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A Hierarchical Probabilistic Model for
Co-Clustering High-Dimensional Data

Gianni Costa, Francesco Folino, Giuseppe Manco, and Riccardo Ortale

ICAR-CNR
Via Bucci 41c

87036 Rende (CS) - Italy

Abstract. We propose a hierarchical, model-based co-clustering frame-
work for handling high-dimensional datasets. The technique views the
dataset as a joint probability distribution over row and column variables.
Our approach starts by initially clustering rows in a dataset, where each
cluster is characterized by a different probability distribution. Subse-
quently, the conditional distribution of attributes over tuples is exploited
to discover co-clusters underlying the data. An intensive empirical evalu-
ation confirms the effectiveness of our approach, even when compared to
well-known co-clustering schemes available from the current literature.

1 Introduction

Increasing attention has been recently paid to clustering high dimensional data,
since this task is of great practical importance in several emerging application
settings such as text analysis, bioinformatics, e-commerce, astronomy, statistics
and psychology and insurance industry [1, 2, 11, 13]. However, clustering high-
dimensional data poses some challenging issues.

Foremost, data sparseness and/or skewness as well as attribute irrelevancy
and/or redundancy typically impose to look for valuable clusters within several
subsets of the original attribute space. This inevitably penalizes the effective-
ness of clustering and further exacerbates its time requirements, since high di-
mensional data tends to exhibit different clusters on distinct attribute subsets.
Although standard dimension reduction techniques [6] can be used to detect the
relevant dimensions, these can be different for distinct clusters, which invalidates
such a preprocessing task.

Also, the identification of cohesive clusters is a major concern. In most cases,
cohesion is measured in terms of the syntactic similarity of the objects in a
cluster. However, several irrelevant attributes might distort the actual degree
of proximity between object tuples. Moreover, clustering schemes yield global
patterns, that do not apparently capture our general understanding of complex
phenomenons. Indeed, in a high-dimensional setting, specific groups of objects
tend to be co-related only under certain subsets of attributes. Hence, though
semantically-related, two tuples with (possibly several) differences in their at-
tribute values would hardly be recognized as actually similar by any global



model. In principle, object cohesion is better viewed in terms of local patterns.
Precisely, the individual data tuple can be intended as a mixture of latent con-
cepts, each of which being a suitable collection of characterizing attributes. Ac-
cordingly, two tuples are considered as actually similar if both represent at least
a same concept. Viewed in this perspective, the identification of local patterns,
i.e. of proper combinations of object tuples and attributes, leads to the discovery
of natural clusters in the data, without incurring into the foresaid difficulties.

Co-clustering has recently gained attention as a powerful tool, that allows
to circumvent the aforementioned limitations while processing high-dimensional
data. Due to its intrinsic capability at exploiting the latent relationships between
tuples and their own attributes, it enables the discovery of coherent clusters of
similar tuples and their interplay with corresponding attribute clusters. This has
been the main motivation behind the development of a wealth of new, ad hoc
techniques that simultaneously cluster both object tuples and their attributes.

Co-clustering techniques can be divided into the five main categories [14], dis-
cussed next. The simplest class of approaches [8, 16] is the one that applies exist-
ing clustering methods to find independent row and column partitions and then
combines the results into meaningful co-clusters. Divide-and-conquer strategies,
such as [9], divide the original co-clustering problem into multiple subproblems
of smaller size, solve them recursively and then combine the resulting solutions
into an actual solution for the initial problem. Greedy iterative algorithms [4,
3] search for co-clusters in the data matrix by progressively removing or adding
rows or columns, in an attempt at maximizing some local-quality criterion. Tech-
niques based on exhaustive co-cluster enumeration [15, 17] search for all possi-
ble co-clusters in the data matrix. Model-based techniques [7, 10, 18] assume a
suitable model for the data generation process and learn estimates of model
parameter values from the available data. To the best of our knowledge, the
approach in [18] is the most resemblant to our proposal. However, in this regard,
we emphasize that the application of the EM algorithm for learning suitable
estimation of parameters is not direct, due to structural dependencies in the
underlying model [18], that requires suitable approximations. To the purpose,
[18] pursues the maximization of a variational approximation of data likelihood,
via Generalized EM [19]. On the contrary, we assume a hierarchical model for
the representation of the data generating process, that allows a more direct and
natural exploitation of the EM algorithm.

