
	

	

	

Consiglio Nazionale delle Ricerche
Istituto di Calcolo e Reti ad Alte Prestazioni

	

	

	

	

	

	

	

	

	

	

	

	

Effective Incremental
Clustering for Duplicate

Detection in Large Databases

	

	

	

	

	

Francesco Folino1, Giuseppe Manco1,
Luigi Pontieri1

	

	

	

	

	

	

	

	

	

	

	

	

	

RT-ICAR-CS-05-05 Ottobre 2005
	

	

	

	

	

	

	

	

	

	

	

Consiglio Nazionale delle Ricerche, Istituto di Calcolo e Reti ad Alte Prestazioni (ICAR)
– Sede di Cosenza, Via P. Bucci 41C, 87036 Rende, Italy, URL: www.icar.cnr.it
– Sezione di Napoli, Via P. Castellino 111, 80131 Napoli, URL: www.na.icar.cnr.it
– Sezione di Palermo, Viale delle Scienze, 90128 Palermo, URL: www.pa.icar.cnr.it

	

	

	

	

	

	

	

	

Consiglio Nazionale delle Ricerche
Istituto di Calcolo e Reti ad Alte Prestazioni

	

	

	

	

	

	

	

	

	

	

	

Effective Incremental
Clustering for Duplicate

Detection in Large
Databases

	

Francesco Folino1, Giuseppe Manco1,

Luigi Pontieri1

	

	

	

	

	

	

	

	

Rapporto Tecnico N.:
RT-ICAR-CS-05-05

Data:
Ottobre 2005

	

	

	

1 Istituto di Calcolo e Reti ad Alte Prestazioni, ICAR-CNR, Sede di Cosenza, Via P.
Bucci 41C, 87036 Rende(CS)

	

I rapporti tecnici dell’ICAR-CNR sono pubblicati dall’Istituto di Calcolo e Reti ad Alte
Prestazioni del Consiglio Nazionale delle Ricerche. Tali rapporti, approntati sotto l’esclusiva
responsabilità scientifica degli autori, descrivono attività di ricerca del personale e dei
collaboratori dell’ICAR, in alcuni casi in un formato preliminare prima della pubblicazione
definitiva in altra sede.

Effective Incremental Clustering for Duplicate
Detection in Large Databases

Francesco Folino, Giuseppe Manco, Luigi Pontieri

ICAR-CNR
Via Bucci 41c

I87036 Rende (CS) - Italy
e-mail: {ffolino,manco,pontieri}@icar.cnr.it

Abstract. We propose an incremental algorithm for discovering clusters
of duplicate tuples in large databases. The core of the approach is the
usage of a suitable indexing technique which, for any newly arrived tuple
t, allows to efficiently retrieve a set of tuples in the database which are
mostly similar to t, and which are likely to refer to the same real-world
entity that t is associated with. The proposed indexing technique is based
on a hashing approach, which tends to assign objects with high similarity
to the same buckets. Empirical and analytical evaluation demonstrates
the effectiveness of the proposed method in terms of performance, at the
cost of limited accuracy loss.

1 Introduction

Recognizing similarities in large collections of data is a major issue in the context
of information integration systems. An important challenge in such a setting is to
discover and properly manage duplicate tuples, i.e., syntactically different tuples
which are actually identical from a semantical viewpoint, for they referring to
the same real-world entity. There are several application scenarios involving this
important task. A typical example consists in the reconciliation of demographic
data sources in a data warehousing setting. Names and addresses can be stored
in rather different formats, thus raising the need for an effective reconciliation
strategy which could be crucial for decision making. In such cases the problem is
the analysis of a (typically large) volume of small strings, in order to reconstruct
the semantic information on the basis of the few syntactic information available.
Consider, e.g., a banking scenario, in which the main interest is to rank the credit
risk of a customer by looking at the past insolvency history. Since information
about payments may come from different sources, each of which using a possibly
different format for storing the data, de-duplicating demographic tuples is crucial
in order to correctly monitor customer behavior.

In such application scenarios, tuples, usually coming from legacy systems,
are represented by (small) sequences of strings, and no typing information is
available. Thus, by assuming that each possible string represents a dimension
along which the information contained in a tuple can projected, tuples represent
a small informative content in a high-dimensional space.

In the literature, the problem of tuple de-duplication has been dealt with
mainly from an accuracy viewpoint, by taking care to the minimization of incor-
rect matchings: false positives (i.e., object recognized as similar which actually
do not correspond to the same entity) and false negatives (i.e., objects corre-
sponding to the same entity but which are not recognized as similar). However,
efficiency and scalability issues do play a predominant role in many application
contexts where large data volumes are involved, especially when the object-
identification task is part of an interactive application, calling for short response
times. Consider again the banking scenario: data collected on a daily basis typi-
cally consists of 500,000 instances, representing credit transactions performed by
customers throughout the various agencies. In such a case the näıve solution of
comparing all database instances in a pairwise manner, according to some given
similarity measure, is clearly impractical. For example, for a set of 30,000,000
tuples (i.e., data collected during a 2 months-monitoring), this näıve method
would require O(1015) (a quadrillion) comparisons. This is clearly infeasible.

In general, the large volume of involved data imposes severe restrictions on the
design of data structures and algorithms for data de-duplication, and disqualifies
any approach requiring quadratic time in the database size, or producing many
random disk accesses and continuous paging activities. Thus, in this paper our
main objective is to devise a scalable method for duplicate detection that can be
profitably applied to large databases. We approach the problem from a clustering
perspective: given a set of tuples, our objective is to recognize subsets (clusters)
of tuples such that intra-cluster similarity is high, and inter-cluster similarity is
low. Three main features make the problem at hand significantly different from
traditional approaches:

– tuples are represented as (small) sequences of tokens, where the set of pos-
sible tokens is high;

– the number of clusters is too high to allow the adoption of traditional clus-
tering techniques, and

– the streaming (constantly increasing) nature of the data imposes linear-time
algorithms for clustering.

