
Towards Progressively Querying and Mining
Movement Data

R. Ortale∗, E. Ritacco∗, N. Pelekis†, R. Trasarti•
G. Costa∗, F. Giannotti•, G. Manco∗, C. Renso•, Y. Theodoridis†

∗ICAR-CNR, Rende (CS), Italy
†University of Piraeus, Piraeus, Greece

•ISTI-CNR, Pisa, Italy

ABSTRACT
We propose a research foundation for progressively mining and
querying both movement data and patterns. Our proposal is based
on an algebraic framework, referred to as 2W Model, that defines
the knowledge discovery process as a progressive combination of
mining and querying operators. The 2W Model framework pro-
vides the underlying procedural semantics for a language called
MO-DMQL, that allows to progressively refine mining objectives.
MO-DMQL extends conventional SQL in two respects, namely a
pattern definition mechanism and the capability to uniformly ma-
nipulate both raw data and unveiled patterns. Also, an innovative
computational engine, DAEDALUS, is introduced for processing
MO-DMQL statements. The expressiveness and usefulness of the
MO-DMQL language as well as the computational capabilities of
DAEDALUS are qualitatively evaluated by means of a case study.

1. INTRODUCTION
Research on moving-object data analysis has been recently fos-

tered by the widespread diffusion of new techniques and systems
for monitoring, collecting and storing location-aware data, gener-
ated by a wealth of technological infrastructures, such as GPS po-
sitioning, sensor- and mobile-device networks, tracking facilities.
These have made available massive repositories of spatio-temporal
data, that call for suitable analytical methods, capable of enabling
the development of innovative, location-aware applications.

A flurry of research has covered with spatio-temporal data anal-
ysis from different perspectives. The integration of trajectory data
with semantic information for more effective analysis was the sub-
ject of studies such as [26, 2]. Several approaches to pattern discov-
ery in movement data have emerged [5, 19, 22]. Schemes for ap-
proximated trajectory similarity-search, based on nearest-neighbor
and indexing schemes, have been proposed in [1, 4]. In a nutshell,
so far, research efforts have been largely geared towards either the
definition of new movement patterns, or the development of solu-
tions to algorithmic issues, with which to improve existing pattern-
mining schemes in terms of effectiveness and/or efficiency. As a
consequence, several intelligent tools for movement data analysis

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

have rapidly flourished. In the meanwhile, however, the necessary
attention has not been paid to the definition of a unifying frame-
work, wherein to set the above pattern-mining tools as specific
components of the knowledge discovery process. Despite some
preliminary ideas, it is still an open issue without a predominant
proposal. We believe that this is a primary limitation for the real-
world applications of movement data analysis, where it rarely hap-
pens that a single pattern-mining activity (i.e. either of the fore-
said tools) suffices to meet the underlying analytical requirements.
Rather, it is often necessary that mining tasks are performed, the
resulting models treated on a par with raw data [15, 3] and possibly
used for further analysis. Nevertheless, in the current state of the
art, the lack of support to knowledge discovery as an actual multi-
step process makes impractical all those applications, that involve
multiple stages of analysis and manipulation for both data and pat-
terns, in which the results at each stage are required to become the
input to the subsequent stage [3]. As a motivating example, con-
sider the following analytical requirement, that calls for the search
of common behavioral patterns in the context of specific spatial pat-
terns: among the routes of objects through a sequence of regions on
the left of the city centre, find those common sub-trajectories that
traverse a polluted area during rush hours. Satisfying such a re-
quirement involves a complex two-steps process, wherein multiple
mining methods as well as forms of knowledge need be progres-
sively and seamlessly exploited. As a matter of fact, temporally
annotated sequences of regions [5] must be initially uncovered in
primary knowledge (i.e. the raw trajectory data). Next, common
sub-trajectories [22] have to be mined from the sequence sited on
the left of the city centre and eventually related with background
knowledge (i.e. polluted areas and rush hours) to distill the desired
patterns. Unfortunately, in the absence of a unifying framework,
the process of progressively querying and mining both movement
data and patterns is in general a challenging issue. Indeed, the in-
dividual mining techniques can hardly be combined into an actual
multi-step process, since their results are typically neither directly
exploitable to feed some further analysis, nor uniformly manage-
able with raw data.

