cf. 0) is assigned in the case where a occurs in

the trace s, while the highest value (cf. 1) is assigned if all the nodes in {a1, ..., ah} are

in s, but a is not. Otherwise, i.e., if a �∈ tasks(s) but some node in {a1, ..., ah} is not in

s, the value is obtained by lexicographically weighting the occurrences of such nodes, by

giving preference to those occurring first in the control flow.

Example V.5: Recall that [abefi] ����〈σ,0〉 m and φ2 : [acdgi] ����〈σ,0〉 l, for σ < 5/16,

are discriminant rules in the example in Figure 1. Then, it is not difficult to check that

φ1 : [efi] ����〈σ,0〉 m and φ2 : [dgi] ����〈σ,0〉 l are minimal discriminant rules, which allow to

project the log into a 2-dimensional vectorial space, as shown in Figure 6.(a).

By looking at this feature space in Figure 6.(b), four clusters can be identified: C1 =

{s1, s2, s3, s4, s5, s6, s7}, C2 = {s8, s9, s10}, C3 = {s11, s12}, and C4 = {s13, s14, s15, s16}. �
Let us now focus on the algorithm IdentifyRelevantFeatures for computing the set



22

Fig. 6. Sample traces: (a) projection in the feature space; (b) clusters.

of all the minimal features. The algorithm takes in input a log LP , a workflow schema

WS, the thresholds σ and γ in Definition V.3, a number � bounding the length of the

features to be discovered, and a number maxFeatures bounding the number of features

that should be returned as output. The algorithm exploit a level-wise search in the space

of all the possible features, in the a-priori style (see, e.g.,[32], [33], [34]).

To see how this exploration is possible, consider two strings s : a1...ah and s′ : a′1...a
′
h′ .

We say that s directly precedes s′ denoted by s ≺ s′ if s is a prefix of s′ and |tasks(s)| =

|tasks(s ′)| − 1 . Moreover, we say that s precedes s′, denoted by s ≺∗ s′, if either s ≺ s′

or there exists a string s′′ such that s ≺∗ s′′ and s′′ ≺∗ s. It is not difficult to see that

all frequent sequences can be constructed by means of a chain over the ≺ relation and,

therefore, the space of frequent sequences forms a lower semi-lattice that can be explored

in a bottom-up fashion: At each iteration of the main loop (Steps 3–15) the algorithm

generates all the possible σ-frequent sequences whose length is len, by exploiting previously

computed σ-frequent sequences with length len − 1, and stores them in Cand len . In

particular, in Steps 8 and 9, it scans the log for singling out the sequences in Cand len that

are σ-frequent and γ-frequent in LP , by storing them in the sets Lσ
len and Lγ

len, respectively.

Actually, the computation starts in Step 1, where Lσ
2 is initialized to contain all the σ-

frequent sequences of length 2. Then, candidates of length len are obtained by combining

any sequence of the form a1...aj in Lσ
len−1 with any sequence of the form aja in Lσ

2 .

Finally, after that frequent sequences are discovered, in Steps 10–13, the features con-

sisting of len nodes are identified and stored in Flen. To this aim, the sequence of the form

a1...aja must be not γ-frequent and the minimality conditions must be satisfied (Step 11).

At the end of each iteration, the discovered minimal features are eventually inserted into

the set F (Step 14). The process is repeated until no other frequent sequences are found



23

Input: A log LP , a schema WS = 〈A, E, a0, AF , Fork, Join〉, thresholds σ and γ, natural number � and maxFeatures.

Output: A set of minimal discriminant rules.

Method: Perform the following steps:

1 Lσ
2 := {ab | ab is σ-frequent in LP };

2 len := 3; F := ∅;
3 while len ≤ � and Lσ

len �= ∅ do //iterations on the length of the features

4 Cand len := ∅; Flen := ∅;
5 for each sequence a1...aj ∈ Lσ

len−1 do //construction of the candidates

6 for each aja ∈ Lσ
2 do

7 Cand len := Cand len ∪ {ai...aja};
8 Lσ

len := {s | s ∈ Cand len ∧ s is σ-frequent in LP};
9 Lγ

len := {s | s ∈ Cand len ∧ s is γ-frequent in LP};
10 for each sequence a1...aja ∈ (Cand len − Lγ

len ) do //update features

11 if � ∃a1...ajb ∈ (Cand len − Lγ
len ) such that ab ∈ Lσ

2 and

� ∃[c1...ck] ����〈σ,γ〉 a in F , such that tasks(c1...ck) ⊆ tasks(a1...aj) then

12 Flen := Flen ∪ {[a1...aj] ����〈σ,γ〉 a};
13 end for

14 F := F ∪ Flen; len := len + 1;

15 end while

16 return mostDiscriminantFeatures(F ,maxFeatures);

Fig. 7. Algorithm IdentifyRelevantFeatures

or all the features up to the length � are found.