The solution we propose essentially relies on an efficient technique for dis-
covering, in an incremental way, all clusters that contain duplicate tuples. The
core of the approach is the usage of a suitable indexing technique which, for any
newly arrived tuple t, allows to efficiently retrieve a set of tuples in the database
which are likely mostly similar t, and hence are expected to refer to the same
real-world entity associated with t. The proposed indexing technique is based
on a hashing scheme, which tends to assign objects with high similarity to the
same buckets.

We exploit a refined key-generation technique which, for each tuple under
consideration, guarantees a controlled level of approximation in the search for
the nearest neighbors of such a tuple. To this purpose, we resort to a family of
Locality-Sensitive hashing functions [1–3], which are guaranteed to assign any
two objects to the same buckets with a probability which is directly related to

their degree of mutual similarity. Notably, with the help of an empirical evalua-
tion carried out on synthesized and real data, we can asses that the hashing-based
method allows to achieve effective on-line matching, at the expense of limited
accuracy loss.

Notice that the approach proposed in this paper is a substantial improvement
of the proposal in [4]. There, we adopted an indexing scheme tailored to a set-
based distance function, and the management of each tuple was faced at a coarser
granularity. This paper extends and improves that proposal in both effectiveness
and efficiency, by allowing for a direct control on the degree of granularity needed
to properly discover the actual neighbors (duplicates) of a tuple.

2 Problem statement and overview of the approach

In the following we introduce some basic notation and preliminary definitions.
An item domain M = {a1, a2, . . . , am} is a collection of items. We assume m
to be very large: typically, M represents the set of all possible strings available
from a given alphabet. Moreover, we assume that M is equipped with a distance
function distM(·, ·) : M ×M 7→ [0, 1], expressing the degree of dissimilarity
between two generic items ai and aj .

A tuple µ is a subset of M. An example tuple is

{Alfred, Whilem, Salisbury, Hill, 3001, London}

representing registry information about a subject. Notice that, a more appro-
priate representation [4] can take into account a relational schema in which
each tuple fits. For example, in the above schema, a more informative setting
requires to separate the tuples into the fields NAME, ADDRESS, CITY, and to as-
sociate an itemset to each field: µ[NAME] = {Alfred, Whilem}, µ[ADDRESS] =
{Salisbury, Hill, 3001}, µ[CITY] = {London}. For ease of presentation, we
shall omit such details: the results which follow can be easily generalized to such
a similar context.

We assume that the set of all tuples is equipped with a distance function,
dist(µ, ν) ∈ [0, 1], which can be defined for comparing any two tuples µ and
ν, by suitably combining the distance values computed through distM on the
values of matching fields.

The core of the Entity Resolution problem [4] can be roughly stated as the
problem of detecting, within a database DB = {µ1, . . . , µN} of tuples, a suitable
partitioning C1, . . . , CK of the tuples, such that for each group Ci, intra-group
similarity is high and extra-group similarity is low. For example, the dataset

µ1 Jeff, Lynch, Maverick, Road, 181, Woodstock

µ2 Anne, Talung, 307, East, 53rd, Street, NYC

µ3 Jeff, Alf., Lynch, Maverick, Rd, Woodstock, NY

µ4 Anne, Talug, 53rd, Street, NYC

µ5 Mary, Anne, Talung, 307, East, 53rd, Street, NYC

can be partitioned into C1 = {µ1, µ3, µ5} and C2 = {µ2, µ4}.

This is essentially a clustering problem, but it is formulated in a specific sit-
uation, where there are several pairs of tuples in DB that are quite dissimilar
from each other. This can be formalized by assuming that the size of the set
{〈µi, µj〉 | dist(µi, µj) ' 1 } is O(N2): thus, we can expect the number K of
clusters to be very high – typically, O(N).

A key intuition is that, in such a situation, it suffices to compare few “close”
neighbors of a tuple in order assign it to the appropriate cluster. Therefore,
cluster membership can be detected by means of a minimal number of compar-
isons, by considering only some relevant neighbors for each new tuple, efficiently
extracted from the current database through a proper retrieval method. More-
over, we intend to cope with the clustering problem in an incremental setting,
where a new database DB∆ must be integrated with a previously reconciled one
DB. Practically speaking, the cost of clustering tuples in DB∆ must be (almost)
independent of the size N of DB. To this purpose, each tuple in DB∆ is asso-
ciated with a cluster in P, which is detected through a sort of nearest-neighbor
classification scheme.

Algorithm 1 summarizes our solution to the data reconciliation problem. No-
tably, the clustering method is parametric w.r.t. the distance function used to
compare any two tuples, and is defined in an incremental way, for it allowing to
integrate a new set of tuples into a previously computed partition. In fact, the
algorithm receives a database DB and an associated partition P, besides the set
of new tuples DB∆; as a result, it will produce a new partition P ′ of DB∪DB∆,
obtained by adapting P with the tuples from DB∆.

In more detail, for each tuple µi in DB to be clustered, the neighbors of µi

are retrieved by means of procedure kNearestNeighbor, which performs a
search for the k most prominent neighbors with a bounded range δ and using
µi as query object. The cluster membership for µi is determined by calling the
MostLikelyClass procedure, which estimate the most likely cluster among the
ones associated with the neighbors of µi. Such an estimation is carried out via a
voting strategy, where each neighbor µj of µi votes for the cluster it belongs to,
by adding a contribution 1

dist (µi,µj)
to the score of its cluster. The score of each

cluster is normalized by dividing it by the number of tuples that voted for the
cluster; tuple µi is then assigned to the cluster receiving the highest normalized
score, provided that this is greater than a given threshold – in our usual setting
we use 0.5 for the threshold. Otherwise, µi is estimated not to belong to any of
the existing clusters with a sufficient degree of certainty, and hence it is assigned
to a newly generated cluster.

