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Mining Unconnected Patterns in Workflows

Gianluigi Greco∗ Antonella Guzzo∗ Giuseppe Manco† Domenico Saccà∗,†

Abstract

Recently, there is a growing interest in endowing Work-
flow Management Systems with advanced mechanism,
based on data mining techniques, for monitoring and
diagnosing workflow executions. Quite relevant in this
context is the analysis of the most characterizing pat-
terns of execution, which may allow to detect the se-
quences of activities typically leading to a success-
ful/unsuccessful termination. The natural representa-
tion of a workflow (and its execution) as a directed
graph, allows to address the problem as a frequent pat-
tern discovery problem on graphs. Thus, some ad-hoc
techniques have been devised for the discovery of fre-
quent connected patterns of execution. On the other
side, the problem of discovering frequent unconnected
patterns has not been addressed yet, despite its rele-
vance to the process of workflow mining: indeed finding
sequences of activities which frequently occur together
although they are not contiguous is crucial to discover
meaningful execution patterns. This paper investigates
the problem of mining unconnected patterns in work-
flows and presents for its solution two algorithms, both
adapting the Apriori approach to the graphical struc-
ture of workflows. The first one is a straightforward
extension of the level-wise style of Apriori whereas the
second one introduces sophisticated graphical analysis
of the frequencies of workflow instances. The exper-
iments show that graphical analysis improves the per-
formance of pattern mining by dramatically pruning the
search space of candidate patterns.

Keywords: Workflow Management, Frequent Patterns
Discovery, Graph Mining.

1 Introduction

A workflow is a partial or total automation of a busi-
ness process, in which a collection of activities must
be executed by humans or machines, according to cer-
tain procedural rules. A Workflow Management Sys-
tem (WfMS) is a set of tools for defining, analyzing and
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managing the execution of workflows. WfMSs repre-
sent the most effective technological infrastructure for
managing business processes in several application do-
mains [6, 17, 3].

There is a growing body of proposals aiming at en-
hancing this technology in order to provide facilities for
the human system administrator while designing com-
plex processes as well as in order to offer an “intelligent”
support in the decisions which have to be done by the
enteprise during the enactment [7, 5, 12, 14]. In such
a context, data mining techniques have proved to be
very effective [16, 4, 15, 1]. In particular, a novel line
of research has been introduced in [8], by investigating
the ability of predicting the “most probable” workflow
execution from the analysis of the information collected
during the enactment. In this perspective, data min-
ing techniques can help the administrator, by looking
at all the previous instantiations (collected into log files
in any commercial system), in order to extract unex-
pected and useful knowledge about the process, and in
order to take the appropriate decisions in the executions
of further coming instances.

The natural representation of a workflow execution
as a directed graph (in which nodes represent activi-
ties, and edges the relationships between such activi-
ties), can in principle allow to address the above men-
tioned problem by exploiting structure mining tech-
niques [18, 19, 13, 10]. However, the adaptation of
such methods to workflow mining results unpractical
from both the expressiveness and the efficiency view-
point. Indeed, generation of patterns with such tradi-
tional approaches does not benefit from the exploitation
of the executions’ constraints imposed by the workflow
schema, such as precedences among activities, synchro-
nization and parallel executions of activities (see, e.g,
[12, 17, 4]). By contrast, specialized algorithms capable
of handling such constraints can significantly outper-
form traditional graph mining approaches, even when
they are suitably reenginered to cope with workflow in-
stances [9].

An example is the algorithm presented in [8], which
exploits the connected structure of the workflow for
finding patterns of execution which have been sched-
uled more frequently by the workflow system. These



structures are called frequent connected patterns (short:
frequent F-patterns) and represent subprocesses whose
frequency of occurrence in a set F of logs is above
a given threshold σ. However, one limitation of the
this algorithm is the focus on connected subgraphs,
which correspond to subprocesses frequently occurring
together and whose dependency relationships can be ex-
plicitly inferred. This makes the proposed approach
eventually incomparable with more general approaches
(such as, e.g., [11]), which would allow the mining of
general patterns of execution.

In this paper, we extend the approach in [8] and study
the problem of discovering correlations among general
patterns of execution in a workflow. In particular, we
focus our attention on unconnected patterns, which are
arbitrary subsets of connected patterns exhibiting no
explicit dependency relationship. Thus, we assume that
a set P of frequent F-patterns is given and we are
interested in discovering whether any of the subsets of
P is frequent as well. This problem, called frequent
unconnected patterns discovery (short: FUPD), occurs
very often in practical scenarios and is crucial for the
identification of the critical subprocesses that lead with
high probability to (un)desired final configurations.

It is worth noting that FUPD has a trivial solution
consisting in the application of a level-wise algorithm
(in the a-priori style) which combines all the uncon-
nected patterns in P and then checks for their frequency.
However, this approach would not benefit from the pe-
culiarities of the workflow graph that can be profitably
used for pruning the search space. We show how the
structure of the workflow together with some elemen-
tary information such as the frequency of occurrences
of elementary activities suffices for pruning the search
space and for deriving an efficient and practically fast
algorithm, called ws∗-unconnected-find.

The rest of the paper is organized as follows. In the
next section, we define the formal model of workflow
and review the problem of mining frequent connected
patterns of execution. In Section 3 we introduce the
problem of mining unconnected patterns, and propose
an a-priori like algorithm for discovering them. Sec-
tion 4 describes how the analysis of the workflow struc-
ture allows to deduce tight bounds on the frequency of
candidate patterns, and consequently to specialize the
a-priori based algorithm. Section 5 discusses of several
experiments that confirm the validity of the approach.
Finally in Section 6 we draw our conclusions by point-
ing to further enhancements to the proposed approach
that are worth future research efforts.
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Figure 1: An example of workflow schema.