It is worth noting that the algorithm does not directly output the set F ; rather, it invokes

the function mostRelevantFeatures, whose aim is to select (if possible) the maxFeatures

most representative in F . This latter task is carried out for reducing the dimensionality

of the vectorial space. Usually, feature selection problem is a very complex activity, and

some general-purpose techniques have been proposed in the literature (see, e.g., [31], [35]).

In this case things are simpler; indeed, the specific semantics of discriminant rules induces

quite a natural ordering among elements in F , consisting in preferring features having the

lowest value for the threshold γ. These are, in fact, the most unexpected rules. Therefore,

mostRelevantFeatures simply returns the top-maxFeatures elements in F w.r.t. this

ordering.

After that the algorithm has been described, we can now state its main properties.

Theorem V.6: The algorithm IdentifyRelevantFeatures is such that: (1) The main

loop is repeated �−2 times at most, and �−2 is in fact the maximum number of log scans.

(2) At each iteration, Lσ
len contains the set of all the σ-frequent sequences of length len.

(3) At the end of the computation, the set F contains the set of all the minimal features

of length bounded by �.



24

Proof: (1) By conditions in step 3, there are at most � − 2 iterations. Moreover, for

each iteration, only Steps 8 and 9 requires to access to the log LP , which can be done by

one scan only.

(2) Lσ
len trivially contains σ-frequent sequences only, because of Step 8. Moreover, all

the sequences in Lσ
len have length len; indeed, sequences in Lσ

2 have, by construction,

length 2, and each sequence in Lσ
len is the result of the merging of a sequence a1...aj (of

length len − 1) and aja — formally, one can prove such property by induction. Thus, we

have to show that Lσ
len, in fact, contains all the σ-frequent sequences of length len. The

proof is by structural induction on the length len. Base: for len = 2, the property holds

by construction. Induction: Assume that Lσ
len−1 contains all the σ-frequent sequences of

length len − 1. Clearly, sequences in Lσ
len can be written by adding to any sequence in

Lσ
len−1 exactly one activity, because of the fact that the space of such sequences forms a

lower semi-lattice w.r.t. the ‘≺’ relation. This is precisely what is done in Step 7.

(3) We show that Flen contains exactly the minimal features of size len, for len ≥ 3. By

construction in Steps 10–12, Flen contains only minimal features of size len. Therefore, we

have to show that every feature φ of size len of the form [a1...aj] ����〈σ,γ〉 a is in Flen. To

this aim, it is sufficient to exploit the completeness result in point (2) above, and notice

that a1...aj is in Lσ
len−1 and aja is in Lσ

2 .

Now that all the procedures in the ProcessDiscovery algorithm have been discussed,

we can explicitly note that it requires a number of scans on the log which linearly depends

on the parameters �, k and m. This is a nice property for scaling in real applications. To

see why this is the case, recall that, by Theorem V.1, the algorithm makes m iterations

at most. At each iteration, the dominant operation is the procedure refineWorkflow in

which there is one invocation of IdentifyRelevantFeatures (for computing features of

length �) for each of the k different invocations of the algorithm MineWorkflow. Then, by

combining results in Theorem V.6 and Theorem IV.3, the following is obtained.

Corollary V.7: Algorithm ProcessDiscovery requires O(m×k×�) scans of the log LP .

VI. Experimental Results

All the algorithms proposed in the paper have been implemented and, recently, inte-

grated in the ProM process mining framework [36] as an analysis plug-in,2 where the user

2Available at http://www.icar.cnr.it/workflowmining.



25

AND

AND

XOR

XOR

OR

OR

XOR

AND

AND

XOR

XOR

OR

1

2

3

4

5

1

2

3

4

5

1

2

3

(a) (b)

AND

AND

AND

Fig. 8. Results for the ProcessDiscovery algorithm on example processes.

is allowed to exploit any available mining algorithm to equip each cluster with a schema.