Procedure Propagate is meant to scan the neighbors of µi in order to possibly
revise their cluster memberships, since in principle they could be affected by the
insertion of µi. In particular, for each tuple µj in its input set, we estimated
again, by means of MostLikelyClass, the cluster that µj best fit to; if it does
not coincide with the cluster actually containing µj , the membership of µj is
updated accordingly, and procedure Propagate is recursively applied to the
neighbors of µj . In principle, this task might be iterated over each reassigned
tuple, and could then be of linear complexity w.r.t. the size of DB. However,

Generate-Clusters(P,DB∆,k,δ)
Output: A partition P ′ of DB ∪ DB∆;
1: P ′ ← P; DB′ ← DB;
2: Let P ′ = {C1, . . . , Cm} and DB∆ = {µ1, . . . , µn};
3: for i = 1 . . . n do
4: neighbors ← kNearestNeighbor(DB′, µi, k, δ);
5: Cj ←MostLikelyClass(neighbors,P ′);
6: DB′ ← DB′ ∪ {µi};
7: if Cj = ∅ then
8: create a new cluster Cm+1 = {µi};
9: P ′ ← P ′ ∪ {Cm+1};
10: else
11: Cj ← Cj ∪ {µi};
12: Propagate(neighbors,P ′);
13: end if
14: end for

Propagate(S,P)
P1: for all τ ∈ S do
P2: neighbors ← kNearestNeighbor(DB, τ, k);
P3: C ←MostLikelyClass(neighbors,P);
P4: if τ 6∈ C then
P5: C ← C ∪ {τ};
P6: Propagate(neighbors,P);
P7: end if
P8: end for

Fig. 1. Clustering algorithm

in typical Entity Resolution settings, where clusters are quite distant from each
other, the propagation affects only a reduced number of tuples, and ends in a
low number of iterations.

Further details on the clustering scheme sketched above can be found in [4].
What is important to remark here is that the complexity of Algorithm 1, given
the size N of DB and M of DB∆, depends on the three major tasks: the search
for neighbors (line 4, having cost n), the voting procedure (line 5, with a cost
proportional to k), and the propagation of cluster labels (line 12, having a cost
proportional to n, based on the discussion above). As they are performed for
each tuple in DB∆, the overall complexity is O(M(n + k)). Since k is O(1), it
follows that the main contribution to the complexity of the clustering procedure
is due to the cost n of the kNearestNeighbor procedure.

Therefore, the main efforts towards computational savings are to be addressed
when designing an efficient method for neighbor searches. Our main goal is doing
this task by minimizing the number of accesses to the database, and avoiding
the computation of all pair-wise distances.

2.1 Optimizing the Search for Neighbors

The retrieval of neighbors in the above described clustering algorithm can be
performed by resorting to an indexing scheme that supports the execution of
similarity queries, and can be incrementally updated with new tuples.

We concentrate on hashing schemes here. A basic idea is to map any tuple
to a proper set of features, so that the similarity between two tuples can be
evaluated by simply looking at their respective features. Under this perspective,
the role of the hashing method is to maintain the association between tuples and
the corresponding features, so that the neighbors of a tuple µ can be efficiently
computed, by simply retrieving the tuples that appear in the same buckets as µ.

To this purpose, a hash-based index structure, simply called Hash Index, is
introduced, which consists of a pair H = 〈FI,ES〉, where:

– ES, referred to as External Store, is a storage structure devoted to manage
a set of tuple buckets through an optimized usage of disk pages: each bucket
gathers tuples that are estimated to be similar to each other, for they sharing
a relevant set of properly defined features;

– FI, referred to as Feature Index, is an indexing structure which, for each
given feature s, allows to efficiently recognize all the buckets in ES that
contain tuples exhibiting s.

Fig. 2 illustrates how such an index can be exploited for performing nearest-
neighbor searches, and then supporting the whole clustering approach previously
described. The algorithm works according to two main parameters: the number
k of desired neighbors, and the maximum allowed distance δ from the query
tuple µ. It is worth noticing that both the indexing of a tuple and the retrieval
of its neighbors are based on generating relevant features for the tuple itself.

The algorithm uses two auxiliary structures, namely the set S of features to
be generated, and the set N of neighbor tuples to return as an answer. For
convenience, tuples in N are sorted according to their distance from the query
tuple µ.

Lines 3-16 specify how the set N is filled. First, a feature x is extracted
(line 4), and the FI.Search method is exploited to retrieve the logical address
of the bucket associated with x. For each of these buckets lines 9-13 iteratively
extract the tuples it contain (using ES.Read) and try to insert them into N .
Specifically, a tuple ν can be inserted within N in two cases: (i) either the size
of N does not exceed its capacity, or (ii) N capacity is k, but it contains an
element whose distance from µ is higher than the distance between ν and µ –
actually, N .MaxDist() here denotes the maximum distance between µ and any
tuple in N . If needed, the element least similar to µ is removed from N , in order
to make room for ν. As a side effect, the algorithm updates FI and ES, in order
to correctly refer to the novel tuple µ.

2.2 Näıve Hashing based on Exact Matching

A major point in the proposed approach is the choice of features for indexing
tuples, which will strongly impact on the effectiveness and efficiency of the whole

kNearestNeighbors(DB,µ,k,δ)
1: Let S = {s | s is a relevant feature of µ };
2: N ← ∅;
3: while S 6= ∅ do
4: x = S.Extract();
5: h ← FI .Search(x);
6: if (h = 0) then
7: h ← FI .Insert(x);
8: else
9: while ν = ES .Read(h) do
10: if N .size < k or dist(µ, ν) < N .MaxDist() then
11: N .Insert(ν, dist(µ, ν));
12: end if
13: end while
14: end if
15: ES .Insert(τ, h);
16: end while
17: return N ;

Fig. 2. The kNearestNeighbor procedure.

method, and should be carefully tailored to the criterion adopted for comparing
tuples. In [4] we describe an indexing scheme which is meant to retrieve simi-
lar tuples, according to a set-based dissimilarity function, namely the Jaccard
distance – for any two tuples µ, ν ⊆ M, dist(µ, ν) = 1 − |µ ∩ ν|/|µ ∪ ν|. In
practice, we assume that distM corresponds to the Dirichlet function, and that,
consequently, the dissimilarity between two itemsets is measured by evaluating
their degree of overlap.