2 Workflow Model and Problem Formulation

We begin by formally defining the domain under
consideration. A workflow schema WS is a tuple
〈A,E, a0, AF 〉, where A is a finite set of activities,
E ⊆ (A−AF )×(A−{a0}) is an acyclic relation of prece-
dences among activities, a0 ∈ A is the starting activity,
and AF ⊆ A is the set of final activities. Moreover, A
is partitioned into A∨

in ∪A∧
in ∪A∨

out ∪A∧
out ∪A⊗

out, where
A∨

in are the or-join nodes in A, A∧
in are the and-join

nodes in A, A∨
out are the or-fork nodes in A, A∧

out are
the and-fork nodes in A, and A⊗

out are the exclusive-fork
nodes in A. The tuple 〈A,E〉 is often referred to as the
control graph of WS.

Informally, an activity in A∧
in acts as synchronizer

(also called a join activity in the literature), for it can
be executed only after all its predecessors are completed,
whereas an activity in A∨

in can start as soon as at least
one of its predecessors has been completed. Moreover,
once finished, an activity a ∈ A∧

out activates all its
outgoing activities, a ∈ A∨

out activates some of the
outgoing activities, while a ∈ A⊗

out activates exactly one
outgoing activity.

A workflow schema has a quite natural graphical
representation, by means of a directed acyclic graph.

Example 1. An example of workflow schema is shown
in Figure 1. In this schema, we adopt the graphical
convention of representing nodes in A∨

in with plain
circles and nodes in A∧

in with bold circles; moreover,
nodes in A⊗

out exhibit dashed outgoing arcs, whereas
nodes in A∨

out exhibit dotted arcs and nodes in A∨
out

exhibit bold arcs. Finally, nodes in AF are represented
by means of a double circle. To summarize figure 1
represents a schema WS where A∧

in = {d, c, b, f, e, n, q}
and A∨

in = {a, g, l, i, h,m, o, p}, while A⊗
out = {a, h},

A∧
out = {l, i, g, e, f,m, n, o, q}, A∨

out = {b, c, d}, and
AF = {p}. ⊳

The enactment of a workflow gives rise to an instance,



i.e., to a proper subgraph of the schema which is derived
satisfying the constraints imposed by the instances
included.

Definition 1. Let WS be a workflow schema. Any
connected subgraph I = 〈AI , EI〉 of the control flow
graph is an instance of WS (denoted as WS |= I) if
the following conditions hold:

(i) a0 ∈ AI ,

(ii) AI ∩ AF 6= ∅,

(iii) for each a ∈ AI , |{b | (b, a) ∈ EI}| > 0,

(iv) for each a ∈ AI ∩ A∧
in, {b | (b, a) ∈ E} ⊆ AI ,

(v) for each a ∈ AI∩A∧
out, {b ∈ A∨

in | (a, b) ∈ E} ⊆ AI ,
and

(vi) for each a ∈ AI ∩ A⊗
out, |{b | (a, b) ∈ EI}| ≤ 1 and

|{b | (a, b) ∈ EI}| = 1 if {b ∈ A∨
in | (a, b) ∈ E} 6= ∅,

The set of all instances of WS is denoted by I(WS). ⊓⊔

Example 2. With reference to the schema of fig. 1, the
following are example instances:

a b
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Despite its apparent simplicity, static reasoning on
the control graph of a workflow is ineffective. In-
deed, even simple reachability problems, such as decid-
ing whether an arc is included in some instance (and
consequently whether a workflow admits an instance),
or whether two nodes always occur together are in-
tractable [9]. This motivates the need to resort to data
mining techniques in order to infer properties of the
workflow under consideration on the basis of the ob-
servation of the past history. In particular, we assume
that each instance is properly stored by the workflow
management system in the log file, which can be seen
as a set F = {I1, ..., In} such that WS |= Ii, for each
1 ≤ i ≤ n. Among the instances of F we are interested
in discovering the most frequent patterns of execution
as next defined.

Definition 2. A graph p = 〈Ap, Ep〉 ⊆ WS is a
F-pattern (cf. F |= p) if there exists I = 〈AI , EI〉 ∈ F
such that Ap ⊆ AI and p is the subgraph of I induced by
the nodes in Ap. In the case F = I(WS), the subgraph
is simply said to be a pattern. ⊓⊔

Let supp(p) = |{I|{I} |= p ∧ I ∈ F}|/|F|, be
the support of a F-pattern p. Then, given a real
number minSupp, we consider the following two relevant
problems on workflows:

FCPD: Frequent Connected Pattern Discovery, i.e., find-
ing all the connected patterns whose support is
greater than minSupp.

FUPD: Frequent Unconnected Pattern Discovery, i.e.,
finding all the subsets of connected patterns whose
support is greater than minSupp.

Example 3. Let us consider the control graph of fig. 1
the instances of example 2 and minSupp = 0.3. Then,
the patterns

a d
p1

o p

p2

are frequent connected patterns. Also, notice that none
of the nodes l, i, h is frequent, whereas the subgraph
p = p1 ∪ p2 is frequent (and hence {p1, p2} is a frequent
unconnected pattern). ⊳

2.1 Mining Connected Patterns. In [8], an ap-
proach to FCPD has been devised by resorting to the no-
tion of deterministic closure. The approach is based on
the idea of exploiting the control graph of WS in order to
reduce the number of patterns to generate. To achieve
this aim, we can only consider connected F-patterns
which satisfy both local and global constraints (i.e., they
are deterministically closed). Such graphs are denoted
as weak patterns, or simply w -patterns.