In this section, we illustrate the results of experimental activity aimed at assessing the

practical effectiveness of the proposed approach, the theoretical guarantee on the scaling

(cf. Corollary V.7) and the effectiveness in deriving conformant models (cf. Theorem V.1).

A. Qualitative Results

We start our analysis by discussing the results of ProcessDiscovery on some example

scenarios. We firstly considered the OrderManagement process, and we randomly gener-

ated 5, 000 traces for the workflow schema in Figure 1. Notably, in the generation of the

log, we also required that task m could not occur in any trace containing e, and that task

l could not appear in any trace containing d, thereby modelling the restriction that a

fidelity discount is never applied to a new customer, and that a fast dispatching procedure

cannot be performed whenever some external supplies were asked for.

As a matter of facts, these constraints determine different usage scenarios, which are

mixed up in the schema in Figure 1, thereby leading to a low value of soundness. Con-

versely, by running ProcessDiscovery with maxFeature = 5, maxLevels = 1, k = 4,

σ = 0.05, γ = 0.01 and � = 5, the four schemas associated with the discovered clusters are

the two of Figure 2 plus the two reported in Figure 8.(a). Each of these schemas captures,

in fact, exactly one of the possible usage scenarios for the process and models one of the

clusters discovered in Example V.5. This mined model is both 1-sound and 1-complete,

and yields a clearer picture of the latent behavior of the process.

As a further example, let us consider the ReviewPaper process of handling the revisions

for a paper submitted to a scientific conference. The process consists of the tasks: (rs)



26

receiving the submission, (sri, 1 ≤ i ≤ 5), sending the paper to the reviewers, (rd)

receiving the revisions and taking a decision, (d) discussing on the paper in the case

revisions are not uniform, (a) accepting the paper, and (r) rejecting the paper. Actually,

in the case where the paper is authored by a program committee member, it has to be

reviewed by 5 reviewers and it is immediately rejected in the case some reviewer does not

want it to be accepted for publication. Otherwise, only 3 reviewers are assigned to the

paper. A possible workflow schema for the process is reported on the left of Figure 8.(b)

— notice, e.g., that rs is an or-split. According to it and to the above specified rules, a

log (of 5, 000 traces) was randomly generated and ProcessDiscovery was invoked with

maxFeature = 2, maxLevels = 1, k = 2, σ = 0.05, γ = 0.01 and � = 5. The two resulting

schemas are shown on the right of the same figure. It should be clear that one schema

is, in fact, the 1-sound model for handling the revision of a paper written by a program

committee member, while the other is the 1-sound model for handling the revision of all

the other papers — notice, e.g, that for both schemas, rs is an and-split task, now.

The examples above have put into evidence that the clustering technique is very ef-

fective in providing insights into a process especially in the case where the enactments

are constrained by some kinds of behavioral rules, possibly involving information which

is beyond the pure execution of activities (e.g., stored in some database). This is quite a

common situation in practical applications. And, in fact, research in modelling languages

already evidenced the importance of these properties, that cannot be captured by a graph

model, and that, in the current workflow management systems, are either left unexpressed

or modelled by means of some form of logics.

We conclude by noticing that even in the case where no behavioral rules are defined

and, hence, there is only one usage scenario, the ProcessDiscovery algorithm is still use-

ful in order to identify some (hidden) variants, which correspond to anomalies and mal-

functioning in the system. In these cases, the effect of the algorithm is to identify the

“normal” behavior of the process and to single out the instances that are deviant w.r.t.

it. This intuition has been confirmed by several experiments on real data sets available

at http://www.processmining.org. For the sake of completeness, in Figure 9 we report

the hierarchy built for an example log file (cf. a12f0n20.xml, maxFeature = 3, k = 3,

σ = 0.01, γ = 0.4 and � = 5) and the models associated with each node in the first level of



27

Fig. 9. Results on log data available at http://www.processmining.org.

the hierarchy. The algorithm discovered one large cluster R0 whose schema coincides with

the one the root R is equipped with. Moreover, clusters R1 and R2 (containing 17 and

37 traces, respectively) may, indeed, be perceived as outliers w.r.t. the discovered main

behavior.