In this case, a possible strategy for indexing a tuple µ simply consists in
extracting a number of non-empty subsets of µ, named subkeys of µ, as indexing
features. As the number of all subkeys for a given tuple is exponential in the
cardinality of the tuple itself, the method was tuned to produce a minimal set
of “significant” subkeys. In particular, a subkey s of µ is said δ-significant if
b|µ| × (1− δ)c ≤ |s| ≤ |µ|.

Notably, any tuple ν such that distJ(µ, ν) ≤ δ must contain at least one of
the δ-significant subkeys of µ [4]. Therefore, searching for tuples that exhibit at
least one of the δ-significant subkeys derived from a tuple µ constitutes a strategy
for retrieving all the neighbors of µ without scanning the whole database. Such
a strategy also guarantees an adequate level of selectivity: indeed, if µ and ν
contain a sensible number of different items, then their δ-significant subkeys do
not overlap. As a consequence, the probability that µ is retrieved for comparison
with ν is low.

Despite its simplicity, this indexing scheme was proven to work quite well in
practical cases [4]. Notwithstanding, two main drawbacks can be observed:

1. The cost of the approach critically depends on the number of δ-relevant
subkeys: the larger is the set of subkeys, the higher is the number of writes
needed to update the index.

2. More importantly, the proposed key-generation technique suffers from a
coarse grain dissimilarity between itemsets, which does not take into ac-
count a more refined definition of distM. Indeed, the proposed approach is
subject to fail, in principle, in cases where likeliness among single tokens are
to be recognized as well. As an example, the tuples

µ1 Jeff, Lynch, Maverick, Road, 181, Woodstock

µ2 Jef, Lync, Maverik, Rd, 181, Woodstock

are not recognized as similar in the proposed approach (even though they
clearly refer to the same entity), due mainly to a dissimilarity between single
tokens which is not kept by a simple matching between tokens. Notice that,
lowering the degree δ of dissimilarity, partially alleviates such an effect, but
at the cost of worsening the performances of the index considerably.

3 Hierarchical Approximate Hashing based on q-grams

Our objective in this section is to define an hash-based index which is capable
of overcoming the above described drawbacks. In particular, we aim at defining
a key-generation scheme which guarantees a constant number of disk writes and
reads, yet being capable of keeping a fixed (low) rate of false negatives. Notice
that these are contrasting objectives in the approach described in section 2.2,
since in order to keep I/O operations low we need to generate few δ-significant
subkeys, whereas low values of δ produce several false negatives.

To overcome these limitations, we have to generate a fixed number of subkeys,
which however are capable of reflecting both the differences among itemsets,
and those among tokens. To this purpose, we define a key-generation scheme by
combining two different techniques:

– the adoption of hash functions based on the notion of minwise independent
permutation [3, 5], for bounding the probability of collisions.

– the use of q-grams (i.e., contiguous substrings of size q) for a proper approx-
imation of the similarity among string tokens [6].

A locally sensitive hash function H for a set S equipped with a distance
function D is a function which bounds the probability of collisions to the distance
between elements. Formally, given h, for each pair p, q ∈ S and value ε, there
exists values P ε

1 and P ε
2 such that

– if D(p, q) ≤ ε then Pr[H(p) = H(q)] ≥ P ε
1 , and

– if D(p, q) > ε then Pr(H(p) = H(q)] > P ε
2 .

Clearly, such a function H provides a simple solution to the problem of false
negatives described in the previous section. Indeed, for each µ, we can define a

representation rep(µ) = {H(a)|a ∈ µ}, and fill the hash-based index by exploit-
ing δ-significant subkeys from such a representation.

To this purpose, we can exploit the theory of minwise independent permuta-
tions [5]. A minwise independent permutation is a coding function π of a set X
of generic items such that, for each x ∈ X, the probability of the code associated
with x being the minimum is uniformly distributed, i.e.,

Pr[min(π(X)) = π(x)] =
1
|X|

A minwise independent permutation π naturally defines a locally sensitive hash
function H over an itemset X, defined as H(X) = min(π(x)). Indeed, for each
two itemsets X and Y , it can be easily verified that

Pr[min(π(X)) = min(π(Y))] =
|X ∩ Y |
|X ∪ Y |

This suggests that, by approximating distM(ai, aj) with the Jaccard similarity
among some given features of ai and aj , we can adopt the above envisaged
solution to the problem of false negatives. When M contains string tokens (as
it usually happens in a typical entity resolution setting), the features of interest
of a given token a can be represented by the q-grams of a. It has been shown [6,
7] that the comparison of the q-grams provides a suitable approximation of the
Edit distance, which is typically adopted as a classical tool for comparing strings.

The theory of minwise independent permutations can even help us in solving
the problem of bounding the number of I/O operations. Indeed, the generation
of δ-significant subkeys can be avoided by resorting to a further minwise hash
function defined over the tuples. If two tuples µ and ν exhibit distJ(µ, ν) = δ,
then a minwise encoding H specifically tailored to tuples guarantees Pr[H(µ) =
H(ν)] = 1− δ. Hence, H can contribute to build the set S of relevant features to
exploit in the kNearestNeighbor procedure of fig. 2, by identifying a feature
of µ with H(µ). By exploiting a fixed number of different encoding functions, we
populate the set S with a controlled number of features to be exploited within
the index.