Example 4. Let us consider the control graph of Fig-
ure 1, and the following subgraphs.

q p

p1

g n

h

p2

g n

h

m

p

p3

p1 and p2 are not w-pattern: indeed, q is a synchronizer
(thus triggering the occurrence of both e and f), whereas
g and n are and-forks (thus triggering the occurrence of
both m and p). Notice that p3 is instead a w-pattern,
since both all the constraints over the involved nodes are
satisfied. ⊳
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Working with w -patterns rather than F-patterns is
not an actual limitation, since each frequent F-pattern
is bounded by w -patterns: it can be shown [9] that for
each frequent F-pattern p, there exist a frequent w -
pattern p′ such that p ⊆ p′, and, moreover each weak
pattern p′ ⊆ p is frequent as well. Thus, weak patterns
can be used in a smart exploration of the search space,
by adopting a breadth-first search strategy. Roughly
speaking, frequent weak patterns can be extrated incre-
mentally, by starting from frequent “elementary” weak
patterns (i.e., weak patterns obtained as the determin-
istic closure of single nodes), and by extending each fre-
quent weak pattern using two basic operations: adding
a frequent arc and merging with another frequent ele-
mentary weak pattern. The correctness of the approach
follows from the observation that the space of all con-
nected weak patterns can be traversed by means of the
precedence relation ≺, defined as follows: p1 ≺ p2 if and
only if p2 can be obtained from p1 either adding an arc,
or by merging a node in p1 with an elementary weak
pattern.

Example 5. With reference to the workflow graph of
Figure 1, let us consider the subgraphs shown below:

a

p1

a c

p2

g m

p3

a

c

g

m

p4

a

c

g

m

p5

The subgraphs p1, p2 and p3 are elementary patterns:
indeed, p1 is the deterministic closure of a and p2 is the
deterministic closure of c, whereas p3 can be obtained
from g. Also, notice that p1 ⊂ p2, although p1 6≺ p2.
Neither p4 nor p5 are elementary patterns, as no single
node can generate them. Notice that p2 ≺ p4 and
p3 ≺ p4, since p4 = p2 ∪ p3 ∪ {(c, g)}. Finally, p4 ≺ p5,
since p5 = p4 ∪ {(c,m)}. ⊳

It can be shown [9] that all the connected weak pat-
terns of a given workflow schema can be constructed by
means of chains over the ≺ relation, each of which start-
ing from an elementary w -patterns. As a consequence, it
turns out that the space of all connected weak patterns
is a lower semi-lattice w.r.t. the precedence relation ≺.
The algorithm w-find, reported in Figure 2, exploits an
apriori-like exploration of this lower semi-lattice.

Within the algorithm, EW represents the set of all
elementary w -patterns, and EWp denotes the set of
the elementary weak patterns contained p. More-
over, Compl(EWp) contains all the elementary patterns
which are neither in EWp nor contained in some ele-
ment of EWp. Finally, E⊆ denotes the subset of arcs

Input: A workflow Graph WS, a set F = {I1, . . . , IN} of instances of WS.
Output: A set of frequent F-patterns.
Method: Perform the following steps:

1 L0 := {e|e ∈ EW , e is frequent w.r.t. F};
2 k := 0, R := L0;
3 FrequentArcs := {(a, b)|(a, b) ∈ E⊆, 〈{a, b}, {(a, b)}〉 is frequent w.r.t. F};

4 E
⊆
f

:= E⊆ ∩ FrequentArcs;

5 repeat

6 U := ∅;
7 forall p ∈ Lk do begin

8 U := U ∪ addFrequentArc(p);
9 forall e ∈ Compl(EW p) ∩ L0 do

10 U := U ∪ addFrequentEWPattern(p, e);
11 end

12 Lk+1 := {p|p ∈ U, p is frequent w.r.t. F};
13 R := R ∪ Lk+1;
14 until Lk+1 = ∅;
15 return R;

Function addFrequentEWPattern(p = 〈Ap, Ep〉, e = 〈Ae, Ee〉): w-pattern;
p′ := 〈Ap ∪ Ae, Ep ∪ Ee〉;
if p′ is connected , then return p′ else return addFrequentConnection(p′, p, e);

Function addFrequentConnection(p′ = 〈Ap′ , Ep′ 〉, p = 〈Ap, Ep〉, e = 〈Ae, Ee〉): w-pattern;

S := ∅

forall frequent (a, b) ∈ E
⊆
f

− Ep s.t. (a ∈ Ap, b ∈ Ae) ∨ (a ∈ Ae, b ∈ Ap) do begin

q :=
〈

Ap′ , Ep′ ∪ (a, b)
〉

;

if WS |= q then S := S ∪ {q};
end

return S

Function addFrequentArc(p = 〈Ap, Ep〉): pattern;
S := ∅

forall frequent (a, b) ∈ E
⊆
f

− Ep s.t. a ∈ Ap, b ∈ Ap do begin

p′ := 〈Ap, Ep ∪ (a, b)〉
if WS |= p′ then S := S ∪ {p′};

end

return S

Figure 2: Algorithm w-find(WS,F)

in WS whose source is not an and-fork, i.e., E⊆ =
{(a, b) ∈ E | a ∈ A∨

out ∪ A⊗
out}. At each stage, the

computation of Lk+1 (steps 5-14) is carried out by ex-
tending any pattern p generated at the previous stage
(p ∈ Lk), in two ways: by adding frequent edges in E⊆

(addFrequentArc function); or by adding an elementary
weak pattern (addEWFrequentPattern function).