B. Quantitative Results

Besides qualitative tests, we performed an extensive experimentation on synthetic logs,

produced by means of a generator which takes advantage of ideas exposed in [33] and

extends the one described in [23]. Notably, the generator can be used to produce a log of

traces which are compliant with a given workflow schema, as well as to generate random

workflow schemas.

Text Procedure. In order to asses the effectiveness of the technique, we defined a sim-

ple test procedure for comparing available workflow models with the output of the

ProcessDiscover algorithm. Let WS be a given workflow schema and LP be a log of

traces compliant with WS, produced by means of the generator. Then, the result of each

test is a disjunctive workflow schema WS∨ extracted by providing the ProcessDisovery

algorithm with LP as input. Notice that for evaluating the quality of a mined schema

we are only interested in computing its soundness, since it was proven, by Theorem V.1,

that any schema discovered by means of our technique has maximal completeness. In

particular, the soundness of WS∨ is estimated by computing the percentage of the traces

in a log Ltest (randomly generated from WS∨) that are also compliant with the original



28

0 1 2 3 4 5 6 7 8 9 10
0.4

0.5

0.6

0.7

0.8

0.9

1

maxLevels

S
ou

nd
ne

ss
1000 Traces

k=1,2,3,4 

1 2 3 4 5 6 7 8 9 10 11
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

k

S
ou

nd
ne

ss

10000 Traces

maxLevels=1,2,3,4 

Fig. 10. Fixed Workflow: Soundness w.r.t. nr. of levels (left) and k (right)

schema WS. Ideally, when Ltest contains all the possible traces of WS∨, the estimate and

the actual value coincide.

In the light of Corollary V.7, the experiments mainly focus on the influence of the

branching factor k and on the number of levels (maxLevels) in the hierarchy of clusters —

notice that maxLevels and k in fact determine the size of the mined disjunctive schema

(m). The parameter �, i.e., the length of the features, is instead kept fixed to 5, since

after several experiments this appeared to be a good compromise between running time

and quality of results. And, in fact, for � > 5 the soundness of the mined schema rarely

improves. All the tests were conduced on a 1600MHz/256MB Pentium IV machine running

Windows XP Professional.

Results. A first set of experiments was conduced to assess the soundness of the mined

models. To this aim, we considered a fixed workflow schema at time and some log traces

randomly generated according to it. This first set of experiments was repeated for different

synthetic and real schemas, and the algorithm performed quite similarly under all the

circumstances. Moreover, for each schema, we generated a number of different training

logs. Here, wer report the average values and their associated standard deviation.

For a process with 40 tasks, the soundness values of the mined model are graphically

illustrated in Figure 10, which reports the mean and standard deviation of the soundness

obtained with different values of k and maxLevels, over input logs consisting of 1,000

traces (on the left) or 10,000 traces (on the right). Both charts in the figure show that

the quality of the mined schema generally gets better when either of these parameters

increases, up to achieving the maximum value of soundness. It is interesting to express a



29

Fig. 11. Fixed Workflow: Soundness (left) and Mining Time (right) w.r.t. k.

further remark about the way the branching factor k impacts on soundness. As a matter of

fact, observe that for k = 1 the algorithm degenerates in computing a unique schema and,

hence, the soundness is not affected by the parameter maxLevels. On the contrary, for

k > 1 the algorithm is able to rediscover the original schema, after performing a suitable

number of iterations — see, in particular, the right side of Figure 10.

Notice that the case where k = 1 is that of all classical process mining algorithms (see

next section), because no clustering is performed. However, since the aim of the paper

is to demonstrate the effectiveness of the clustering approach (independently of the way

MineWorkflow is carried out), we are not interested in a thoroughly comparison here. We

only evidence that, while we often get a low value of soundness in the case where k = 1,

mined schemas are always guaranteed to be 1-complete no matter of the log, whereas most

of previous algorithms either assume that the log itself is complete or accept incompleteness

as manifestation of noise. Thus, these approaches in process mining are orthogonal and

enjoy specific advantages, and their comparison is left as a subject for further research.

A second set of experiments was aimed at providing more insight on the impact of k on

effectiveness and efficiency. Input data are the same of those used for above experiments.