Thus, given a tuple µ to be encoded, the key-generation scheme we propose
works in two different hierarchical levels:

– In the first level, each element a ∈ µ is encoded by exploiting a minwise hash
function H l. This guarantees that two similar but different tokens a and b
are with high probability associated with a same code. As a side effect, tuples
µ and ν sharing “almost similar” tokens are purged into two representations
where such tokens converge towards unique representations.

– In the second level, the set rep(µ) obtained from the first level is encoded by
exploiting a further minwise hash function Hu. Again, this guarantees that
purged tuples sharing several codes are associated with a same key.

The key resulting from the final, second-level coding can be effectively adopted
in the indexing structure described in section 2.1.

As an example, let us consider the tuples

µ1 Jeff, Lynch, Maverick, Road, 181, Woodstock

µ2 Jef, Lync, Maverik, Rd, 181, Woodstock

If 1-grams are adopted, then distM(Jeff, Jef) = 0, whereas distM(Lynch, Lync) =
0.2, distM(Maverick, Maverik) = 0.125 and distM(Rd, Road) = 0.5. An appro-
priate minwise function would hence likely associate the same code to the first 3
terms, and would encode separately the remaining terms. Hence, a first-level en-
coding would likely result in the transformations rep(µ1) = {h1, h2, h3, h4, h5, h6}
and rep(µ2) = {h1, h2, h3, h7, h5, h6}. Notice now that dist(rep(µ1), rep(µ2)) =
0.285: as a consequence, a second-level minwise hash function would likely asso-
ciate the same code to both rep(µ1) and rep(µ2). This would allow to achieve an
effective indexing strategy in support of the kNearestNeighbors procedure.

A key point is the definition of a proper family of minwise independent per-
mutations upon which to define the hash functions. A very simple idea is to
randomly map a feature x of a generic set X to a natural number. Then, pro-
vided that the mapping is truly random, the resulting probability that a generic
x ∈ X is mapped in a minimum number is uniformly distributed, as required.
In practice, it is hard to obtain a truly random mapping. Hence, we exploit a
family of “practically” minwise independent permutations [5], i.e., the functions
π(x) = (ac(x) + b) mod p, where a 6= 0 and c(x) is a unique numeric code asso-
ciated with x (such as, e.g. the code obtained by the concatenation of the ascii
characters it includes). Provided that a, b, c(x) and p are sufficiently large, the
behavior of π is practically random, as we expect.

We further act on the randomness of the encoding, by combining several al-
ternative functions (obtained choosing different values of a, b and p) as shown
in fig. 3. Recall that a hash function on π is defined as Hπ(X) = min(π(X)),
and that Pr[Hπ(X) = Hπ(Y)] = |X ∩ Y |/|X ∪ Y | = ε. Notice that the choice
of a, b and p in π introduces a probabilistic bias in Hπ, which can in princi-
ple leverage false negatives. Let us consider the events A ≡”sets X and Y are
associated with the same code”, and B = ¬A. Then, pA = ε and pB = 1 − ε.
By exploiting h different encodings H l

1, . . . ,H
l
h (which differ in the underlying

π permutations), the probability that all the encodings exhibit a different code
for X and Y is (1− ε)h. If ε > 1/2 represents the average similarity of items, we
can exploit the h different encodings for computing h alternative representations
rep1(µ), . . . , reph(µ) of a tuple µ. Then, by exploiting all these representations
in a disjunctive manner, we lower the probability of false negatives to (1− ε)h.

In general, allowing several trials generally flavors high probabilities. Consider
the case where ε < 1/2. Then, the probability that, in k trials (corresponding to
k different choices of a, b and p) at least one trial is B is 1 − εk. We can apply
this to the second-level encoding, where, conversely from the previous case, the
probabilistic bias can influence false positives. Indeed, two dissimilar tuples µ
and ν could in principle be associated with the same token, due to a specific bias
in π which affects the computation of minimum random code both in repi(µ)
and in repi(ν). If, by the converse a key is computed as a concatenation of k

hash(µ = {a1, . . . , an}, k, h, q)
1: for each ai ∈ µ do
2: compute the q-gram representation qi of ai;
3: compute h encodings Hl

1(qi), . . . H
l
h(qi);

4: end for
5: for i = 1 to h do
6: repi(µ)← {Hl

i(qj)|aj ∈ µ};
7: for j = 1 to k do
8: ej

i ← Hu
j (repi(µ));

9: end for
10: keyi ← e1

i ∧ e2
i ∧ . . . ∧ ek

i ;
11: end for
12: return {key1, . . . , keyh};

Fig. 3. The key-generation procedure.

different encodings Hu
1 , . . . ,Hu

k , the probability of having a different key for µ
and ν is 1− εk, where ε is the Jaccard similarity between repi(µ) and repi(ν).

4 Experimental Results

The above discussion shows that the effectiveness of the approach relies on proper
values of h and k. Low values of h leverage false negatives, whereas high values
leverage false positives. Analogously, low values of k leverage false positives,
whereas high values should, in principle, leverage false negatives.

Thus, this section is devoted to studying suitable values of these parameters
that fix a high correspondence between the retrieved and the expected neighbors
of a tuple. To this purpose, for a generic tuple µ we are interested in evaluating
the number TPµ of true positives (i.e., the tuples which are retrieved and that
belong to the same cluster of µ), and compare it to the number of false positives
FPµ (i.e., tuples retrieved without being neighbors of µ), and false negatives
FNµ (i.e., neighbors of µ which are not retrieved). As global indicators we exploit
the average precision and recall per tuple, i.e. precision = 1

N

∑
µ∈DB

TPµ

TPµ+FPµ

and recall = 1
N

∑
µ∈DB

TPµ

TPµ+FNµ
, where N denotes the number of tuples in DB.