The above algorithm has many interesting properties.
In particular, it can be shown [9] that it outperforms tra-
ditional graph mining approaches, even when they are
suitably reenginered to cope with workflow instances.

3 Mining Unconnected Patterns

In this paper we shall deal with an efficient solution
for FUDP by assuming that the set C(F) of all the
frequent (w.r.t. minSupp) connected patterns in the
set of instances F has been already computed using
the w-find described in the previous section. It is
worth noting that FUPD has a straightforward solution
consisting in the application of a level-wise algorithm
(in the a-priori style) [2, 11] which combines all the
unconnected patterns in P and then checks for their
frequency. Indeed, further in the section we present
an implementation of Apriori that takes into account
some basic properties of workflows. However, in order
to achieve a larger amount of pruning of the search
space, we need to further exploit the peculiarities of



the workflow graph. To this end, one might think of
combining the dynamic information obtained from the
frequency of single nodes and edges, with the static
information derived from the workflow schema in order
to predict (un)frequent patterns. To get an intuition of
the approach, consider again the schema in Figure 1.
Observe that the activities a and p are frequent but
not necessarily any path from a to p is frequent as well
(this is what happens, e.g., by considering the instances
of example 2 and minSupp = 30%). On the other
hand, as every execution starting from a will eventually
terminate in p, we can then conclude that the frequency
of any pattern containing a is invariant if the pattern is
extended with p. Therefore, we can conclude that nodes
a and p form a frequent unconnected pattern without
looking at the actual co-occurrences in the log files.

Actually, many situations are less evident than the
above trivial case. For instance, by analyzing both the
instances and the graph structure (with the techniques
we shall develop in the paper), we could conclude that
m frequently occurs together with a, since a necessary
condition for the the execution of m is the execution
of a. Incidentally, note also that m and b cannot
co-occur frequently, since the only path connecting
them is below the frequency threshold (and hence
the frequency of m cannot be related to that of b).
In order to systematically study such circumstances,
we develop a graph theoretic approach for predicting
whether two activities are coupled just on the basis
of the workflow structure and of the frequency of the
elementary activities alone.

A Level-Wise Algorithm. We present a first sim-
ple solution to the FUPD problem, achieved by means
of the algorithm ws-unconnected-find shown in Figure
3. The algorithm receives in input the workflow schema
WS and the set C(F) of frequent connected F-patterns,
and returns all the frequent unconnected patterns.

Before detailing the mains steps we need some further
definitions and notations. Given a unconnected pattern
p, we say that p is a starting pattern if it contains the
starting activity of the workflow schema; otherwise, it is
said a terminating pattern. Rather than computing all
the possible unconnected patterns, we limit on starting
patterns and we show how the space of all the connected
starting patterns forms a lower semi-lattice that can be
profitably explored in a bottom-up fashion. In fact,
given two starting patterns r and p we say that r directly
precedes p, denoted by r ≺ p, if there exist a terminating
pattern q such that r = p ∪ q. Moreover, r precedes
p, denoted by r ≺∗ p, if either r ≺ p or there exists
a starting pattern q such that r ≺∗ q and q ≺∗ p.
It is not difficult to see that starting patterns can be

constructed by means of a chain over the ≺ relation.
Such an approach is, in fact, exploited by the algorithm
in Figure 3 that computes all the frequent starting
patterns, by generating at each step k the patterns made
of k distinct unconnected patterns (stored in the set Lk).

The algorithm starts by defining L0 as the set of
frequent patterns in C(F) that contains a0, and C ′ to
be the set of all the terminating connected patterns —
notice that the set is, in fact, C(F) minus the starting
patterns in L0.

Then, at each step it generates a number of can-
didates (stored in U) in the main cycle (steps 4–13).
Each generated pattern p is obtained by the function
UpdateCandidateList, by combining a starting pat-
tern in Lk with a connected terminating pattern q in
C ′ which is not in the set discarded(p). This latter set
is used for optimization purposes. In fact, since we are
interested in unconnected components, given a pattern
p we can compute in advance a set of connected pat-
terns that must not be combined with p, denoted by
discarded(p). This set contains all the patterns which
have a non-null intersection with p, and it is initialized
in the procedure InitializeStructures.

Moreover, notice that each pattern r generated at the
step k is also equipped with two functions, starting(r)
and terminating(r), which store the starting and ter-
minating patterns respectively that have been used for
generating r.

After all the candidates have been computed in
the set U , the function ComputeFrequentPatterns is
invoked (step 6) for filtering the elements in U which
frequently occur in F , thus creating the set Lk+1

containing all the frequent unconnected patterns made
of k + 1 unconnected patterns — notice that in this
implementation this task is simply done by means of a
scan in the logs F .

Finally, the generated starting frequent patterns are
added to the actual result R, and in the steps 8–12
the set discarded is updated for the patterns which are
discovered to be frequent.

The computational cost of the algorithm is related
to the number of unconnected components contained
by the maximal frequent unconnected patterns. This
number indeed influences the number of scans to the
log file.

Proposition 3.1. The algorithm ws-unconnected-find
computes the set of all the unconnected frequent patterns
with at most |C(F)| − |L0| scans in the log file.

The correctness of the algorithm follows from the
following observation.
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Input: A workflow schema WS, a set F of instances of WS, the minimal support minSupp, the set C(F) of frequent
connected F-patterns.

Output: A set of frequent unconnected F-patterns.