Figure 11 shows the results. In particular, the left side of the figure confirms that k strongly

impacts the soundness, almost independently of the log size |LP |, provided that it is big

enough to reduce the effects of statistical fluctuations in the log composition. Moreover,

the right side of the same figure shows that also the total time needed for building a schema

increases when we use higher values for either k or maxLevels. However, as expected, the

scaling is linear in both parameters. In particular, higher values for maxLevels only mildly



30

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

10

20

30

40

50

60

Size of Log

M
in

in
g 

T
im

e 
[s

ec
]

k=2

1
2
3
4

maxLevel 

0 1 2 3 4 5 6 7

x 10
4

0

50

100

150

200

250

300

Size of Log

M
in

in
g 

T
im

e 
[s

ec
]

maxLevels=2

k=2
k=3
k=4

Fig. 12. Fixed Workflow: Scalability w.r.t. log size, varying the nr. of levels (left) and k (right).

increase the running time; this observation and the behavior shown on the left of Figure 10

are arguments in favor of using small values for k (see the discussion in Section V-A).

In Figure 12, we report the trend of the mining time with respect to the log size. In

particular, in the left side several curves are plotted which correspond to different values

of maxLevels, with a fixed branching factor (k = 2); analogously, in the right side it is k

to be varied, while maxLevels is always set to 2. All these curves substantiate the good

scalability of the approach, which takes a time that linearly depends on the number of

traces used as input.

Fig. 13. Variable Workflow: Soundness (left) and Mining Time (right) w.r.t. k.

In the last series of experiments, we randomly generated several workflow schemas with

different number of tasks and precedence relationships. In Figure 13, we report the results

obtained with four workflow schemas. Observe (on the left) that for a fixed value of k, the

soundness of the mined schema tends to become lower as the schema complexity augments,

i.e., the number of activities, links and constraints increases. This witnesses the fact that



31

in order to have an effective reconstruction of the process it is necessary not only to fix

k > 1, but also to deal with several levels of refinements. Obviously, for complex schemas

the algorithm takes more time, as shown in the same figure on the right.

VII. Overview of Process Mining Algorithms

We next briefly review some previous works on process mining, which constituted a

fundamental source of inspiration for our research. In fact, these approaches solve the

MPD(LP ,1) problem and may be even used in our algorithm in place of MineWorkflow. A

broader, and up-to-date enough, overview on this topic can be found in [1].

Process mining has been firstly introduced in a Software Engineering setting by [37],

and subsequently extended in [5], [38]. The paper proposes three techniques, namely (i)

a statistical approach, based on neural networks, (ii) a purely algorithmic approach, and

(iii) a hybrid approach, based on Markov models, for automatically deriving a formal

model from execution’s log. The model is a Finite State Machine (FSM) model, where

the activities are associated with the edges and specify transitions between states.

In [8], processes are more naturally represented through pure directed graphs, which

yet allow to express precedence relationships only, by disregarding richer control flow

constructs, such as concurrency, synchronization and choice. Notably, techniques in [8]

have been designed to work even in presence of cyclic dependencies between activities.

A special kind of Petri nets, named Workflow nets (WF-net), is adopted in [39], [40], [1],

[21] for modelling and mining workflow processes. There, each transition represents a task,

while the relationships between the tasks are modelled by arcs and places. Importantly,

WF-nets allows for recursive schemas and iterated executions. A basic algorithm, called

α-algorithm, is introduced in [21], which is able to derive a WF-net from a workflow

log, under the assumption that the log is complete and free of noise. However, the α-

algorithm can easily deal with cycles, which is a functionality currently missing in our

approach. Actually, the capability of the algorithm to mine WF-net workflow models and

its limitations are analyzed in [1], where the concept of structured workflow (SWF) net

is introduced to capture a class of WF-nets which a process mining algorithm should be

able to rediscover. Some extensions to the approach are presented which address these

problems. In particular, in [40], simple statistics are exploited in the construction of the

ordering relations in order to cope with noise in the logs, whereas specific preprocessing



32

and postprocessing strategies for capturing short loops are devised in [41].

A further approach to mining a process model from event logs is described in [7], [42],

where a subset of the ADONIS language [43] is adopted to represent a process model.

An important peculiarity of the approach mainly resides in its capability of recognizing

duplicate tasks in the control flow graph, i.e., many nodes associated with the same task.

Yet another approach is adopted in [9], where a mining tool is presented which is able

to discover hierarchically structured workflow processes. Such a model corresponds to

an expression tree, where the leafs represent tasks (operands) while any other node is

associated with a control flow operator. In this context, the mining algorithm mainly

consists of a suitable set of term rewriting systems.

