
RecBoost: A Supervised Approach to Schema Reconciliation

Eugenio Cesario, Francesco Folino, Antonio Locane, Giuseppe Manco, and Riccardo Ortale

ICAR-CNR
Via Bucci 41c

I87036 Rende (CS)
Italy

{surname}@icar.cnr.it

Abstract. In several applicative scenarios, large quantities of data are collected and stored as free
text. In many cases, the information stored has a latent schema consisting of a set of attributes,
that would in principle allow to fit such textual data into an appropriate relational structure. In
this paper, a novel approach for bringing to the surface the implicit attribute schema is proposed.
The basic idea is to subject the available text to a progressive classification, i.e., a multi-stage
classification scheme where, at each intermediate stage, a classifier is learnt that analyzes the tex-
tual fragments not reconciled at the end of the previous steps. Classification is accomplished by
ad-hoc exploitation of traditional association mining algorithms, and is supported by a data trans-
formation scheme which takes advantage of domain-specific dictionaries/ontologies. A key feature
is the capability of progressively enriching the available ontology with the results of the previous
stages of classification, thus significantly improving the overall classification accuracy. An extensive
experimental evaluation shows the effectiveness of our approach on real datasets.

1 Introduction

The wide exploitation of new techniques and systems for generating, collecting and storing data has
made available a huge amount of information. Large quantities of such data are stored as continuous
text. In many cases, this information has a latent schema consisting of a set of attributes, that would in
principle allow to fit such textual data into some field structure, so that to exploit the mature relational
technology for more effective information management. For instance, personal demographic information
typically comprises names, addresses, zip codes and place names, which indicate a convenient organization
for the these kind of data. However, the extraction of structure from textual data poses several challenging
issues, since free text does not necessarily exhibit a uniform representation.

Foremost, the order of appearance of the attributes across the individual lines of text may not be fixed.
In addition, their recognition is further complicated by the absence of both suitable field separators and a
canonical encoding format, which is mainly due to erroneous data-entry, misspelled terms, transposition
oversights, inconsistent data collection and so forth. As a concrete example, common issues in personal
demographic data are the adoption of abbreviations for both proper names and common terms and the
availability of multiple schemes for formatting addresses, phone numbers and birth dates.

Also, distinct records may lack different attribute values, which makes them appear with a variable
structure. Yet, the same data may be fragmented over disparate data sources, which further exacerbates
the aforementioned difficulties.

The notion of Entity Resolution [11, 9, 23],denotes a complex process for database manipulation that
embraces three primary tasks. Schema reconciliation consists in the identification of a common field
structure for the information in a data source. Data reconciliation is the act of discovering synonymies
in the data, i.e. apparently different records that, as a matter of fact, refer to a same real-world entity.
Identity definition groups tuples previously discovered as synonymies, and extracts a representative tuple
for each discovered group.

In this paper, we propose RecBoost, a novel approach to schema reconciliation, that adopts classifica-
tion as an effective mechanism for fragmenting free text into tuples with a common attributes structure.
RecBoost works by performing two macro-steps, namely preprocessing and reconciliation. The former
step is primarily thought for formatting the individual lines of text, with potentially-different encoding
format, into a uniform representation. Domain-specific ontologies and dictionaries are then exploited to
associate each such a token with a label denoting its ontological or syntactic category.

Reconciliation is eventually accomplished in terms of progressive classification, i.e., a multi-stage
classification scheme where, at each intermediate stage, a classifier is learnt from the previous classification
outcome, by analyzing the textual fragments not reconciled yet.

The main contributions of our study are summarized next.

– The joint exploitation of ontology and dictionary-based generalization with rule-based classification,
which allows to reliably associate terms in a free text with a corresponding semantic category. This
allows to fit the textual information into a proper structure with fields for each such a category.

– The introduction of progressive classification, as an effective mechanism for achieving an accurate
schema reconciliation. At each stage of the overall classification process, a suitable rule-based classifier
is learnt from the outcome of the previous stage, thus being specifically targeted at handling with
those terms that have not yet been associated with any semantic category.

– An intensive experimental evaluation on real-world data, that investigates and confirms the effective-
ness of our approach from several facets.

The outline of the paper is as follows. Section 2 introduces the basic notation for the problem we
face, and overviews works from the literature, that are most closely related to our study. Section 3 begins
by covering details on the process adopted to learn a generic rule-based classifier and, then, proceeds to
examine the RecBoost methodology. This is hence exemplified in section 5. In section 6 the results of an
intensive experimental evaluation are presented. Finally, section 7 draws some conclusions and highlights
a number of interesting directions, that are worth further research.

2 Background and Related Work

To formalize the Schema Reconciliation problem, we assume the following basic definitions. An item
domain M = {a1, a2, . . . , aM} is a collection of items. Let s be a sequence a1, . . . , am where ai ∈ M. The
set of all possible sequences is denoted by M∗. In general, an item ak belongs to a sequence s (denoted
by ak∈s) if s = a1, a2, . . . , ak, . . . , an. Moreover, we denote the subsequence a1, a2, . . . , ak−1 as pres(ak),
and the subsequence ak+1, ak+2, . . . , an as posts(ak).