Method: Perform the following steps:

1 InitializeStructures();
2 L0 := { p | p ∈ C(F), a0 ∈ p }; //***frequent connected starting patterns
3 k := 0, R := L0; C ′ := C(F) − L0;
4 repeat

5 U := UpdateCandidateList(Lk)
6 Lk+1 := ComputeFrequentPatterns(U);
7 R := R ∪ Lk+1;
8 forall r ∈ U − Lk+1 do begin

9 p := starting(r);
10 forall p′ ∈ Lk+1 s.t. p ⊂ p′ do

11 discarded(p′) := discarded(p′) ∪ {terminating(r)};
12 end

13 until Lk+1 = ∅;
14 return R;

Procedure InitializeStructures;

IS1 forall p ∈ C(F) do

IS2 discarded(p) := { q | q ∈ C(F), p ∩ q 6= ∅ };

Function ComputeFrequentPatterns(U : set of candidates): set of frequent patterns;

CFP1 return { r | r ∈ U, supp(r) > minSupp};

Function UpdateCandidateList(Lk: set of frequent patterns): set of candidate patterns;

UCL1 U := ∅
UCL2 forall p ∈ Lk do //***starting pattern
UCL3 forall q ∈ C ′ − discarded(p) do begin //***terminating pattern
UCL4 r := p ∪ q; starting(r) = p; terminating(r) = q;
UCL5 discarded(r) := discarded(p) ∪ discarded(q);
UCL6 U := U ∪ {r};
UCL7 end;
UCL8 return U ;

Figure 3: Algorithm ws-unconnected-find(WS,F ,minSupp,C(F))

Theorem 3.1. For any two patterns p and q such that
p ∪ q is a frequent unconnected pattern, there exists a
pattern p′ containing both p and the initial activity a0

such that p′ ∪ q is frequent as well.

Informally, the theorem states that, since the starting
activity is executed in each instance, each unconnected
frequent pattern can be extended with the initial activ-
ity. As a consequence, each frequent unconnected pat-
tern can be generated starting from the unconnected
frequent starting patterns.

Example 6. By assuming minSupp = 30% and the set

F of instances of example 2, the patterns {a, b} ∪ p,
a ∪ {m, p} and {a, d} ∪ {o, p}, are maximal unconnected
frequent patterns. ⊳

4 Optimizing Candidate Generation

In this section we present some techniques for efficiently
pruning the search space identified by the level-wise al-
gorithm ws-unconnected-find. Our idea is to exploit the
structure and the information regarding the frequency
of each activity in order to identify, before their actual
testing w.r.t. the logs, those patterns which are neces-
sarily (un)frequent.



In the following, we assume the existence of a set
F of instances of a workflow schema WS. Then, let q
be a not-necessarily connected component of WS with
frequency f(q) and p be a connected component with
frequency f(p) such that q and p are unconnected. Our
aim is to compute as efficiently as possible the number
of instances in F executing both the components p and
q, denoted by fp(q).

Obviously, the most trivial and inefficient way for
computing fp(q) is to make a scan of the log F . How-
ever, we shall show how some proper data structures
and algorithms can be used for effectively identifying a
suitable lower bound and an upper bound for fp(q), de-
noted by lp(q) and up(q) respectively, in some efficient
way not requiring the access to the log.

We next start with the basic situation in which p and
q are patterns each one made of a single activity of WS.

4.1 Computing Frequency Bounds for Activi-

ties. Given an activity a ∈ A, let Ga be the subgraph
of the control flow of WS induced by all the nodes b
such that there is a path from b to a in WS. Note that
all such nodes can be easily determined by reversing the
arcs in WS and computing the transitive closure of a.

The starting point of our approach is to compute
for each node b in Ga, the number of instances in
F = {I1, ..., In} executing both the activities a and b,
denoted by fa(b). As already said, we actually turn
for computing a lower bound la(b) and an upper bound
ua(b) — obviously la(b) ≤ ua(b) ≤ min(f(a), f(b)).

In order to accomplish this task we need some auxil-
iary data structures besides the workflow schema which
are used for storing the occurrences of each activity and
edge (connecting activities) in the log F .

Definition 3. (Frequency graph) Let 〈A,E〉 be
the control flow of a workflow schema WS and let
F = {I1, ..., In} be a set of instances of WS. The fre-
quency graph WSF = 〈A,E, fA, fE〉 is a weighted graph
such that

• fA : A 7→ N maps each activity a to the number of
instances in F = {I1, ..., In} executing it, and

• fE : E 7→ N maps each arc e to the number of
instances in F = {I1, ..., In} containing this arc.

Whenever no confusion arises, given an activity a ∈ A
(resp. an edge e ∈ E), fA(a) (resp. fE(e)) will be
simply denoted by f(a) (resp. f(e)). ⊓⊔

Figure 4 shows the frequency graph associated with
the schema of fig. 1, built by taking into account the set
F of instances described in example 2.
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Figure 4: Frequency graph associated with the schema
of fig. 1.

In order to derive the aforementioned bounds, we first
determine a topological sort 〈a = b1, b2, . . . , bk〉 of the
nodes in Ga of WS - as WS is acyclic a topological sorts
exists for each of its subgraphs including Ga. Then we
proceed as shown in Figure 5. In the step 1, the lower
and upper bounds of the activity a are fixed to the
known value f(a), determined through Ga. Then, each
node bi in Ga is processed according to the topological
sort. In 3, the set of all the activities C(bi) that can
be reached by means of an edge starting in bi and that
are in Ga is computed – note that |C(bi)| 6= 0. Step 4
is responsible for computing the upper bound ua(bi),
whereas steps 5–9 are responsible for computing the
lower bound la(bi). Intuitively, the upper bound ua(bi)
can be computed by optimistically assuming that each
arc outgoing from bi is in some path reaching c. This
justifies the formula of step 4.