The possibility of grouping workflow traces has been previously explored by [11]. The

basic idea is to exploit a multi-phase process mining approach, where individual models

are firstly generated for each process instance by means of the technique in [10] and, sub-

sequently, aggregated into aggregation graphs. These graphs may be eventually translated

into EPCs or Petri nets. Interestingly, the first phase can be possibly avoided in the case

where logs are registered by some tools such as ARIS PPM [44], where individual models

are already available in terms of instance graphs and do not need to be preliminary mined.

As a matter of facts, the technique in [11] can be used to aggregate any predetermined

set of instance graphs and, therefore, it does not fit our setting where the traces to be

aggregated are not known in advance (in fact, clusters are the result of an automatic

partitioning on the log based on some suitably extracted features). Yet, the grouping

technique can be still used to implement some kinds of agglomerative clustering algorithm.

Indeed, an algorithm may start with each instance graph associated with an aggregation

graph and, at each step, it may select the most similar aggregation graphs (according

to some suitably defined metric) whose instances are in turn fused into a more general

aggregation graph. By this way, the hierarchy of schemas may be defined in a bottom-up

fashion, rather than in a top-dow one. While agglomerative approaches are often less

efficient than divisive strategies, we believe that the above sketched approach is worth

being formalized and analyzed in order to assess its practical effectiveness.



33

VIII. Conclusions

In this paper, we have continued on the way of investigating data mining techniques

for discovering process models from event logs. We have devised a novel framework that

substantially differs from previous approaches, for it performs a hierarchical clustering of

the logs, in which each trace is seen as a point of a properly identified space of features. The

resulting model is a disjunctive schema that explicitly takes care of variants of the process.

The computational complexity of the different problems involved in our investigation has

been thoroughly investigated. It turned out that even checking whether a given model at

hand is conformant is a difficult task, so that any efficient algorithm for computing the

best schema has to search into the space of the possible solutions by never checking for

the soundness. Our solution to this problem was a smart algorithm that stepwise refine

a starting schema by guaranteeing that each refinement leads to a sounder schema. The

performances of the proposed approach have been analyzed over a number of data sets,

thereby getting some appreciable evidence for its effectiveness and scalability.

Notably, the proposed approach is to large extent independent of the adopted workflow

model and is, indeed, modular and able to benefit of other results available in the literature

for dealing with more elaborate features, such as cyclicity in the log. And, in fact, our

clustering algorithm has been made recently available as an analysis plug-in for the ProM

process mining framework, which allows to exploit well-established process mining algo-

rithms to equip clusters with models. An extensive investigation of this kind of integrated

approach constitutes an avenue of further research.

We conclude by observing that, the whole framework proposed in the paper is essentially

propositional, for it assumes a simplification of the schema and of the enactments in which

many real-life details are omitted. This is a standard assumption in current research in

process mining. Therefore, another interesting avenue for further research is to extend our

techniques to take care of the environment, so that clusters may reflect not only structural

similarities among traces, but also information about, e.g., users and data values.

References

[1] W.M.P. van der Aalst, B.F. van Dongen, J. Herbst, L. Maruster, G.Schimm, and A.J.M.M. Weijters, “Work-

flow mining: A survey of issues and approaches,” Data and Knowledge Engineering, vol. 47, no. 2, pp.

237–267, 2003.



34

[2] A. Rozinat and W.M.P. van der Aalst, “Conformance testing: Measuring the fit and appropriateness of event

logs and process models,” in Proc. Int. Workshop on Business Process Intelligence (BPI’05), 2004, pp. 1–12.

[3] F. Casati, M. Castellanos, and M. Shan, “Enterprise cockpit for business operation management,” in Proc.

of the 23rd International Conference on Conceptual Modeling (ER2004), 2004, pp. 825–827.

[4] D.-R. Liu and M. Shen, “Workflow modeling for virtual processes: an order-preserving process-view ap-

proach,” Information Systems, vol. 28, pp. 505–532, 2003.

[5] J.E. Cook and A.L. Wolf, “Event-based detection of concurrency,” in Proc. 6th Int. Symposium on the

Foundations of Software Engineering (FSE’98), 1998, pp. 35–45.

[6] A.J.M.M. Weijters and W.M.P. van der Aalst, “Rediscovering workflow models from event-based data using

little thumb,” Integrated Computer-Aided Engineering, vol. 10, no. 2, pp. 151–162, 2003.