A descriptor R = {A1, . . . , An} is a set of labels. A descriptor corresponds to a database schema, with
the simplification that, for each attribute label Ai, has the same domain M∗ associated. Given a descriptor
R = {A1, . . . , An}, a tuple τR is defined as {A1 : s1; A2 : s2; . . . ; An : sn}, where si is a sequence. As an
example, given the descriptor R = {NAME, ADRRESS, CITY}, a tuple for such descriptor is

{ NAME : Alfred Whilem;
ADDRESS : Salisbury Hill, 3001;
CITY : London }

Thus, our specific problem can be viewed as follows: given a descriptor (database relation) R =
{A1, . . . , An}, and a data set of sequences (free text) S = {s1, . . . , sm}, we want to segment each sequence
si into subsequences s1

i , . . . , s
k
i , such that each token a∈sh

i is associated with the proper attribute Aj .
For example we may want to fit an unstructured collection of personal demographic information

representing names, addresses, zip codes and places, in a proper schema with specific fields for each
category, as shown in the figures below.

s1 Harry Hacker Northern Boulevard 3001 London

s2 C Cracker Salisbury Hill Flushing

s3 Tony Tester Brooklyn Johnson Avenue 2

NAME ADDRESS ZIP CODE CITY

s1 Harry Hacker Northern Boulevard 3001 London

s2 C Cracker Salisbury Hill Flushing

s3 Tony Tester Johnson Avenue 2 Brooklyn

The problem of harmonizing postal addresses affects large organizations like banks, telephone compa-
nies and universities, which typically collect millions of unformatted address records. Since each address
record can in principle be retrieved from a different data source (designed with different purposes), vari-
ations in the way such records are stored are far from unusual. Besides the above described, there are

several further applicative scenarios requiring to takle the schema reconciliation problem. These include
bibliographic records, collections of information about products, medical sheets, etc.

The problem is clearly related with Part Of Speech (POS) Tagging and Shallow Parsing, Wrapping
and, in general, with the problem of extracting structure from free text. The aim of POS Tagging is to
assign labels to speech words that reflect their syntactic category. To this purpose, both statistical [14, 17,
4, 22, 12] and rule-based methods [6, 22, 15, 7] have been proposed in the literature. In practice, the basic
idea behind POS tagging consists in disambiguating phrases by exploiting dictionaries and analyzing the
text context surrounding the candidate entity. However, the approach fails at treating “exceptions”, i.e.,
words that are not included in a dictionary, such as proper names, cities, or addresses. By contrast, these
are exactly the features which characterize our scenario.

As far as wrapping is concerned, most algorithms considerably rely on HTML separator tags, and
on the fact that data represent a regular multi-attribute list [10]. Such approaches are not effective in
domains where data do not necessarily adhere to a fixed schema. Indeed, instances in our problem are
more irregular -the order of fields is not fixed, not all attributes are present, etc. The classification of
an item is better performed according to its neighboring words, absolute/relative position in the string,
numeric/alphanumeric characters, and so on. To our knowledge, few exception are capable of effectively
dealing with such features [20, 1, 8]. For example, WHISK (proposed in [20]) can deal with missing values
and permutation of fields, but it requires a “complete” training set, i.e. a set of examples including all
the possible occurrences of values.

Several recent approaches to schema reconciliation rely on Hidden Markov Models (HMM) [2, 5, 18,
16]. A HMM [19] consists of a set of states and pointed edges among such states. Two particular states
are the initial and the final states: The former has no incoming edges, whereas the latter has no outgoing
edges. Each state of the HMM, with the exception of the initial and final ones, represents a class-label
(an attribute of the relational schema) and is associated with a set of emission probabilities. Precisely,
each state is associated with as many emission probabilities as terms in a dictionary containing all the
terms encountered in the training phase. Moreover, edges among states are associated with transition
probabilities.

Schema reconciliation with HMM can be accomplished by learning the structure of a HMM, and apply-
ing the discovered structure to unknown examples. For example, DATAMOLD [5] achieves classification
by associating each term with all possible states, according to the corresponding emission probabilities.
Since a term may be associated with more than one state, each sequence can in principle be mapped
with multiple paths in the HMM. A path is any edge-connected route between the initial and the final
states. Transition and emission probabilities are then exploited to evaluate the most likely path among
the possible ones, and the terms are then classified accordingly.

The effectiveness of the approaches based on HMM strongly depends on the number of terms appearing
in the training set. Furthermore, there is a significant difference with regard to the approach proposed in
this paper. Indeed, a HMM classifies each sequence of terms in one step, whereas our approach foresees a
segmentation of each sequence into tokens, and then a classification token by token. The latter eases the
application of a pipeline of classifiers, which allow the progressively increase the classification accuracy
on unknown terms.

Specifically, we employ a variant of the Apriori [3] algorithm to find associations among tokens, from
which to filter suitable classification rules. This latter task is attained by adopting a variant of the Clas-
sification Based on Association - Classifier Builder (CBA-CB) algorithms [13]. The main advantage of
splitting the overall classification process into various stages consists in pursuing a progressive classifi-
cation. Practically, a specific classifier is adopted at each stage, which attempts at handling with those
tokens that remained unclassified at the end of the previous step.

3 The RecBoost Methodology

The reconciliation of a set S = {s1, . . . , sm} of sequences with an attribute schema R = {A1, . . . , An}
consists in the association of each token a within the generic sequence s ∈ S with an appropriate attribute
of R.

RecBoost pursues text reconciliation via term generalization. Precisely, two types of generalizations
are involved, namely syntactic and ontological analysis, and contextual generalization. The former aims
at labelling textual tokens with their syntactic or ontological categories. The latter employs knowledge of
the relationships among textual tokens, ontological categories and schema attributes, for assigning each
token to a proper schema attribute.

Fig. 1. An example concept hierarchy

As an example, a token a composed by multiple consecutive digits may be ontologically denoted
as a number. Subsequently, the contextual presence on the same sequence containing a of the further
ontological labels city and street (which directly follow and precede a), may determine the reconciliation
of a with an attribute address of the schema descriptor.