In this paper, we build on probabilistic techniques to develop an innovative,
model-based algorithm for the discovery of actual co-clusters in high-dimensional
data. The underlying intuition is that an object tuple can be thought of as the
outcome of the following hierarchical, generative process: firstly pick a distri-
bution over latent clusters; next, choose the associated concepts; eventually,
generate the individual attribute values. An EM-based clustering strategy fits
the probabilistic model of the foresaid generative model to the underlying data.
Precisely, the joint probability distribution over row (i.e. tuple) and column (i.e.
attribute) variables is exploited to initially find tuple clusters. Then, the con-
ditional distribution of attributes over tuples is exploited to discover actual co-



clusters, i.e. for associating concept clusters with tuple clusters. A preliminary
evaluation of our approach and a comparison with consolidated co-clustering
schemes in the literature seem to confirm the validity of our intuition.

The plan of the paper is as follows. Section 2 formally describes the intuition
behind our model-based co-clustering approach. Section 3 discusses the details
of the method employed for learning suitable estimates of model parameters
from the underlying data. An intensive experimental evaluation is described in
section 4, that witnesses the effectiveness of our proposal. Finally, section 4 draws
some conclusions and highlights directions, that are worth further research.

2 Problem Statement and Overview of the Approach

We begin by fixing a proper notation to be used throughout the paper. Data
can be represented in binary format as a boolean incidence matrix D with rows
{y1, . . . , ym} and columns {x1, . . . , xn}, where each entry dij takes values into
the set {0, 1}. The implicit meaning is that tuple xj comprises attribute yi if
and only if dij takes value 1. Let X and Y be discrete random variables ranging
over the sets {x1, . . . , xn} and {y1, . . . , ym}. We are interested in simultaneously
clustering X into K disjoint clusters, and Y into H disjoint clusters. That is,
we aim at finding suitable column and row mappings, respectively defined as
CX : {x1, . . . , xn} �→ {x̂1, . . . , x̂K} and CY : {y1, . . . , ym} �→ {ŷ1, . . . , ŷH}

In our framework, we characterize the co-occurrence matrix in probabilistic
terms, by estimating the joint distribution p(X,Y ) between X and Y . By Bayes’
rule, the distribution can be modeled as p(x, y) = p(y|x)p(x). Model-based clus-
tering methods attempt to optimize the fit between the given data and some
mathematical model. Such methods are often based on the assumption that the
data to be clustered are generated by one of several distributions, and the goal
is to identify the parameters of each. The foundation for probabilistic clustering
is a statistical model called finite mixtures. A mixture is a set of probability
distributions, representing clusters that govern the format for members of that
cluster.

Each cluster has a different distribution. Any particular instance actually
belongs to one and only one of the clusters, whose identity is however unknown.
Moreover, the clusters are not equally likely: there is some probability distribu-
tion that reflects their relative populations. Within a mixture modeling frame-
work, the above components can be described as reported below

p(x) =
K∑

k=1

pk(x)αk p(y|x) =
H∑

h=1

ph(y) ·
K∑

k=1

p(x̂k|x)βh,k

where pk(x) = p(x|x̂k) is the probability of x within cluster x̂k, ph(y) = p(y|ŷh)
is the probability of y within cluster ŷh, αk = p(x̂k) is the probability of cluster
x̂k, and βh,k = p(ŷh|x̂k) is the probability of cluster ŷh given cluster x̂k. As a
consequence, the mixture p(x, y) can be finally modeled as



p(x, y) =
H∑

h=1

ph(y) ·
K∑

k=1

p(x̂k|x)βh,k ·
K∑

k=1

pk(x)αk

=
H∑

h=1

K∑
k=1

K∑
u=1

ph(y)βh,kpu(x)αup(x̂k|x)

(1)

The idea in the above formula is learning latent concepts from the data as
well as a collection of characterizing attribute values for each such a concept. In
particular, each tuple can be seen as a mixture of various concepts, where some
concepts are more or less probable according to the cluster where the tuple fits.
Hence, a data tuple can be thought as the outcome of the following generative
model: firstly pick a distribution over latent clusters; next, choose the concepts
associated and finally generate the individual attribute values.