[7] J. Herbst, “Dealing with concurrency in workflow induction,” in Procs. European Concurrent Engineering

Conference, 2000.

[8] R. Agrawal, D. Gunopulos, and F. Leymann, “Mining process models from workflow logs,” in Proc. 6th Int.

Conf. on Extending Database Technology (EDBT’98), 1998, pp. 469–483.

[9] G. Schimm, “Mining most specific workflow models from event-based data,” in Proc. of Int. Conf. on Business

Process Management, 2003, pp. 25–40.

[10] B.F. van Dongen and W.M.P. van der Aalst, “Multi-phase process mining: Building instance graphs,” in

Proc. Int. Conf. on Conceptual Modeling (ER), 2004, pp. 362–376.

[11] B.F. van Dongen and W.M.P. van der Aalst, “Multi-phase process mining: Aggregating instance graphs into

EPCs and Petri Nets,” in Proc. Int. Work. on Applications of Petri Nets to Coordination, Worklflow and

Business Process Management (PNCWB) at the ICATPN 2005, 2005.

[12] H. Davulcu, M. Kifer, C.R. Ramakrishnan, and I.V. Ramakrishnan, “Logic based modeling and analysis of

workflows,” in Proc. of the 17th ACM Symposium on Principles of Database Systems (PODS’98), 1998, pp.

25–33.

[13] P. Muth, J. Weifenfels, M.Gillmann, and G. Weikum, “Integrating light-weight workflow management systems

within existing business environments,” in Proc. 15th IEEE Int. Conf. on Data Engineering (ICDE’99), 1999,

pp. 286–293.

[14] P. Senkul, M. Kifer, and I.H. Toroslu, “A logical framework for scheduling workflows under resource allocation

constraints,” in Proc. 28th Int. Conf. on Very Large Data Bases (VLDB’02), 2002, pp. 694–702.

[15] H. Schuldt, G. Alonso, C. Beeri, and H. Schek, “Atomicity and isolation for transactional processes,” ACM

Trans. Database Syst., vol. 27, no. 1, pp. 63–116, 2002.

[16] W.M.P. van der Aalst, A. Hirnschall, and H.M.W. Verbeek, “An alternative way to analyze workflow graphs,”

in Proc. 14th Int. Conf. on Advanced Information Systems Engineering, 2002, pp. 534–552.

[17] Mohan Kamath and Krithi Ramamritham, “Correctness issues in workflow management,” Distributed Systems

Engineering, vol. 3, no. 4, pp. 213–221, 1996.

[18] W.M.P. van der Aalst, “The application of petri nets to worflow management,” Journal of Circuits, Systems,

and Computers, vol. 8, no. 1, pp. 21–66, 1998.

[19] W.M.P. van der Aalst, J. Desel, and E. Kindler, “On the semantics of EPCs: A vicious circle,” in Proc. EPK

2002: Business Process Management using EPCs, 2002, pp. 71–80.

[20] G. Keller, M. Nüttgens, and A.W. Scheer, Semantische Processmodellierung auf der Grundlage Ereignisges-

teuerter Processketten (EPK), University of Saarland, Saarbrücken, 1992.

[21] W.M.P. van der Aalst, A.J.M.M. Weijters, and L. Maruster, “Workflow mining: Discovering process models

from event logs,” IEEE Transactions on Knowledge and Data Engineering (TKDE), vol. 16, no. 9, pp.

1128–1142, 2004.

[22] G.Greco, A.Guzzo, L.Pontieri, and D. Saccà, “Discovering expressive process models by clustering log traces

[Appendix],” available at http://www.icar.cnr.it/wfmining, 2005.

[23] G. Greco, A. Guzzo, G. Manco, and D. Saccà., “Mining and reasoning on workflows,” IEEE Trans. on Data

and Knowledge Engineering, vol. 17, no. 4, pp. 519–534, 2005.



35

[24] G. Greco, A. Guzzo, and L. Pontieri, “Mining hierarchies of models: From abstract views to concrete

specifications,” in Proc. of Int. Conf. on Business Process Management, 2005, pp. 32–47.

[25] Rob J. van Gabbeek and W. Peter Weijland, “Branching time and abstraction in bisimulation semantics,”

Journal of ACM, vol. 43, no. 3, pp. 555–600, 1996.