Concerning la(bi), observe that each node cj ∈ C(bi)
is executed with a by at least la(cj) instances. There-
fore, we need to know how many of the instances ex-
ecuting bi contribute to la(cj). Two cases arise: (i)
bi ∈ A∨

out∪A∧
out, so the nodes connected to bi may occur

simultaneously within an instance, and (ii) bi ∈ A⊗
out,

then all cj are executed exclusively from each other.
This explains why in the first alternative L∧

1 and L∨
1

are computed by maximizing the contribution of each
cj , whereas in the second alternative the single con-
tributions are summated. Finally, observe that when
cj ∈ A∨

in, it may be not the case that all of the la(cj)
instances execute bi, thus requiring to differentiate the
formulas for L∨

1 and L∧
1 (and, in the same way, for L∨

2

and L∧
2 ).

Observe that the final step in the algorithm possibly
find tighter lower bounds by exploiting the fact that,
given two nodes b and c in Ga if (b, c) ∈ WS, b is an and-
fork node and c is an or-join node, then la(c) ≤ la(b)
the activity b is executed each time the activity c is.

7



Input: An annotated workflow schema WSF , an activity a, the graph Ga and a topological sort 〈a = b1, b2, . . . , bk〉 of the
nodes in Ga.

Output: for each node b ∈ Ga, the values la(b) and ua(b).

Method: Perform the following steps:

1 la(a) := f(a); ua(a) := f(a);
2 forall i = 2..k do begin

3 C(bi) := {b | (bi, b) ∈ E ∧ b ∈ Ga};
4 ua(bi) := min(f(bi), f(a), U), with U =

∑

e=(bi,c)|c∈C(bi)
min(f(e), ua(c)).

5 if bi ∈ A∨
out ∪ A∧

out then

6 la(bi) := min(f(bi), max(L∧
1 , L∨

1 )), with
L∧

1 = maxcj∈C(bi)∩A∧

in
{la(cj)}, and

L∨
1 = maxcj∈C(bi)∩A∨

in
{max(0, la(cj) −

∑

e=(d,cj)∈WS∧ d 6=bi
f(e))}

7 else // case of bi ∈ A⊗
out

8 la(bi) := min(f(bi), L
∧
2 + L∨

2 ), with
L∧

2 =
∑

cj∈C(bi)∩A∧

in

{la(cj)}, and

L∨
2 =

∑

cj∈C(bi)∩A∨

in

{max(0, la(cj) −
∑

e=(d,cj)∈WS∧ d 6=bi
f(e))}

9 end

10 end

11 forall (b, c) ∈ Ga do begin

12 if b ∈ A∧
out and c ∈ A∨

in then

13 la(c) := max(la(c), la(b))
14 endfor

Figure 5: The compute frequency bounds(WSF , a) algorithm

Theorem 4.1. The following properties hold for the
algorithm in Figure 5:

1. The parameters U , L∨
1 , L∨

2 , L∧
1 and L∧

2 are well
defined, i.e., ua(bi) and la(bi) are computed by
exploiting already processed values.

2. For each node bi ∈ Gi, the values la(bi) and ua(bi)
are, respectively, lower and upper bound of the
frequency fa(bi).

3. The procedure can be computed in time O(|Ga|
2).

Example 7. Let us consider the graph Gm induced by
node m:

a

c

g

m

b

The inferred topological sort is 〈m, g, b, c, a〉. Hence,
by applying compute frequency bounds(WSF ,m), we
obtain the following bounds for node m:

lm(g) = 2, um(g) = 2, lm(b) = 1, um(b) = 1,
lm(c) = 1, um(c) = 2, lm(a) = 3, um(a) = 4

According to the these bounds, it is easy to see that
m ∪ a is a frequent unconnected pattern, whereas m ∪ b

is not (even though b and m are frequent patterns). It is
interesting to analyze also the bounds for node o. Given
the dependency graph Go,

a d

l

i

h

o

we obtain uo(a) = uo(d) = 3, uo(x) = 1 for x ∈
{l, i, h}, and lo(y) = 1 for each node y in Go. Thus,
even if d ∪ o is a frequent unconnected pattern, lower
bounds do not help in detecting such pattern without
resorting to the logs. This is essentially due to the fact
that, since d ∈ A∨

out, its lower bound depends from the
lower bounds of h, i and l (each of which belongs to
Go, with frequency 1). ⊳

4.2 Computing Frequency Bounds for Pat-

terns. Let us now turn to the more general problem
of approximating the value of fp(b), for any pattern p
and any activity b, by means of suitable lower and up-
per bounds. Notice that the value fp(b) is the number
of instances in F executing both the component p and
each activity b that precedes one of the activities in p.

To this aim we simply reuse the technique described
in the previous section with some adaptations. Let
INBORDER(p) denote the set of the activities in p having
incoming arcs from WS − p. Let WS(p) be the work-
flow schema derived from WS by adding a new and-join
node, say ap, corresponding to the component p, and
by adding an arc from each node b in INBORDER(p) to a.



In the frequency graph of WS(p) set f(ap) = f(p), and
f(e) = f(p) for each e = (b, ap) ∈ E. Then, the func-
tion compute frequency bounds(WSF , p) is defined as
compute frequency bounds(WS(p)F , ap).