The values of such quality indicators influence the effectiveness of the cluster-
ing scheme of fig. 1. In general, high values of precision allows for correct de-
duplication: indeed, the retrieval of true positives directly influences the Most-
LikelyClass procedure which assigns each tuple to a cluster. When precision
is low, the clustering method can be effective only if recall is high.

Notice that low precision may cause a degradation of performances, if the
number of false positives is not bounded. Thus, we also evaluate the efficiency of
the indexing scheme, in terms of the number of tuples retrieved by each search.
This value depends on h and k, and is clearly related to the rate of false positives.

Experiments were conducted on both real and synthesized data. For the real
data, we exploited a (not publicly available) collection of about 105,140 tuples,
representing information about customers of an Italian bank. Synthetic data was
produced by generating 50,000 clusters with an average of 20 tuples per cluster,
and each tuple containing 20 tokens in the average. Each cluster was obtained
by first generating a representative of the cluster, and then producing the de-
sired duplicates as perturbations of the representative. The perturbation was
accomplished either by deleting, adding or modifying a token from the cluster
representative. The number of perturbations was governed by a gaussian dis-
tribution having p as mean value. The parameter p was exploited to study the
sensitivity of the proposed approach to the level of noise affecting the data, which
can be due, for example, to misspelling errors.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

k=1 k=3 k=5 k=3 k=5 k=5

h=1 h=1 h=1 h=3 h=3 h=5

q=2

q=3

q=1-2-3

q=1-2

(a) precision vs. h, k and q

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

k=1 k=3 k=5 k=3 k=5 k=5

h=1 h=1 h=1 h=3 h=3 h=5

q=2

q=3

q=1-2-3

q=1-2

(b) recall vs. h, k and q

Fig. 4. Results on synthetic data w.r.t. q-gram size (q) and nr. of hash functions (h,k)

Figures 4 and 5 illustrate results of some tests we conducted on this synthesized
data, in order to analyze the sensitivity of the retrieval to the parameters q, h
and k (relative to the indexing scheme), and p (relative to the noise in the data).
In particular, the values of q ranged over 2, 3, 1-2 (both 1-grams and 2-grams)
and 1-2-3 (q-grams with sizes 1, 2 and 3).

Figures 4(a) and 4(b) show the results of precision and recall for different
values of h and k, and p = 2. We can notice that precision raises on increasing
values of k, and decreases on increasing values of h. The latter statement does
not hold when q-grams of size 1 are considered. In general, stabler results are
guaranteed by using q-grams of size 3. As to the recall, we can notice that, when
k is fixed, increasing values of h correspond to improvements as well. If h is
fixed and k is increased, the recall decreases only when q = 3. Here, the best

0%

20%

40%

60%

80%

100%

2 4 8

perturbation factor

p
r
e
c
is

io
n

q=1-2

q=2

q=1-2-3

q=3

(a) precision vs. perturbation and q

0%

20%

40%

60%

80%

100%

2 4 8

perturbation factor

r
e
c
a
ll

q=1-2

q=2

q=1-2-3

q=3

(b) recall vs. perturbation and q

Fig. 5. Results on synthetic data w.r.t. q-gram size (q) and perturbation

results are guaranteed by fixing q=1-2-3. In general, when h ≥ 3 and k ≥ 3, the
indexing scheme exhibits good performances.

Figures 5(a) and 5(b) are useful to check the robustness of the index. As ex-
pected, the effectiveness of the approach tends to degrade when higher values of
the perturbation factor p are used to increase intra-cluster dissimilarity. How-
ever, the proposed retrieval strategy keeps on exhibiting values of precision and
recall that can still enable an effective clustering. In more detail, the impact
of perturbation on precision is clearly emphasized when tuples are encoded by
using also 1-grams, whereas using only either 2-grams or 3-grams allows for mak-
ing precision results stabler. Notice that for q = 3 a nearly maximum value of
precision is achieved, even when a quite perturbed data set is used.

Fig. 6 provides some details on the progress of the number of retrieved neigh-
bors, TP , FP and FN , when an increasing number of tuples, up to 1,000,000,
is inserted in the index. For space reasons, we only examine some selected com-
binations of h and k, and q that were deemed as quite effective in previous
analysis. Anyway, we pinpoint that some general results of the analysis illus-
trated here also apply to other cases. The values are averaged on a window of
5,000 tuples. In general, it is interesting to observe that the number of retrievals
for each tuple is always bounded, although for increasing values of the data size
the index grows. This general behavior, which we verified for all configurations
of h, k and q, clearly demonstrates the scalability of the approach. In particu-
lar, we observe that for q = 3 the number of retrievals is always very low and
nearly independent of the number of tuples inserted (see figures 6(c) and 6(d)).
More in general, the figures confirm the conceptual analysis that the number of
I/O operations directly depends on the parameter h, the latter determining the
number of searches and updates against the index.

0 200,000 400,000 600,000 800,000 1,000,000
0

5

10

15

20

25

Data size

Retrievals

FN

FP

TP

(a) q = 2, h = 3, k = 3

0 200,000 400,000 600,000 800,000 1,000,000
0

2

4

6

8

10

12

14

Data size

Retrievals

FN

FP

TP

(b) q = 2, h = 5, k = 5

0 200,000 400,000 600,000 800,000 1,000,000
0

1

2

3

4

5

6

7

8

9

10

Data Size

Retrievals

FN

TP

FP

(c) q = 3, h = 3, k = 3

0 200,000 400,000 600,000 800,000 1,000,000
0

1

2

3

4

5

6

7

8

9

10

Data Size

Retrievals

TP

FN

FP

(d) q = 3, h = 5, k = 5

Fig. 6. Scalability w.r.t. the data size

All these figures also agree with the main outcomes of the analysis on effec-
tiveness we previously conducted with the help of fig. 4. In particular, notice
the quick decrease of FP and FN when both k and h turn from 3 to 5, in the
case of q = 2 (see figures 6(a) and 6(b)), that motivates the improvement in
both precision and recall observed in these cases. Moreover, the high precision
guaranteed by using our approach with q-grams of size 3, is substantiated by
figures 6(c) and 6(d), where the number of retrieved tuples is very close to the
number of TP ; in particular, for k = 5 (see fig. 6(d)) the FP curve definitely
flatten on the horizontal axis.