Subsections 3.1 and 3.2 respectively delve into the details of syntactic and contextual analysis.

3.1 Syntactic and Ontological Analysis

RecBoost exploits a user-defined domain ontology in order to preprocess sequences within S. In practice,
a domain ontology is specified as G = 〈L, �,A〉, where

– L is a set of categories,
– � is a precedence relation defined on L, and
– A is a set of rules of the form

if Condition
then Action

Intuitively, L represents a set of ontological concepts, which can be exploited in order to generalize
tokens within a sequence. Such concepts are structured in a concept hierarchy, specified by the � relation.
Figure 1 exemplifies a set of concepts and their hierarchical relation. For example, the concept NUMBER
is related to 3 subconcepts, namely ZIP-CODE, PHONE and CIVIC-NUMBER.

Rules in A are useful to specify background knowledge about the domain under consideration, and
are meant to provide a transformation of a set of tokens appearing in a sequence. Specifically, Condition
specifies a pattern-matching expression defined over the tokens of a sequence, and Action specifies some
actions to take on such tokens. We consider two main actions, here. The first is a labeling action, which
substitute a token (or a set of tokens) with a concept in L. An example rule specifying such an action is

r1:
if a is a four-digits token
then replace a with ZIP-CODE

We can also specify restructuring actions, which operate on a set of tokens by applying basic transfor-
mation operations (such as deleting, merging or segmenting). An example is

r2:
if ai is a four-digits token

and ai+1 is a token containing digits
then merge ai and ai+1 into a new token a

We also assume that some rules can be supported by user-defined dictionaries. For example, the rule

r3:
if a ∈ Dictionary
then replace a with TOPONYM

specifies that each token appearing in the set Dictionary of all known toponyms (such as street, road,
blvd, and so on) can be generalized with the category TOPONYM in L.

By exploiting G, syntactic generalization performs two steps. First, it transforms the original sequences
in S = {s1, . . . , sn} into a new set S′ = {s′1, . . . , s′n}, where each sequence s′i is obtained from si by

applying the rules in A. 1 Second, the available tokens in each sequence are further generalized by an
ad-hoc exploitation of the hierarchy described by the � relation. The exploitation is a direct result of a
cooperation with contextual analysys, which reconciles tokens in S′ as described in the next subsection.

3.2 Contextual Analysis

This steps is meant to associate tokens in S with their corresponding attribute in R. We approach
the problem from a supervised learning perspective. Formally, we assume that there exists a function
λ : M∗ �→ M �→ R that, for each sequence s ∈ M∗, labels a token a into a schema attribute Aj , namely
λs(a) = Aj ∈ R. Hence, the problem can be stated as learning λ from a training set T such that, for each
sequence s ∈ T and for each token ai ∈ s, the label λs(ai) is known.

In order to correctly classify each token ai∈s, information about its context is needed. The “context”
of a generic token ai ∈ s, is the set of all the items preceding and following ai in s. Thus, we hold the
context of ai introducing the notation:

features(ai) = 〈pres(ai), ai , posts(ai)〉

The set T = {〈features(a), λs(a)〉|s ∈ T, a∈s} represents the training set for our classification problem.
The idea beyond contextual analysis is to examine the context features(a) of a each token a within

any sequence s, in order to learn meaningful associations among groups of tokens of S. These associations
can be then exploited to learn a rule-based classifier, that associates each individual token in S with an
attribute in R.

In practice, our objective is to build a classifier C : M �→ (M∪L∪ R)∗ �→ R, specified by rules of
the form

if Condition
then λs(a)=Class

Here, a and s represent, respectively, token and sequence variables. Moreover, Condition represents a
conjunction of terms, and Class represents an attribute in R. Terms in Condition can be specified in
three different forms: either as a = v, v ∈ pres(a) or v ∈ posts(a), where v is any constant in M∪L∪R.

Learning a Rule-based Classifier We here discuss the process of distilling a rule-based classifier from
a training set T , for which the correspondences between tokens in T and labels are known. A holdout
approach is adopted to partition T into a validation set V and an actual training set D = T − V . The
goal is learning a classifier from D that has highest accuracy on V .

In principle, any rule-based classifier could be used here. However, we found that classification based
on association rules is more effective in this setting than, e.g., traditional algorithms based on decision-tree
learning. The intuition behind the above statement is that association rules are better suited to detect
local patterns which hold “locally” on small subsets of D. This is especially true when D is large, and
contains many contrasting specificities across individual sequences. By contrast, decision trees represent
global models, which are hardly able to capture such specificities without incurring into the overfitting
phenomenon. In addition, the intrinsic unstructured nature of the feature space to analyze does not allow
an immediate application of decision-tree learning techniques, whereas association rules mining techniques
naturally fit the domains under consideration.

A variant of the Apriori algorithm [3] is exploited to extract from the explicit representation of token
contexts, D = {〈features(a), A〉|s ∈ D, a ∈ s, A ∈ R}, a set of association rules that meet pre-specified
requirements on their support and confidence values and whose consequents are narrowed to individual
schema attributes. A classifier can hence be built on the basis of such discovered rules, by selecting the
most promising subset, i.e, the subset of rules which guarantees the maximal accuracy. To this purpose,
we adopted the CBA-CB method [13], which allows an effective heuristic search for the most accurate
association rules. Its basic idea is succinctly elucidated next.

A precedence-operator is exploited as a total order among the association rules in D. Formally, given
any two rules ri and rj , ri is said to have a higher precedence than rj , which is denoted by ri ≺ rj , if:
1 Notice that, since multiple matching preconditions can hold for the same set of tokens, rules in A are applied

in a user-defined order. In the above example, r2 has a precedence on r1, since in principle a token containing
4 digits can be interpreted as a zip code if and only if it is not followed by a new number (in which case is has
to be interpreted as an area code in a phone number).