The clustering problem can be hence reformulated as the problem of esti-
mating the parameters of the distributions involved in the above formula. The
classical Maximum Likelihood (ML) Estimation technique is a way for estimating
the parameters of a distribution based upon observed data drawn according to
that distribution. Let Θ denote a set of parameters and let x, y be a data observed
from the random variables X, Y with probability distribution pX,Y (x, y|Θ), pa-
rameterized by the set of parameters Θ. The key idea in ML estimation is to
determine the parameter Θ for which the probability of observing the outcome
x is maximized. Function L(Θ|X, Y ) = p(X, Y |Θ) is the Likelihood function
and the Maximum Likelihood Estimation of the parameter Θ is the value which
maximizes the likelihood function ΘML = arg maxΘ L(Θ|X, Y ).

In our framework, Θ represents the set of parameters governing pk, ph, αk

and βh,k for each h and k. We adopt a naive assumption here, that is βh,k ∈ {0, 1}
and

∑
h βh,k = 1. As a consequence, ph(y) can be modeled as the probability of

term y within tuple cluster k (that is, ph(y) = pk(y)). This roughly consists in
associating a single concept cluster with each tuple cluster, and in modeling the
probability of an attribute within a tuple cluster. Thus, the set of parameters
Θ involved in the estimation are now represented by sole parameters related to
(tuple) cluster x̂k (i.e., the parameters governing pk(x), pk(y) and αk). Moreover,
the probability distribution can be rewritten as

p(x, y) =
K∑

k=1

K∑
u=1

pk(y)pu(x)αup(x̂k|x) (2)

In particular, by modeling pk(x) by means of a multinomial distribution, the
estimation of the above parameters can be accomplished by means of the tra-
ditional Expectation Maximization algorithm, which is described below. Thus,
we can suppose that xi = {n1

i , n
2
i , . . . , n

m
i }, where nc

i ∈ {0, 1} for each c. A
multinomial distribution models a Bernoulli’s distribution in several outcomes.
It is characterized by a parameter σc, that represents the probability that an
event of class c happens. The multinomial distribution for the generic cluster x̂k



is parameterized by σk
c = pk(yc):

pk(xi) =
m∏

c=1

(σk
c )nc

i

Thus, the model parameter Θ collects every σk
c and αk, for c = 1, . . . , m and

k = 1, . . . ,K.

3 Multinomial Expectation Maximization

The Expectation Maximization(EM ) [12] algorithm is a classical technique for
model-based clustering. Given the dataset and a pre-specified number of clusters,
the algorithm learns, for each instance, the membership probability of each clus-
ter and, for each cluster, its descriptive model, i.e., the parameters that govern
its generative process.

The algorithm requires some initial estimates for the parameters of the mix-
ture model; given such parameters, a single EM iteration provides new parameter
estimates which are proven not to decrease the likelihood of the model. The pro-
cess is repeated until convergence, i.e. the likelihood of the mixture model at
the previous iteration is sufficiently close to the likelihood of the current model.
More precisely, the algorithm proceeds as follows:

1. Initialization: g := 0; Set initial values Θ(0) for the parameter set Θ; compute
Q(g) = log(L(Θ(g)|X,Y )).

2. E step: Use Θ(g) to compute the membership probability p(g)(x̂k|x) of each
object x to each cluster x̂k

3. M step: Update the model parameters Θ(g+1), using values computed in the
E Step; compute Q(g+1) = log(L(Θ(g+1)|X, Y )).