[26] T. Basten and W. van der Aalst, “Inheritance of workflows: an approach to tackling problems related to

change,” Theoretical Computer Science, vol. 270, no. 1–2, pp. 125–203, 2002.

[27] V. Guralnik and G. Karypis, “A scalable algorithm for clustering sequential data,” in Proc. IEEE Int. Conf.

on Data Maning (ICDM’2001), 2001, pp. 179–186.

[28] J. Han, J. Pei B. Mortazavi-Asl, U. Dayal, and M. Hsu, “Freespan: frequent pattern-projected sequential

pattern mining,” in Proc. Int. ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining (KDD’00),

2000, pp. 355–359.

[29] Y.S. Kim, W.N. Street, and F. Menczer, “Feature selection in unsupervised learning via evolutionary search,”

in Proc. 6th ACM SIGKDD Conf. on Knowledge Discovery and Data Mining (KDD’00), 2000, pp. 365–369.

[30] N.Lesh, M.J. Zaki, and M.Ogihara, “Mining features for sequence classification,” in Proc. 6th ACM SIGKDD

Int. Conf. on Knowledge Discovery and Data Mining (KDD’00), 1999, pp. 342–346.

[31] H. Motoda and H. Liu, “Data reduction: feature selection,” Handbook of data mining and knowledge discovery,

pp. 208–213, 2002.

[32] R. Agrawal, T. Imielinski, and A. Swami, “Mining association rules between sets of items in large databases,”

in Proc. of SIGMOD’93, 1993, pp. 207–216.

[33] R. Agrawal and R. Srikant, “Fast algorithms for mining association rules,” in Proc. of the 20th Int’l Conference

on Very Large Databases, 1994, pp. 487–499.

[34] R. Agrawal and R. Srikant, “Mining sequential patterns,” in Proc. 11th Int. Conf. on Data Engineering

(ICDE95), 1995, pp. 3–14.

[35] B. Padmanabhan and A. Tuzhilin, “Small is beautiful: discovering the minimal set of unexpected patterns,”

in Proc. 6th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining (KDD’00), 2000, pp. 54–63.

[36] B.F. van Dongen, A.K.A. de Medeiros, H.M.W. Verbeek, A.J.M.M. Weijters, and W.M.P. van der Aalst,

“The prom framework: A new era in process mining tool support,” in Proc. of 26th International Conference

on Applications and Theory of Petri Nets (ICATPN’05), 2005, pp. 444–454.

[37] J.E. Cook and A.L. Wolf, “Automating process discovery through event-data analysis,” in Proc. 17th Int.

Conf. on Software Engineering (ICSE’95), 1995, pp. 73–82.

[38] J.E. Cook and A.L. Wolf, “Software process validation: quantitatively measuring the correspondence of a

process to a model,” ACM Trans. Softw. Eng. Methodol., vol. 8, no. 2, pp. 147–176, 1999.

[39] W.M.P. van der Aalst and K.M. van Hee, Workflow Management: Models, Methods, and Systems, MIT

Press, 2002.

[40] W.M.P. van der Aalst and B.F. van Dongen, “Discovering workflow performance models from timed logs,”

in Proc. Int. Conf. on Engineering and Deployment of Cooperative Information Systems (EDCIS’02), 2002,

pp. 45–63.

[41] A.K.A de Medeiros, B.F. van Dongen, W.M.P. van der Aalst, and A.J.M.M. Weijters, “Process mining:

Extending the a-algorithm to mine short loops,” Tech. Rep., University of Technology, Eindhoven, 2004,

BETA Working Paper Series, WP 113.

[42] J. Herbst and D. Karagiannis, “Integrating machine learning and workflow management to support acquisition

and adaptation of workflow models,” Journal of Intelligent Systems in Accounting, Finance and Management,

vol. 9, pp. 67–92, 2000.

[43] S. Junginger, H. Kuhn, R. Strobl, and D. Karagiannis, “Ein geschafts-prozessmanagement-werkzeug der

nachsten generation - adonis: Konzeption und anwendungen,” Wirtschaftsinformatik, vol. 42, no. 3, pp.

392–401, 2000.

[44] IDS Scheer, “Aris process performance manager (aris ppm): Measure, analyzeand optimize your business

process performance (whitepaper),” http://www.ids-scheer.com, 2002.