1: Classifier := ∅;
2: CARs := sort(CARs);
3: for all r ∈ CARs do
4: temp := ∅;
5: marked := false;
6: for all t ∈ T do
7: if t satisfies conditions of r then
8: temp := temp ∪{t}
9: marked := true
10: end if
11: end for
12: if marked then
13: insert r at the end of Classifier ;
14: delete all cases in temp from T ;
15: end if
16: end for

Fig. 2. A naive scheme for learning a rule-based classifier

1. the confidence of ri is greater than that of rj , or
2. their confidences are the same, but the support of ri is greater than that of rj , or
3. both confidences and supports are the same, but the antecedent of ri is shorter than rj .

Hence, a classifier can be formed by choosing a set of high precedence rules to cover D. The resulting
classifier can be modelled as:

〈r1, r2, . . . , rn〉
where ri ∈ D, ra ≺ rb if b > a. While considering an unseen case of D, the first rule that covers the case
also classifies it. Clearly, if no rule applies to a given case, the case is unclassified.

The CBA-CB approach assumes that:

1. each case in the training set D is covered by the rule with the highest precedence among those that
can actually cover the case;

2. every rule in the classifier correctly classifies at least one remaining case in D, when it is chosen.

In principle, the fulfillment of both conditions can be guaranteed by a naive search scheme such as the
one in fig. 2. The algorithm starts (row 2) by sorting all the rules in D by their mutual precedence. This
guarantees the fulfilment of condition 1. Hence, the classifier is built by progressively selecting rules from
the resulting sequence of sorted rules. A temporary set temp (row 4) and a boolean value marked (row 5)
are exploited to the purpose of processing each rule r in the sequence. Precisely, the idea is to find cases
in D, that are covered by r and to accordingly update both temp and marked (row 6-11). For each rule
r that correctly classifies at least one case two actions are performed: the insertion of r at the end of the
classifier and the consequent deletion of the cases covered by r itself from D (row 12-15). Clearly, rules
that classify no cases are discarded.

We further acted on the scheme shown in fig. 2 by implementing a post-processing strategy, which
aims at further improving the classification accuracy of the discovered rules. The postprocessing is mainly
composed by attribute and rule pruning. The idea behind attribute pruning consists in removing items
from classification rules, whenever this does not worsen the error rate of the resulting classifier. The
validation set V is exploited to asses classification accuracy. Precisely, let r be a generic classification rule
containing at least two terms in the antecedent. Also, assume that s denotes a generic sequence in V and
that x represents a token within s. The error rx of rule r on x is a random variable

rx =
{

1 if r misclassifies x
0 otherwise

Hence, the overall error of r on V can be defined as follows

E(r) =
1

nV

∑
x,s/x∈s,s∈V

rx

where nV indicates the overall number of tokens within V . A new rule r′ can now be generated by
removing from the antecedent of r any of its terms. We replace r by r′ if two conditions hold, namely
E(r′) < E(r) and the discrepancy E(r) − E(r)′ is statistically relevant. To verify this latter condition,
we exploit the fact that for nV large, the distribution of E(r) approaches the normal distribution. Hence,
we compute a τ% confidence interval [α, β], whose lower and upper bounds are respectively given by

α = E(r) − cτ

√
E(r)[1 − E(r)]

nV

and

β = E(r) + cτ

√
E(r)[1 − E(r)]

nV

where, constant cτ depends on the confidence threshold τ . The above interval represents an estimate for
the actual error of rule r.

Finally, we retain r′ instead of r, if it holds that E(r′) < α. In such a case, we analogously proceed
to attempt at pruning further items from the antecedent of r′. Otherwise, we reject r′.

Rule pruning instead aims at reducing the number of rules in a classifier. As in the case of attribute
pruning, the idea consists in removing rules from a classifier, whenever this does not worsen the accuracy
(on some test set) of the resulting classifier. To this purpose, all rules in a classifier are individually
evaluated on the basis of their precedence order. A generic rule r is removed, if one of the following
conditions holds:

– r does not cover a minimum number of cases in V ;
– the accuracy of r on V is below a minimum threshold;
– the removal of r from the classifier increases its overall accuracy on V .

(a) Training (b) Classification

Fig. 3. Training and Classification phases in the RecBoost methodology.

4 RecBoost Anatomy

Association rules for classification allow to tune the underlying classification model to a local sensitivity.
However, in principle their adoption can yield a high number of unclassified tokens. In a reconciliation
scenario, this is due to the presence of unknown or rare tokens, as well as errors in the text to segment.
The adoption of concept hierarchy alleviates such an effect -and indeed it has already been adopted in tra-
ditional approaches based on HMM [2, 5]. The novelty in the RecBoost reconciliation methodology relies
on a finer cooperation between synthactic/ontological analysis and contextual analysis. The reiteration
of the process of transforming tokens and learning a rule-based classifier allows progressive classification,
i.e., the adoption of multiple stages of classification for more effective text reconciliation. Precisely, a
pipeline C = {C1, . . . , Ck} of rule-based classifiers is exploited to this purpose. Here, the generic classifier
Ci, i = 2, . . . , k, is specifically learnt, as discussed in subsection 3.2, to classify all those tokens, that were
not reconciliated at the end of step i − 1. The length k of the classification pipeline is chosen in order to
achieve an optimal overall classification accuracy.