4. If Q(g+1) −Q(g) ≤ ε, stop. Else set g := g + 1 and restart from step 2.

We omit here the formal derivation of the steps which are at the basis of the
EM approach (details can be found in the appendix of an extended version of
this paper [5]). It is worth noticing, however, that the objective of the derivation
is a heuristic method for maximizing the Log-Likelihood function

log(L(Θ|X, Y )) =
∑
i,j

log (p(xi, yj |Θ)) ≈
∑
i,j

zik log

(
K∑

k=1

K∑
u=1

pk(y)pu(xi)αup(x̂k|xi)

)

where zik ∈ {0, 1} is a random variable representing the true cluster gener-
ating the data. The latter term in the equation is transformed, for the matter of
convenience, into

Q(Θ, Θ(g−1)) = E[log(L(Θ|X, Y, Z))|X, Y,Θ(g−1)]

The E and M steps, at the generic iteration g, can be shown to be as follows:



E Step. Working on Q(Θ, Θ(g−1)) yields

p(g)(x̂k|xi) = γ
(g)
ik =

α
(g−1)
k pk(xi|Θ(g−1))∑K

j=1 α
(g−1)
j pj(xi|Θ(g−1))

(3)

M Step. The target of this step consists in finding the best set Θ of parame-
ters that maximizes the likelihood Q(Θ, Θ(g−1)). By mathematical manipu-
lations, we obtain

α(g)
r =

1
n

n∑
i=1

γ
(g)
ir σz(g)

r =
∑n

i=1 γ
(g)
iz (mnr

i + 1)∑n
i=1

∑m
t=1 γ

(g)
iz (mnt

i + 1)

for r = 1, . . . , m and z = 1, . . . , K.

3.1 Parameter Initialization

Although the EM algorithm is guaranteed to converge to a maximum, this is a
local maximum and may not necessarily be the same as the global maximum.
Notice, in particular, that the first iteration needs some initial values for α

(0)
k

and σ
k(0)
c . The better the initial choices, the higher the probability that the

computed local maximum is also a global maximum.
Notice that trivial initializations, such as the one in which every mixing

probability α
(0)
k = 1

K and σ
k(0)
c = σ̂c for each cluster k, do not work, since it poses

the algorithm in an equilibrium (stall) condition. In particular, the side effect
of such initializations is that the parameters (and consequently the likelihood)
assume initial values and do not change throughout the next iterations.

We adopt a different strategy, which combines random sampling and k-
Means. The idea is to select k initial instances x1, . . . , xk from the dataset by
means of a random sampling. Then, the parameters σk

j relative to cluster k can
be initialized by exploiting the values nj

i derived from each instance xi, plus
laplacian smoothing (to avoid the situations where σk

j = 0). The αk instead
are assumed equally probable. Also, the choice of the k initial points can be
strengthened by multiple executions of the k-means algorithm on the data, and
choosing the best centroids for the estimation.

3.2 Estimating the Number of Clusters

The estimation of the correct number of clusters is accomplished by resorting
to a Cross-Validation approach based on a penalized Log-Likelihood principle,
as described below. We aim at finding the model parameters Θ maximizing the
probability p(Θ|X, Y ). By Bayes’ rule,

P (Θ|D) = P (D|Θ)P (Θ)

In logarithmic terms,



log(P (Θ|D)) = log P (D|Θ) + log P (Θ) = log(L(Θ|D)) + log P (Θ)

The idea in the above formula is to counterbalance two opposing require-
ments: the fitting of the data and the complexity of the model. The log-likelihood
function, which measures the fitting of the data to the model, increases when
the value K increases: in particular, it reaches its maximum when K = n.
By the converse, the probability of the model can be encoded by resorting to
the minimum description length principle, which states that simpler models are
preferable to more complex ones. Thus, the probability of a model is inversely
proportional to the number of its parameters (which in turn depend from the
value K). In practice, P (Θ) can be modeled as an exponential distribution w.r.t
the size of Θ, i.e. P (Θ) = αn−km where α is a normalizing factor. Thus,

log(P (Θ|D)) = log(L(Θ|D)) − km log n + log α

The evaluation strategy hence consists in computing log(P (Θ|X, Y )) for each
possible model represented by Θ, and in choosing the model where it is maximal.
In particular, the strategy can be summarized as follows:

1. fix the values Kmin and Kmax;
2. choose the number C of cross-validation trials;
3. for each trial c:

– sample a subset Dtrain from D;
– for K ranging from Kmin to Kmax:
– – compute log(P (ΘK |Dtrain))c;

4. for each K, average the values log(P (ΘK |Dtrain))c over c;
5. choose the value K∗ such that log(P (ΘK∗ |Dtrain))avg is maximal.