The above considerations are confirmed by experiments on real data. Fig. 7(a)
shows the results obtained for precision and recall by using different values of
q, whereas figure 7(b) summarizes the average number of retrievals and quality
indices. As we can see, recall is quite high even if precision is low (thus allowing

0%

20%

40%

60%

80%

100%

1-2 2 1-2-3 3

q-gram size

Precision

Recall

(a) precision and recall

-

1

2

3

4

5

6

7

8

9

1-2 2 1-2-3 3

q-gram size

Retrievals (avg)

TP (avg)

FP (avg)

FN (avg)

(b) avg. nr. of retrievals, TP, FP and FN

Fig. 7. Results on real data using different q-gram sizes

for a still effective clustering). Notice that the average number of retrievals is
low, thus guaranteeing a good scalability of the approach.

5 Related Work

In the following, we shortly review some relevant proposals for the detection
and management of duplicated data. As a matter of fact, this problem has
given rise to a large body of work in several research communities, and un-
der a variety of names (such as, e.g., Merge/Purge [8], Record Linkage [9, 10],
De-duplication [11], Entity-Name Matching [12], Object Identification [13]). In
most of these approaches, a central issue is the definition of a method for compar-
ing objects, especially when information on object identity is carried by textual
fields (indeed, the latter are subject to various kinds of heterogeneity and mis-
matches across different information sources). To this purpose, in addition to
classical string (dis)similarity functions [14], several methods [15–18, 11] were
defined, which allow to effectively compare textual information in the context of
duplicated data.

Many approaches to the de-duplication problem essentially attempt to match
or cluster duplicated records [19, 12, 15], based on suitable similarity functions.
Unfortunately, most of these approaches mainly focus on effectiveness issues,
while paying minor attention to scalability, and end up being inadequate under
stronger efficiency requirements. It is worth noticing that resorting to consoli-
dated clustering algorithms [8, 20–23], could not guarantee an adequate level of
scalability either. Indeed, even these algorithms would not work adequately in a
situation where far too many clusters are expected to be found, as it does happen
in a typical de-duplication scenario, where the number of clusters can be of the
same order as the size of the database. To the best of our knowledge, the only
suitable approach appear to be the one proposed in [24]. Here, the authors avoid

costly pairwise comparisons by grouping objects in “canopies”, i.e., subsets con-
taining objects suspected to be similar according to a given similarity function,
and then computing pairwise similarities only within canopies. Since in a typical
duplicate detection scenario there are several canopies, and an object is shared
in a very few number of canopies, the main issue in the approach is the creation
of canopies. The authors proposed an effective solution to this issue: nevertheless
the approach they propose does not cope with incrementality issues. In a sense,
our approach also builds canopies (which are collected within the same buckets
in the index), the main difference being that the properties of minwise hashing
functions allow to approximately detect such canopies incrementally.

There is a plenty of approaches for distance-based search in metric spaces (see,
e.g., [25, 26] for a survey). Again, these approaches suffer from the high dimen-
sionality of the space where search is performed, as described in [27]: indeed,
high dimensionality causes too sparse regions to analyse, and thus invalidate the
proposed index methods. Recently, some approaches have been proposed [6, 28,
29] which exploit efficient indexing schemes based on the extraction of relevant
features from the tuples under consideration. Such approaches could be adapted
to deal with the problem of de-duplication, even though they are not specifically
designed to approach the problem from an incremental clustering perspective,
as we instead did here.

As previously described, in a previous work [4] we proposed some basic ideas
to cope with the duplicate detection problem from an incremental perspective.
Specifically, we proposed an indexing scheme tailored to a set-based dissimilar-
ity function, where each tuple was regarded as sets of tokens, and a number of
relevant subsets were exploited for indexing it. This paper extends and improves
that proposal in both effectiveness and efficiency. First, we gain a direct control
over the number of features used for indexing any tuple, which is a major pa-
rameter that critically impacts on the overall cost of the approach. Moreover,
we tune the approach to be less sensitive to little differences between matching
tokens.

6 Conclusions and Future Works

In this paper, we addressed the problem of recognizing duplicate information,
specifically focusing on scalability and incrementality issues. The core of the pro-
posed approach is an incremental clustering algorithm, which aims at discovering
clusters of duplicate tuples. To this purpose, we studied a refined key-generation
technique, which allows a controlled level of approximation in the search for the
nearest neighbors of a tuple. An empirical analysis, both on synthesized and on
real data, showed the validity of the approach.

The approach is quite effective when the available information is based solely
on strings, and Jaccard similarity is adopted to compare the features two tuples
exhibit. We remark here that the described technique does not consider the
database schema, whose adoption (and the consequent separation of the available
string into fields) would likely allow to obtain a more refined de-duplication

strategy: as an example, two tuples with the same “name” are more likely to be
duplicates than two tuples with the same “city”. Nevertheless, the approach we
presented here can be easily and effectively adapted to such a situation as well:
the overall dissimilarity among tuples can be expressed as a combination of the
dissimilarities relative to single fields, and consequently the retrieval of similar
tuples can be accomplished by combining the keys relative to different fields and
exploiting them within the index.

Clearly, when strings are too small or too different to contain enough infor-
mative content, the de-duplication task cannot be properly accomplished by the
proposed clustering algorithm. To this purpose, we plan to study the extension of
the proposed approach to different scenarios, where more informative similarity
functions can be exploited. An example is the adoption of link-based similarity:
recently, some techniques were proposed [30] which have been proved effective
but still suffers from the incrementality issues which are the focus of this paper.