Let s be a sequence of S and a a token within s. The behaviour of Ci can be formally described
in terms of a partial mapping Ci = (M×G ∪ R)∗ �→ M �→ R. The behavior of Ci relies on a specific
training set Ti, that is obtained from Ti−1 by adding domain information as resulting from the classifier
Ci−1. Given a sequence s ∈ Ti−1, the idea is evaluating the set Xs of tokens in s, that are not covered
by any rule of Ci−1, by enriching the domain information in G with a new set of rules directly extracted
from the set of classification rules in Ci−1. Specifically, each classification rule r ∈ Ci−1

if Condition
then λs(a)=Class

is transformed into a labeling rule r′

if Condition
then replace a with Class

and the new rule r′ is added to the set A of rules available for syntactic analysis. Then, syntactic analysis
is applied to each sequence s in Ti−1, and the resulting transformed sequences are collected in Ti. A new
training set Ti is then generated by collecting, for each sequence s ∈ Ti and each token a ∈ Xs, the
tuples 〈features(a), λs(a)〉. Notice that there is a direct correspondence between the context features(a)
computed at step i and the context computed at step i − 1. Indeed, the new context features(a) follows
from the context of a within Ti−1 by replacing each token b �∈ Xs of s with its corresponding attribute
Ci−1(b).

The above detailed methodology is supported by three main components, namely a preprocessor
(tokenizer), a classifier learner and a postprocessor. The components cooperate both in the training and
in the classification phases, as detailed in fig. 3. In the following, we explain the role played by each of the
aforementioned modules in the methodology. Section 5 provides a running example that better elucidates
the overall classification process.

4.1 Preprocessor

A cleaning step is initially performed by this component, to the purpose of encoding the initial data
sequences of a free text S into a uniform representation. This phases involves typical text processing
operations, such as the removal of stop-words, extra blank spaces, superfluous hyphens and so forth.

The preprocessor then proceeds to split free text into tokens. The main goal of this phase is to
recognize domain-dependent symbol-aggregates (e.g. acronyms, telephone numbers, phrasal construction,
and so on) as single tokens. As an example, aggregates such as ’I B M ’, ’G. m. b. H.’ or ’as well as ’
are more significant as single units, rather than as sequences of words in the text. The identification of
symbol aggregates as well as domain/specific cleaning steps are accomplished by using domain-specific
transformation rules suitably defined in G.

4.2 Classifier Learner

The classifier learner is responsible for producing an optimal set of classification rules, as shown in
fig. 3(a). It consists of four main elements: a generalizer, an association rule miner, a filter for classification
rules and a classifier pruner.

The generalizer performs ontological generalization, by exploiting the labeling rules and the � relation-
ship defined in G. Its role is mainly to enable the discovery of accurate association/classification rules, by
providing an adequate degree of generalization among the data which effectively support the generation
of rules frequent and not trivial. To accomplish this task, the generalizer enables the labeling rules in A.
Next, for each label replacing a token in the sequence, the related concept hierarchy is inspected, and an
adequate degree of generalization for it is detected. The latter operation is performed in cooperation with
the association rule miner, which implements the mining strategy described in [21] and is is targeted at
extracting a complete set of association rules on the basis of given constraints on their minimum support
and confidence.

Finally, the classification-rule filter distillates a classifier from the discovered association rules, and
the classifier pruner attempts to reduce the overall size of a classifier by means of techniques for attribute
and rule pruning. These techniques are detailed in section 3.2.

4.3 Postprocessor

The postprocessor rebuilds the sequences reconciled by a rule-based classifier, at any stage of progressive
classification, by fitting them into a relational structure with schema R, as shown in fig. 3(b). This is
accomplished by interpreting each (partially) reconciled sequence as a structured tuple, and organizing
the tokens that have been so far reconciled as a collection of values for their corresponding schema
attributes. Postprocessing enables progressive reconciliation: at any stage, a classifier is specifically learnt
for dealing with those sequence tokens, that were not reconciliated at the end of the previous stage.

The postprocessor is also used in support of the training phase, as shown in fig. 3(a). There, its main
role is to prepare the i-th training set Ti by generalizing the tokens in each sequence s ∈ Ti−1 via the
application of the rules in Ci−1.

5 An Illustrative Example

PRE WORD POST

- Harry Hacker TOPONYM Boulevard ZIP London

Harry Hacker TOPONYM Boulevard ZIP London

Harry Hacker TOPONYM Boulevard ZIP London

Harry Hacker TOPONYM Boulevard ZIP London

Harry Hacker TOPONYM Boulevard ZIP London

Harry Hacker TOPONYM Boulevard ZIP London -

Fig. 4. Pre-word-post representation

We elucidate the overall RecBoost methodology, by exemplifying the reconciliation of a collection of
personal demographic information, shown in the figure below, in compliance with the attribute descriptor
R = {NAME ,ADDRESS ,ZIP ,CITY }.

s1 Harry Hacker 348.2598781 ”Northern - Boulevard” (3001) London

s2 C. Cracker ... Salisbury Hill, Flushing

s3 Tony Tester Johnson Avenue 2 -Brooklyn- 323-45-4532

In particular, we assume to exploit a dictionary D, containing all known toponyms, and a domain-
specific ontology G = 〈L, �,A〉, such that A consists of the following ontological rules:

r1:
if a is a four-digits token
then replace a with ZIP-CODE

r2:
if a is a token of more that four digits
then replace a with PHONE-NUMBER

r3:
if a is a token of type ddd − dd − dddd,
and d is a digit
then replace a with SSN

r4:
if a ∈ Dictionary
then replace a with TOPONYM

The example data collection is corrupted by noise, i.e. by the absence of a uniform representation
for all of its constituting sequences. Indeed, a comparative analysis of their formatting encodings reveals
that:

– there is a telephone number in sequence s1 that has to be discarded, since it is not expected by the
descriptor R;

– character ’-’ is employed in sequence s1 as separator between the words Northern and Boulevard, that
are in turn delimited by double quotes;

– brackets are exploited to separate the zip-code information in sequence s1;
– three non-relevant dots precede the address information in sequence s2;
– two hyphens in sequence s3 demarcate the word Brooklyn;
– there is a social security number (SSN) in sequence s3 that has to be discarded, since it is not

expected by the descriptor R.