4 Experimental Evaluation

Hereafter we analyze the behavior of the framework proposed in the previous
section. The analysis is performed with the main objective of assessing the qual-
ity of the identified structures, i.e. whether the discovered clusters correspond
to the actual homogeneous groups in the dataset.

The effectiveness issues are extensively investigated. Experiments are con-
ducted on both real and synthesized data. The result of each experiment is a
matrix D where rows and columns are associated with their cluster of member-
ship. Hence, a partition of the matrix in blocks where each block represents a
cluster can give us a visual perception of the quality of the clustering result. Ide-
ally, a good clustering would produce a block-triangular matrix, provided that
a suitable sorting of both rows and columns is produced.

The incidence matrix also enables a simple quantitative analysis, aimed at
evaluating the average density within a cluster , and to compare them with the
inter-cluster density (i.e., the average density of tuples and attributes outside of
their cluster of membership).



In addition, for each clustering result we computed the contingency table m,
in which each column represents a discovered cluster, and each row represents
a true class. The term mij corresponds to the number of tuples in D that were
associated with cluster x̂j and actually belongs to an ideal class Ci. Intuitively,
each cluster x̂j corresponds to the partition Ci that is best represented in x̂j

(i.e., such that mij is maximal).
For lack of space, in the following we only report the results on real-life

datasets. The first dataset we analyze is the SMART collection from Cornell1.
This collection consists of 3,891 documents organized into three main sub -
collections: Medline, containing 1033 abstracts from medical journals; Cisi, con-
taining 1460 abstracts from information retrieval papers; Cranfield, containing
1398 abstracts from aeronautical systems papers.

Through preprocessing, we obtained a series of datasets with increasing di-
mensionality, where a fixed dimensionality m was obtained by choosing the m
most frequent terms. The corresponding dataset was then obtained by repre-
senting each document as a binary vector.

x̂1 x̂2 x̂3
MED 1010 3 20
CISI 0 0 1460
CRAN 4 1383 11

(a) Contingency table

x̂1 x̂2 x̂3

ŷ1 9.81 ∗ 10−2 3.59 ∗ 10−2 3.53 ∗ 10−2

ŷ2 3.10 ∗ 10−2 1.24 ∗ 10−1 3.23 ∗ 10−2

ŷ3 2.55 ∗ 10−2 3.00 ∗ 10−2 1.06 ∗ 10−1

(b) Density matrix

(c) Incidence matrix

Fig. 1. Results for the SMART collection (m=500).

x̂1 x̂2 x̂3
MED 18 1015 0
CISI 1460 0 0
CRAN 2 10 1386

(a) Contingency table

x̂1 x̂2 x̂3

ŷ1 7.12 ∗ 10−2 1.92 ∗ 10−2 2.11 ∗ 10−2

ŷ2 1.49 ∗ 10−2 5.75 ∗ 10−2 1.50 ∗ 10−2

ŷ3 2.18 ∗ 10−2 2.08 ∗ 10−2 8.58 ∗ 10−2

(b) Density matrix

(c) Incidence matrix

Fig. 2. Results for the SMART collection (m=1K).

1 ftp://ftp.cs.cornell.edu/pub/smart



x̂1 x̂2 x̂3

MED 15 2 1016
CISI 1460 0 0
CRAN 7 1391 0

(a) Contingency table

x̂1 x̂2 x̂3

ŷ1 1.96 ∗ 10−2 4.79 ∗ 10−3 4.65 ∗ 10−3

ŷ2 8.11 ∗ 10−3 3.39 ∗ 10−2 7.80 ∗ 10−3

ŷ3 2.68 ∗ 10−3 2.54 ∗ 10−3 1.41 ∗ 10−2

(b) Density matrix

(c) Incidence matrix

Fig. 3. Results for the SMART collection (m=5k).