References

1. Indyk, P., Motwani, R.: Approximate nearest neighbor - towards removing the
curse of dimensionality. In: Proc. 30th Symposium on Theory of Computing. (1998)
604–613

2. Broder, A., Glassman, S., Manasse, M., Zweig, G.: Syntactic clustering on the
web. In: Proc. 6th Int.WWW Conf. (1997) 1157–1166

3. Gionis, A., Indyk, P., Motwani, R.: Similarity search in high dimensions via hash-
ing. In: Procs. 25st Int. Conf. on Very Large Databases (VLDB’99). (1999) 518–529

4. Cesario, E., Folino, F., Manco, G., Pontieri, L.: An incremental clustering scheme
for duplicate detection in large databases. In: Procs. Int. Databases and Applica-
tions Symp. (IDEAS’05). (2005) To appear.

5. Broder, A., Charikar, M., Frieze, A., Mitzenmacher, M.: Minwise independent
permutations. In: Procs. ACM Symp. on Theory of Computing (STOC’98). (1998)
327–336

6. Gravano, L., et al.: Approximate string joins in a database (almost) for free. In:
Procs. 27st Int. Conf. on Very Large Databases (VLDB’01). (2001) 518–529

7. Ukkonen, E.: Approximate string matching using q-grams and maximal matches.
Theoretical Computer Science 92 (1992) 191–211

8. Hernández, M.A., Stolfo, S.J.: The merge/purge problem for large databases. In:
Proc. ACM SIGMOD Int. Conf. on Management of Data. (1995) 127–138

9. Fellegi, I.P., Sunter, A.B.: A theory for record linkage. Journal of the American
Statistical Association 64 (1969) 1183–1210

10. Winkler, W.E.: String comparator metrics and enhanced decision rules in the
fellegi-sunter model of record linkage. In: Proc. Section on Survey Research Meth-
ods, American Statistical Association. (1990) 354–359

11. Sarawagi, S., Bhamidipaty, A.: Interactive deduplication using active learning. In:
Proc. 8th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining.
(2002) 269–278

12. Cohen, W.W., Richman, J.: Learning to match and cluster large high-dimensional
data sets for data integration. In: Proc. 8th ACM SIGKDD Int. Conf. on Knowl-
edge Discovery and Data Mining. (2002) 475–480

13. Neiling, M., Jurk, S.: The object identification framework. In: Proc. KDD Work-
shop on Data Cleaning, Record Linkage, and Object Consolidation. (2003) 37–39

14. Gunsfield, D.: Algorithms on Strings, Trees and Sequences. Cambridge University
Press (1997)

15. Monge, A.E., Elkan, C.P.: The field matching problem: Algorithms and applica-
tions. In: Proc. 2nd Int. Conf. on Knowledge Discovery and Data Mining. (1996)
267–270

16. Monge, A.E., Elkan, C.P.: An efficient domain-independent algorithm for detect-
ing approximately duplicate database records. In: Proc. SIGMOD Workshop on
Research Issues on Data Mining and Knowledge Discovery. (1997) 23–29

17. Cohen, W.W., Ravikumar, P., Fienberg, S.E.: A comparison of string distance
metrics for name-matching tasks. In: Proc. IJCAI Workshop on Information Inte-
gration on the Web. (2003) 73–78

18. Bilenko, M., Mooney, R.J.: Adaptive duplicate detection using learnable string
similarity measures. In: Proc. 9th ACM SIGKDD Int. Conf. on Knowledge Dis-
covery and Data Mining. (2003) 39–48

19. Cohen, W., Richman, J.: Learning to match and cluster entity names. In: Proc.
ACM SIGIR Workshop on Mathematical/Formal Methods in Information Re-
trieval. (2001)

20. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for dis-
covering clusters in large spatial databases with noise. In: Proc. 2nd Int. Conf. on
Knowledge Discovery and Data Mining. (1996) 226–231

21. Guha, S., Rastogi, R., Shim, K.: ROCK: A robust clustering algorithm for cate-
gorical attributes. Information Systems 25 (2001) 345–366

22. Guha, S., Rastogi, R., Shim, K.: CURE: An efficient clustering algorithm for large
databases. In: Proc. ACM SIGMOD Int. Conf. on Management of Data. (1998)
73–84

23. Ganti, V., et al.: Clustering large datasets in arbitrary metric spaces. In: Proc.
Int. Conf. on Data Engineering (ICDE’99). (1999) 502–511

24. McCallum, A.K., Nigam, K., Ungar, L.: Efficient clustering of high-dimensional
data sets with application to reference matching. In: Proc. 6th ACM SIGKDD Int.
Conf. on Knowledge Discovery and Data Mining. (2000) 169–178

25. Chavez, E., Navarro, G., Baeza-Yates, R., Marroquin, J.L.: Searching in metric
spaces. ACM Comput. Surv. 33 (2001) 273–321

26. Hjatason, G.R., Samet, H.: Index-driven similarity search in metric spaces. ACM
Transactions on Database Systems 28 (2003) 517–580

27. Weber, R., Schek, H., Blott, S.: A quantitative analsysis and performance study
for similarity search in high-dimensional spaces. In: Proc. 24th Int. Conf. on Very
Large Databases. (1998) 194–205

28. Ananthakrishna, R., Chaudhuri, S., Ganti, V.: Eliminating fuzzy duplicates in
data warehouses. In: Procs. 28th Int. Conf. on Very Large Databases (VLDB’02).
(2002) 586–597

29. Chaudhuri, S., Ganjam, K., Ganti, V., Motwani, R.: Robust and efficient fuzzy
match for online data cleaning. In: Procs. ACM Conf. on Management of Data
(SIGMOD’03). (2003) 313–324

30. Kalashnikov, D., Mehrotra, S., Chen, Z.: Exploiting relationships for domain inde-
pendent data cleaning. In: Procs. SIAM’05 Conf. on Data Mining. (2005) 262–273