The identification of a uniform representation format for all the individual sequences in the textual
database enables an effective segmentation of such sequences into tokens and, hence, a reliable reconcili-
ation. A preprocessing step is performed to this purpose.

5.1 Preprocessing

At this step, spurious characters are removed from the available data sequences, to the purpose of format-
ting them into a same encoding style. The resulting sequences are subsequently segmented into meaningful
tokens. The output of this step is represented in the figure below.

s1 Harry Hacker 3482598781 Northern Boulevard 3001 London

s2 C Cracker Salisbury Hill Flushing

s3 Tony Tester Johnson Avenue 2 Brooklyn 323-45-4532

The fragmented text is now subjected to a pipeline of rule-based classifiers, that reconciliate groups
of tokens across the individual sequences s1, s2, s3 with the attributes in R.

For the sake of convenience, we assume that two stages of classification allow the accomplishment
of an actual reconciliation. Furthermore, since progressive classification involves a similar processing for
each sequence in the tokenized text, we proceed to exemplify the sole reconciliation of s1.

5.2 Progressive Classification

Progressive classification divides into syntactic and contextual analysis.

Syntactic Analysis This step performs token generalization. Here, the exploitation of the above onto-
logical rules allow the generalization of a number of tokens in s1 as shown below:

Harry Hacker *PHONE* *TOPONYM* Boulevard *ZIP* London

where labels denoting ontological categories are enclosed between stars. To this point, s1 undergoes two
levels of contextual analysis.

First-level Classifier A classifier is generally distilled from the analysis of the relationships among tex-
tual tokens, ontological categories and, also, attributes in the context of each token within the generalized
sequences at hand. In particular, being s1 composed of six tokens, a first-level classifier is learnt from the
six context representations features1

(a) = 〈pres1
(a), a , posts1

(a)〉, shown in fig. 5, where a is any token
of s1.

We suppose that the resulting classifier includes the following classification rules:

if pres1
(a) = ∅ ∧

{∗TOPONY M∗, ∗ZIP∗} ∈ posts1
(a)

then λ(a) = NAME

if a = ∗TOPONY M∗
then λ(a) = ADDRESS

if {∗TOPONY M∗} ∈ pres1
(a) ∧

{∗ZIP∗} ∈ posts1
(a)

then λ(a) = ADDRESS

if a = ∗ZIP∗
then λ(a) = ZIP

if {∗TOPONY M∗, ∗ZIP∗} ∈ pres1
(a) ∧

posts1
(a) = ∅

then λ(a) = CITY

Notice that, at this stage of contextual analysis, s1 does not include attribute labels. Hence, recon-
ciliation takes into account relationships among ontological labels and textual tokens. These enable the
reconciliation of tokens *TOPONYM*, Boulevard, London and *ZIP*, but fail in dealing with *PHONE* and Hacker. In
particular, this latter token is not covered by the rule that classified Harry, since pres1

(Hacker) = {Harry} �= ∅.
At the end of this step of classification, sequence s1 assumes the following form:

[NAME] Hacker *PHONE* [ADDRESS] [ADDRESS] [CITY] [ZIP]

where reconciliated tokens are replaced by their corresponding attribute labels, enclosed between square
brackets.

Second-level classifier Contextual analysis is reiterated to reconciliate those tokens that were not
associated with a schema attribute at the end of the previous step. There are only two such tokens in s1

and, hence, a classifier is learnt from the two context representations below:

PRE WORD POST

[NAME] Hacker *PHONE* [ADDRESS] [ADDRESS] [CITY] [ZIP]

[NAME] Hacker *PHONE* [ADDRESS] [ADDRESS] [CITY] [ZIP]

We here assume that the resulting classifier consists only of the following rule:

if {NAME} ∈ pres(a) ∧
{ADDRESS, ZIP} ∈ postsi

(aij)
then λ(aij) = NAME

Such a rule further generalizes s1 into

[NAME] [NAME] *PHONE* [ADDRESS] [ADDRESS] [CITY] [ZIP]

Notice that *PHONE* is still not reconciliated, since no the classification rule does not apply to it.

5.3 Postprocessor

The postprocessor rebuilds the original sequence s1, by fitting its corresponding tokens in a suitable
structure defined by the descriptor R = {NAME, ADDRESS, ZIP, CITY }.

NAME ADDRESS ZIP CITY

Harry Hacker Northern Boulevard 3001 London

Notice that the structure above exactly complies with R. However, in some cases, it may be useful to add
an extra column NOISE, to the purpose of tracing all the original tokens. This would correspond to the
figure below:

NAME ADDRESS ZIP CITY (NOISE)

Harry Hacker Northern Boulevard 3001 London 3482598781

6 Experimental Evaluation

In this section we describe the experimental evaluation we performed on the proposed methodology.
Experiments were mainly aimed at evaluating the classification accuracy obtained by the progressive
classification methodology nested in the RecBoost approach, and to evaluate its dependency from the set
of parameters which are needed to tune the system.