x̂1 x̂2 x̂3

MED 4 1018 11
CISI 0 2 1458
CRAN 1387 0 11

(a) Contingency table

x̂1 x̂2 x̂3

ŷ1 2.16 ∗ 10−2 4.86 ∗ 10−3 5.04 ∗ 10−3

ŷ2 1.39 ∗ 10−3 7.46 ∗ 10−3 1.44 ∗ 10−3

ŷ3 2.10 ∗ 10−3 2.04 ∗ 10−3 9.98 ∗ 10−3

(b) Density matrix

(c) Incidence matrix (inverted)

Fig. 4. Results for the SMART collection (m=10K).

Figures 1, 2, 3 and 4 show the clustering results for increasing values of m.
As we can see, compactness and separability are quite good, as also testified



by the density matrices and contingency tables. Also, the proposed approach
is effective to a large dimensionality in the number of attributes. In particular,
results are quite more robust than those obtained with the ITCC co-clustering
algorithm [7] (an example is reported in figures 5). The latter, indeed, allow high
quality results only by fixing a high number of clusters in the Y dimension.

x̂1 x̂2 x̂3

MED 980 2 51
CISI 0 0 1460
CRAN 1 1390 7

(a) Contingency table

x̂1 x̂2 x̂3

ŷ1 6.97 ∗ 10−4 1.50 ∗ 10−2 2.52 ∗ 10−4

ŷ2 1.30 ∗ 10−2 4.21 ∗ 10−2 1.26 ∗ 10−2

ŷ3 5.36 ∗ 10−3 2.28 ∗ 10−5 6.10 ∗ 10−5

ŷ4 1.48 ∗ 10−2 9.89 ∗ 10−3 3.03 ∗ 10−3

ŷ5 1.06 ∗ 10−2 1.74 ∗ 10−2 2.03 ∗ 10−2

ŷ6 1.33 ∗ 10−2 2.74 ∗ 10−3 6.10 ∗ 10−3

ŷ7 6.72 ∗ 10−5 3.07 ∗ 10−5 6.02 ∗ 10−3

ŷ8 5.05 ∗ 10−3 3.09 ∗ 10−3 1.71 ∗ 10−2

(b) Density matrix

(c) Incidence matrix (inverted)

Fig. 5. ITCC Results for the SMART collection (m=10K).

A further dataset we analyse is Internet Ads., available from the UCI Ma-
chine Learning repository2. The dataset contains 3,279 records and 1,554 boolean
attributes. In addition, three further attributes are ”categorical” in nature (al-
though they are numeric, several values occur frequently). To summarize, the
total number of possible items is 2832. This dataset represents a set of possible
advertisements on Internet pages; each record represents a web page, and the
features encode phrases occurring in the URL, the image’s URL and alt text, the
anchor text, and words occurring near the anchor text. Each record is labelled
either as ’ad ’ or as ’noad ’. The dataset is quite unbalanced, since there are 2,821
’noads’ and 458 ’ads’. Notwithstanding, separability is quite good, as it can be
seen from figure 6. In particular, notice how clusters x̂7 and x̂8 represent the
minority class.

2 http://www.ics.uci.edu/ mlearn/MLRepository.html



x̂1 x̂2 x̂3 x̂4 x̂5 x̂6 x̂7 x̂8 x̂9 x̂10
ad 13 59 17 3 54 8 147 151 6 1
noad 262 917 225 372 247 220 99 37 208 233

(a) Contingency table

x̂1 x̂2 x̂3 x̂4 x̂5 x̂6 x̂7 x̂8 x̂9 x̂10
ŷ1 8.74 ∗ 10−2 9.02 ∗ 10−3 1.11 ∗ 10−2 6.22 ∗ 10−3 6.72 ∗ 10−3 6.94 ∗ 10−3 7.37 ∗ 10−3 8.82 ∗ 10−3 6.29 ∗ 10−3 7.14 ∗ 10−3

ŷ1 3.87 ∗ 10−4 1.48 ∗ 10−2 1.22 ∗ 10−4 3.15 ∗ 10−4 7.27 ∗ 10−4 1.34 ∗ 10−3 1.44 ∗ 10−3 4.09 ∗ 10−4 3.31 ∗ 10−4 4.80 ∗ 10−4