Example 8. Let us consider the pattern p, structured
as shown below:

c

g

m

n

According to the workflow schema shown in fig. 1,
INBORDER(p) = {c, g} (indeed, both nodes have in-
coming arcs from nodes which are not in p). In order to
compute frequency bounds for p, we act on the frequency
graph and connect both g and c with a new dummy node
ap. Thus, in the new frequency graph WS(p), we obtain
Gap

= Gc ∪ Go and hence lower and upper bounds for
each node w.r.t. ap can be computed. ⊳

The correctness of the approach is stated by the
following result.

Theorem 4.2. Let WS be a workflow schema, F
be a set of instances, and p a pattern. For any
activity b, let lap

(b) and uap
(b) be the lower and

upper bound of the occurrence of activity ap to-
gether with b, computed by means of the algorithm
compute frequency bounds(WS(p)F , ap). Then, lap

(b)
and uap

(b) are indeed lower and upper bounds of fp(b).

4.3 Algorithm ws∗-unconnected-find. Once the
frequency bounds for a given pattern (w.r.t. any
activity) are computed, we can face the more general
problem. Let q be a general component of WS with
frequency f(q) and p be a connected component with
frequency f(p) such that q and p are unconnected. A
lower bound and an upper bound of fp(q) are as follows:

• lp(q) = max(0, maxb∈q{lp(b) − (f(b) − f(q))} )

• up(q) = min(f(q),
∑

b∈OUTBORDER(q) up(b) ).

Here, OUTBORDER(p) refers to all the nodes in q having
outgoing arcs in WS−q. The intuition behind the above
formulas is the following. The value up(q) is obtained
by taking into account the contribution of each node b
of q from which there is a path to a node in p. However
we may exclude in the upper bound computation all
internal nodes of q (i.e., those not in OUTBORDER(p)) as
they are always executed together with at least one node
in OUTBORDER(p). Concerning the computation of lp(q),
observe that there are at least lp(b) instances executing
b ∈ q and p. So, as f(b) ≥ f(q), there are at least

lp(b) − (f(b) − f(q)) instances connecting q and p and
executing b. It turns out that a suitable lower bound
is provided by the node exhibiting the maximum such
value.

Theorem 4.3. Let WS be a workflow schema, F be a
set of instances, and p and q two patterns. Then, lp(q)
and up(q) are lower and upper bounds of fp(q).

Generalized upper and lower bounds can be fi-
nally used for pruning the search space of the ws-
unconnected-find algorithm. In fact, if for any two pat-
terns up(q) < minSupp then it is always the case that
p and q never occur frequently together. Conversely, if
lp(q) ≥ minSupp then p and q can be combined into a
pattern that is frequent as well.

Thus, the algorithm ws-disconected-find can be opti-
mized (see Figure 6), by suitably adapting the proce-
dures InitializeStructures, UpdateCandidateList

and ComputeFrequentPatterns. Specifically, the for-
mer also compute the frequency graph and all the fre-
quency bounds for any pattern, by exploiting the above
formulas. The second, instead, verifies the frequency in
the log F only for patterns which cannot be tested with
the frequency bounds only.

5 Experiments and Discussion

In this section we study the behavior of the ws∗-
unconnected-find algorithm, by examining its prun-
ing capability. Experiments are aimed at evaluating
whether the computation of upper and lower bounds
avoids the generation of unnecessary candidate patterns
to check for frequency against the log data.

In our experiments, we use synthesized data, in which
both the workflow schema and the instances are artifi-
cially generated. The generation can be tuned according
to: i) the size of F , ii) the average number d of frequent
connected patterns to use in the generation of frequent
unconnected patterns, and iii) the average number u
of frequent patterns to exploit in the generation of un-
frequent unconnected patterns. Data are generated ac-
cording to the following strategy. First, a set S of d
frequent connected patterns are generated, according to
a fixed frequency threshold; next, iteratively, a pair p, q
of patterns is randomly chosen from S and merged into
r = p ∪ q. p and q are retained from S with a fixed
probability pf , while r is relabeled and added to S. r
is obtained by connecting OUTBORDER(p) to INBORDER(q)
in such a way that p ∪ q is frequent but unconnected.
More in details, let fp and fq be the frequencies of p and
q, respectively. Each node in OUTBORDER(p) is connected
to a new node a ∈ A∨

in ∩ A⊗
out. Similarly, a new node

9



Procedure InitializeStructures;

IS1 WSF := compute frequency graph(WS,F);
IS2 forall p ∈ C (F) do begin

IS3 discarded(p) := { q | q ∈ C (F), p ∩ q 6= ∅ };
IS4 〈lp, up〉 := compute frequency bounds(WSF , p)
IS5 end;

Function ComputeFrequentPatterns(U : set of candidates): set of frequent patterns;

CFP1 LF := { r | r ∈ U, lterminating(r)(starting(r)) ≥ minSupp};
CFP2 LU := { r | r ∈ U, uterminating(r)(starting(r)) < minSupp};
CFP3 return LF ∪ { r | r ∈ U − (LF ∪ LU), r is frequent w.r.t. F };

Procedure UpdateCandidateList(Lk: set of frequent patterns): set of candidate patterns

UCL1 U := 0;
UCL2 forall p ∈ Lk do //***starting pattern
UCL3 forall q ∈ C ′ − discarded(p) do begin //***terminating pattern
UCL4 r := p ∪ q; starting(r) = p; terminating(r) = q;
UCL5 discarded(r) := discarded(p) ∪ discarded(q);
UCL6 lq(p) = max(0, maxb∈p{lq(b) − (f(b) − f(p))});
UCL7 uq(p) = min(f(p),

∑

b∈OUTBORDER(q)
up(b));

UCL8 U := U ∪ {r};
UCL9 end;
UCL10 return U ;

Figure 6: The ws∗-unconnected-find(F ,WS,minSupp,C(F)) algorithm

b ∈ A∨
in∩A⊗

out is connected to each node in INBORDER(q).
fr is then set to max(fp, fq), and a connection between
a and b is set by adding at most n = min(fp, fq) unfre-
quent nodes to r, and by connecting a and b by means
of paths traversing such nodes. Further nodes can be
connected either to a or b in order to retain frequencies.