100 95 90 85 80 75 70 65 60 55 50 45 40
0

20

40

60

80

100

P
er

ce
nt

ag
e

Confidence rate
100 95 90 85 80

0

20

40

60

80

100

Confidence rate
95 90 85 80

0

20

40

60

80

100

Confidence rate

Correctly classified
Misclassified
Unclassified

(a) Original text (b) Generalized text (c) 2nd level Classification

Fig. 5. Comparison of classification results

To this purpose, we tested our system on a real-life demographic database, containing information
about the issue-holders of credit situations in a banking scenario. The dataset consisted of 24,000 se-
quences, with an average of 8 tokens per sequence. We used 4,000 sequences to exploit classification,
and exploited the remaining 20,000 for testing purposes. In summary, the total number of tokens to
exploit for validation was 162,879. The schema to reconcile consisted in the fields Name, Address, Zip,
State/Province, and City.

In an initial set of experiments, we classified the data without exploiting ontologies and multiple
classification stages. In these trials, the support constraint was fixed to 0.5%, with confidence ranging
from 40% to 100%. Figure 5(a) describes the result of classification. Each bar in the graph describes the
percentage of correctly classified tokens, together with the percentages of misclassified and unclassified
tokens. As we can see, an acceptable degree of accuracy is obtained by keeping the confidence rate be
under 85%. By using a confidence value of 40%, the percentage of correctly classified tokens reaches the
93% but all the remaining data are misclassified.

Figure 5(b) describes the accuracy of the classifier with the adoption of a domain-specific concept
hierarchy. The benefits connected with the exploitation of an ontology are evident. It is worth noticing
that, in both the examined cases a confidence rate of 100% guarantees a percentage of misclassified data
which is nearly zero.

A further substantial increase in classification accuracy is obtained with the adoption of progressive
classification. Figure 5(c) describes the result obtained by applying a second-level classifier to the unclas-
sified cases of a previous stage of classification. In detail, the input of the second-level classifier is the
output of the first-stage classifier built by using a support of 0.5% and a confidence of 100%. In both
stages of classification, an ontology is used to support both preprocessor and generalizer. Again, suppport
was set to 0.5% and the confidence value was ranged between 95% and 80%. As shown in figure 5(c),
with a confidence threshold of 95%, the second-level classifier is able to correctly classify 62% of the data
unlabeled in the previous stage, keeping the misclassification rate around 2%. By combining such a result
with the results of the first-level classifier, we obtain nearly the 91% of correctly classified data, less than
1% of misclassified data and nearly the 8% of unclassified data.

In general, a multi-stage classification leads to an increase in the number of correctly classified tokens.
Notice, however that, since each stage of classification introduces a certain amount of misclassified tokens,
the overall misclassification rate is increased. In order to study such an increase rate, figures 6 and 7 show
both the variations in accuracy and in the number of unclassified tokens, using either one, two or three
stages of classification. Here, accuracy is defined as the rate of correctly classified tokens, w.r.t. the total
of classified. The graphics are plotted for different values of confidence and support of the first-level
classifier. (In particular, in figures 6(b) and 7(b), the support is set to 0.5% and a varying confidence,
wherease figures 6(a) and 7(a) exhibit a confidence fixed to 98% and a varying support). Support and
confidence constraints for the other stages are fixed to 0.5% and 98% respectively. As we can see, the

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

99.2

99.4

99.6

99.8

100

1st classifier support
ac

cu
ra

cy

1 level
2 levels
3 levels

(a) Accuracy vs. support threshold

0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1

98.4

98.6

98.8

99

99.2

99.4

1st classifier confidence

ac
cu

ra
cy

1 level
2 levels
3 levels

(b) Accuracy vs. confidence threshold

Fig. 6. Accuracy rate with fixed support/confidence

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

10

15

20

25

30

35

1st classifier support

N
C

 p
er

ce
nt

ag
e

1 level
2 levels
3 levels

(a) Rate of unclassification vs. support
threshold

0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1

10

15

20

25

1st classifier confidence

N
C

 p
er

ce
nt

ag
e

1 level
2 levels
3 levels

(b) Rate of unclassification vs. confidence
threshold

Fig. 7. Unclassification rate with fixed support/confidence

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

50

100

150

200

250

300

350

1st classifier support

nu
m

be
r

of
 r

ul
es

total 1 level

total 2 levels

total 3 levels

average 3 levels

(a) Number of discovered rules vs.
support threshold

0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1

150

200

250

300

350

400

1st classifier confidence

nu
m

be
r

of
 r

ul
es

total 1 level

total 2 levels

total 3 levels

average 3 levels

(b) Number of discovered rules vs.
confidence threshold

Fig. 8. Size of classifiers and average number of rules applied

loss in accuracy is limited, and the gain in terms of unclassification rate is relevant. In particular, the
difference between the exploitance of one and two levels of progressive classification is quite significative.

Since the efficiency of the approach is related to the number of rules to apply, in Figure 8 we study the
number of rules involved in the classification by exploiting either one, two or three stages of classification.
In particular, in figure 8(a) the first level classifier confidence is kept at 98% and the support varies between
0.5% and 5%, whereas in figure 8(b) the first level classifier support is fixed at 0.5% and the confidence
varies between 91% and 100%. In general, a drecrease in the support or the confidence causes an increase
in the overall number of classification rules discovered. However, from experimental evaluations, it emerges
that the average number of rules actually applied in the classification process does not significantly vary.
This is testified by the bold hatched line in both subfigures, which represent such an average value. As
we can see, the number of rules applied fluctuates around 50% of the total number of rules obtained with
maximum support and confidence constraints.