ŷ1 6.43 ∗ 10−3 5.86 ∗ 10−3 1.19 ∗ 10−1 5.71 ∗ 10−3 5.17 ∗ 10−3 2.67 ∗ 10−2 9.24 ∗ 10−3 5.45 ∗ 10−3 4.10 ∗ 10−2 8.97 ∗ 10−3

ŷ1 1.85 ∗ 10−4 3.73 ∗ 10−4 4.86 ∗ 10−5 5.34 ∗ 10−2 1.43 ∗ 10−4 1.16 ∗ 10−3 9.08 ∗ 10−4 1.66 ∗ 10−4 2.01 ∗ 10−4 3.01 ∗ 10−3

ŷ1 3.20 ∗ 10−4 1.47 ∗ 10−3 1.29 ∗ 10−4 3.35 ∗ 10−4 4.14 ∗ 10−2 1.37 ∗ 10−3 1.12 ∗ 10−3 1.43 ∗ 10−3 7.34 ∗ 10−4 1.37 ∗ 10−3

ŷ1 1.41 ∗ 10−3 1.47 ∗ 10−3 4.98 ∗ 10−3 1.74 ∗ 10−3 1.97 ∗ 10−3 6.80 ∗ 10−2 1.51 ∗ 10−3 1.09 ∗ 10−3 1.93 ∗ 10−3 3.39 ∗ 10−3

ŷ1 1.23 ∗ 10−3 1.13 ∗ 10−3 1.27 ∗ 10−4 3.14 ∗ 10−4 1.72 ∗ 10−3 8.77 ∗ 10−4 5.60 ∗ 10−2 6.00 ∗ 10−3 2.63 ∗ 10−4 3.06 ∗ 10−4

ŷ1 1.78 ∗ 10−3 1.57 ∗ 10−3 1.81 ∗ 10−3 2.23 ∗ 10−4 5.37 ∗ 10−3 3.76 ∗ 10−3 9.04 ∗ 10−3 1.22 ∗ 10−1 3.61 ∗ 10−4 3.03 ∗ 10−4

ŷ1 3.34 ∗ 10−4 3.39 ∗ 10−3 2.54 ∗ 10−2 3.50 ∗ 10−4 2.09 ∗ 10−3 4.55 ∗ 10−3 8.55 ∗ 10−4 1.32 ∗ 10−3 1.51 ∗ 10−1 2.98 ∗ 10−3

ŷ1 1.01 ∗ 10−2 9.36 ∗ 10−3 8.92 ∗ 10−3 9.76 ∗ 10−3 1.40 ∗ 10−2 1.19 ∗ 10−2 5.59 ∗ 10−3 2.30 ∗ 10−3 9.87 ∗ 10−3 1.09 ∗ 10−1

(b) Density Matrix

(c) Incidence matrix

Fig. 6. Results for the Internet ads dataset.

5 Conclusions and Future Works

In this paper, we defined a novel EM-based approach to the discovery of co-
clusters in a high-dimensional setting. This exploits the joint probability dis-
tribution over row and column variables associated to the data co-occurrence
matrix, in order to initially find row clusters. Then, the conditional distribution
of attributes over tuples is exploited to discover actual co-clusters, i.e. for associ-
ating concept (i.e. column) clusters with row clusters. We studied the behavior of
our algorithm and compared it against the performance of a well-known ad hoc
co-clustering scheme. The empirical results of a preliminary evaluation show the
effectiveness of our approach and, apparently, suggest that natural co-clusters
can still be discovered by tuning a mono-dimensional clustering strategy.

Still, the proposed approach is based on a naive assumption that tuple clus-
ters are associated with exactly a concept cluster. Although this assumption
seems to work well in practice, it appears nevertheless a strong requirement,
which is hence likely to miss some latent sub-concepts actually holding in the
data. As a future development, we plan to investigate the extension of the pro-
posed framework in order to enable multiple characterizations of a same tuple
cluster, in terms of corresponding associations with as many concept clusters.
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