Unfrequent unconnected patterns are built, starting
from frequent (either connected or unconnected) pat-
terns according to a similar strategy. Two frequent
patterns p and q randomly chosen from S generate
an unfrequent unconnected pattern r by connecting
OUTBORDER(p) and INBORDER(q) with exactly one edge
exhibiting a low frequency. Further nodes are added and
connected either to OUTBORDER(p) or to INBORDER(q) in
order to retain frequencies. The resulting graph r still
has fr = max(fp, fq), but p∪ q has frequency 1. Again,
p and q are retained into S with a fixed probability pu,
while r is added to S.

The u and d parameters influence the number of
frequent and unfrequent unconnected patterns to be
generated. Starting from a set d of connected patterns,
unconnected frequent patterns are generated until S
reaches size u. thus, at the end of this step S contains
u components, each of which composed by several
unconnected frequent patterns. These components are

used to iteratively generate unfrequent unconnected
patterns, until a single graph is obtained. In order to
limit the growth of the graph, pu and pf are mantained
relatively low (tipically, pf = pu = 0.2). Finally, the
desired instaces are generated from the graph, by taking
into account the frequency requirement of each node and
edge.

On the basis of the above described generation pro-
cedure, we can expect that, the larger the difference
between d and u, the higher is the number of uncon-
nected frequent patterns contained within synthesized
data. On the other side, the lower is the difference, the
higher is the number of unconnected unfrequent pat-
terns. It is worth noticing that the workflow topology
(number of nodes and node connectivity) is directly in-
fluenced by the above parameters. At each step, the
generation of a new component introduces new nodes,
and the degree of each node in the border of the in-
volved components is increased. For example, by fixing
d = 15 and ranging u from 2 to 14, we obtain work-
flow schemas whose size ranges from 45 to 90 nodes and
from 1300 to 5000 edges. Moreover, by ranging d from
10 to 40 we obtain schemas whose size ranges from 30
to 400 nodes, and from 500 to 105 edges. Notice also
that the frequency of each unconnected frequent pat-
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Figure 7: Performance Graphs.

tern is related to the number of unfrequent components
and the number of desired total instances. Indeed, if u
is the desired number of frequent unconnected patterns
to compose infrequently, the number of instances in F
necessary to compose them with frequency at least f is
|F| ≈ u × f .

In a first set of experiments, we evaluated the ra-

tio f = ncc/ncp between the number ncc of candi-
date patterns checked against the logs and the total
number ncp of candidate patterns. Low values of f
represent a higher pruning capability of the algorithm
ws∗-unconnected-find w.r.t ws-unconnected-find. Fig-
ure 7(a) shows the behavior of f for d = 10, minSupp =
5% and increasing values of F and u. As we can see, f
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is quite low, except when u = 8. Figures 7(c)and 7(d)
exhibit the number of unfrequent and frequent uncon-
nected patterns discovered by resorting to upper and
lower bounds, respectively.

Figure 7(b) exhibits the ratio f for increasing val-
ues of minSupp and u, when |F| = 1.000 and d = 15.
Peaks within the graphs are mainly due to the fact that
we are mining unconnected components: at low sup-
port values, patterns are mined as frequent connected
(i.e., the frequency of paths connecting the components
is greater than the given threshold). As soon as sup-
port threshold increases, frequencies of paths tend to
decrease, and hence a higher number of unconnected
frequent patterns is detected by the algorithm. Despite
of these irregularities, we can notice that increasing val-
ues of u influence the pruning ability. In particular, by
figures 7(e) and 7(f) we can see that, with high values
of u, upper bounds provide substantial pruning ability.

More in general, upper bounds are better in pruning,
as also demonstrated by figures 8(a) and 8(b). In these
graphs, the number of pruned unfrequent and frequent
patterns is shown for increasing values of minSupp and
d, with u fixed to 2 and F to 1.000. Interestingly, lower
bounds are quite effective at high values of minSupp,
which guarantee several disconnections among frequent
patterns.

As a final remark, it is worth mentioning that upper
bounds tend to be effective in the first steps of the
algorithm (i.e., in the computation of Lk for low values
of k), whereas lower bounds effectiveness distributes
throughout the entire execution of the algorithm. More
extensive graphical analysis, omitted here for lack of
space, gives evidence of the claim.

6 Conclusions

In this paper we have addressed the problem of mining
frequent unconnected workflow patterns. We have
developed a graph theoretic approach for predicting
whether activities in a workflow are coupled in the
executions, on the basis of the workflow structure and
of the frequency of the elementary activities alone. The
approach has been adopted in a level-wise algorithm for
mining frequent patterns, and revealed as a powerful
tool for pruning the search space of candidate patterns.

We conclude by sketching some directions of future
research. The models proposed in this paper and in [8]
are essentially propositional models, for they assume a
simplification of the workflow schema in which many
real-life details are omitted. However, we believe that
the models can be easily updated to cope with more
complex constraints, such as time constraints, pre-

conditions and post-conditions, and rules for exception
handling. Furthermore, we believe that many of the
observations we exploit in the paper can be used for
performing similar optimizations in different contexts
in which the model of the data is assumed to be a
graph [13, 11, 20].
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