Finally, table 9 shows the confusion matrix obtained by fixing support and confidence respectively
to 0.05% and 98%. As we can see, errors are mainly due to the misclassifications involving the Address
attribute. This is somehow expected, since in principle such an attribute should include the majority of

tokens in a sequence. Notwithstanding, the table exhibits significant values of precision and recall for all
the involved attributes.

Name Address Zip State/Province City Unclassified
Name 51175 287 0 0 5 4822

Address 541 51678 0 0 217 4364
Zip 0 0 12819 0 0 0

State/Province 0 0 0 11374 0 0
City 9 242 0 0 21267 4079

Fig. 9. Confusion matrix on the overall system

7 Discussions and Future Works

The contribution of this study is RecBoost, a novel approach to schema reconciliation, that fragments free
text into tuples of a relational structure with a specified attribute schema. Within RecBoost, the most
salient features are the combination of ontology based generalization with rule-based classification for
more accurate reconciliation, and the adoption of progressive classification, as a major avenue towards
exhaustive text reconciliation. An intensive experimental evaluation on real-world data confirms the
effectiveness of our approach.

Three main directions are worth further research. Precisely, we plan to investigate the development
of an unsupervised approach to the induction of an attribute descriptor from a free text. This would still
allow reconciliation, even in the absence of any actual knowledge about the textual information at hand.

Furthermore, the identification of a fully-automated technique for setting the parameters of progressive
classification, in terms of required classification stages, is a valuable enhancement. Such a facility would
indeed enable to naturally fix the parameters of the system, on the basis of the inherent features of the
text at hand, rather than relying on pre-specified estimates.

Finally, we intend to examine the exploitation of RecBoost in the context of the Entity Resolution
process, to the purpose of properly filling in missing fields and rectifying both erroneous data-entry and
transpositions oversights.

References

1. B. Adelberg. NoDoSE: A Tool for Semi-Automatically Extracting Semistructured Data from Text Documents.
In Proc. ACM SIGMOD Conf. on Management of Data, 1998.

2. E Agichtein and V. Ganti. Mining reference tables for automatic text segmentation. In Proc. ACM SIGKDD
Conf. On Knowledge Discovery and Data Mining, pages 20–29, 2004.

3. R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In Proc. 20th Int. Conf. Very Large
Data Bases, pages 487–499, 1994.

4. D. M. Bikel, S. Miller, R. L. Schwartz, and R. M. Weischedel. Nymble: a high-performance learning name-
finder. CoRR, cmp-lg/9803003, 1998.

5. V. R. Borkar, K. Deshmukh, and S. Sarawagi. Automatic segmentation of text into structured records. In
Proc. ACM SIGMOD Conf. on Management of Data, 2001.

6. E. Brill. A simple rule-based part of speech tagger. In Proc. 3rd Conf. on Applied Natural Language Processing,
pages 152–155, 1992.

7. E. Brill. Transformation-based error-driven learning and natural language processing: A cased study in POS
tagging. Computational Linguistics, 21(4):543–565, 1995.

8. M.E. Califf and R.J. Mooney. Relational learning of pattern-match rules for information extraction. In Proc.
16th Nat. Conf on Artificial Intelligence (AAAI’99), pages 328–334, 1999.

9. M. Cochinwala, S. Dalal, A.K. Elmagarmid, and V. S. Verykios. Record matching: Past, present and future,
2005.

10. S. Flesca et al. Web wrapper induction: A brief survey. AI Communications, 17(2), 2004.
11. L. Gu, R. A. Baxter, D. Vickers, and C. Rainsford. Record linkage: Current practice and future directions.

Technical Report 03/83, CSIRO Mathematical and Information Sciences, 2003.
12. J. Kupiec. Robust part-of-speech tagging using a hidden markov model. Computer Speech and Language, 6,

1992.
13. B. Liu, W. Hsu, and Y. Ma. Integrating classification and association rule mining. In Proc. 4th ACM SIGKDD

Int. Conf. on Knowledge Discovery and Data Mining, pages 80–86, 1998.

14. C.D. Manning and C. Schultze. Foundations of Statistical Natural Language Processing. MIT Press, Cam-
bridge, MA, 1999.

15. L. Marquez, L. Padro, and H. Rodriguez. A machine learning approach to POS tagging. Machine Learning,
39(1):59–91, 2000.

16. A. McCallum, D. Freitag, and F. Pereira. Maximum entropy Markov models for information extraction and
segmentation. In Proc. 17th Int. Conf. on Machine Learning, pages 591–598, 2000.

17. B. Merialdo. Tagging english text with a probabilistic model. Computational Linguistics, 20(2):155–172, 1994.
18. S. Mukherjee and I. V. Ramakrishnan. Taming the unstructured: Creating structured content from partially

labeled schematic text sequences. In Proc. CoopIS/DOA/ODBASE Int. Conf., pages 909–926, 2004.
19. L. R. Rabiner. A tutorial on hidden markov models and selected application in speech recognition. Proc. of

IEEE, 77(2):257–286, 1989.
20. S. Soderland. Learning information extraction rules for semi/structured and free text. Machine Learning,

34:233–272, 1999.
21. R. Srikant and R. Agrawal. Mining generalized association rules. In Proc. 21th Int. Conf. on Very Large

Databases, pages 407–419, 1995.
22. P. Tapanainen and A. Voutilainen. Tagging accurately - don’t guess if you know. In Proc. 4th Conf. on

Applied Natural Language Processing, pages 47–52, 1994.
23. W. E. Winkler. The state of record linkage and current research problems. Technical report, Statistical

Research Division, U.S. Census Bureau, 1999.