Interestingly, some aspects of the problem have been partly touched
by various proposals in the field of moving-object databases [6].
The latter have mainly focused on the development of comprehen-
sive algebraic frameworks for modeling and progressively querying
(un)constrained movement data [13, 14]. The underlying intuition
essentially consists in extending the relational model, which pro-
vides the basic foundation for progressive querying, with a set of
abstract data types (representing generic moving entities), equipped
with related spatio-temporal primitives. Unfortunately, the result-
ing frameworks are not meant for knowledge discovery purposes.

In the present paper, to the best of our knowledge, we take a first

step towards progressively mining and querying movement data.
In this direction, our contribution is threefold. We introduce MO-
DMQL, a specific language capable of supporting the user in spec-
ifying and refining mining objectives. The procedural semantics of
the language is founded on an algebraic framework, referred to as
the 2W Model, which allows to progressively accommodate min-
ing and querying tasks, over both movement data and patterns, into
a multi-step knowledge discovery process. The MO-DMQL lan-
guage and its semantics are embedded into an innovative compu-
tational environment, called DAEDALUS, that provides effective
support to the whole knowledge discovery process, by transpar-
ently translating MO-DMQL statements issued from the end user
into executions of specific mining/querying tasks.

The rest of the paper proceeds as follows. Section 2 provides
a survey of approaches available from the current literature, that
have posed the basis of our proposal. Section 3 gives the formal
definition of the algebraic framework 2W Model. Section 4 pro-
poses, MO-DMQL, a data-mining query language for progressively
querying and mining movement data, whose procedural semantics
is founded on the 2W Model. Section 5 discusses the design of
the DAEDALUS system for processing MO-DMQL queries. Sec-
tion 6 qualitatively evaluates the expressiveness and usefulness of
the MO-DMQL language as well as the computational capabili-
ties of DAEDALUS by means of a case study. Finally, section 7
concludes the paper by drawing some conclusions and highlighting
major directions of further research.

2. RELATED WORK
We review some influential contributions in the current literature

from three different perspectives: querying moving objects, mining
movement patterns and progressive mining and querying.

2.1 Querying Moving Objects
Research on moving-object databases has addressed the need for

representing movements of objects (i.e. trajectories) in databases,
in order to perform ad-hoc querying, analysis, as well as knowl-
edge extraction. In particular, several research initiatives in the last
decade focused on data models and query languages for moving-
object databases. We can devise two main research directions: the
first focuses on querying current and future positions of the moving
objects in [17, 11, 16], while the second on querying past trajecto-
ries of the moving objects in [13, 7, 12].

The first approach by Wolfson et al. in [11, 16] is challenged by
the issue of how often location updates should be sent and applied
to the database, to face a trade-off between error in location infor-
mation and update load. The authors propose the so-called Moving
Objects Spatio-Temporal (MOST) data model for databases with
dynamic attributes, i.e. attributes that change continuously as a
function of time, without being explicitly updated. The query lan-
guage FTL (Future Temporal Logic) based on temporal logic is
introduced to formulate questions about the near future movement.

The second approach is concerned with the study of abstract
moving-object data types, as well as algorithms supporting the re-
lated operations [13]. Forlizzi et al. [12, 7] provide a systematic
study of a fragment of the methods introduced in [13], and of-
fer a blueprint for implementing a database extension package tai-
lored towards moving objects. The final outcome of this work has
been recently demonstrated in [20]. The Hermes framework, has
been recently introduced by Pelekis et al. [25], that aims at aid-
ing a database developer in modeling, constructing and querying a
moving-object database. Hermes is a basic component of the pro-
posed the DAEDALUS framework, introduced in section 5.

2.2 Mining Movement Patterns
There has been considerable work on the development of meth-

ods for knowledge discovery from movement data. Proposals com-
prise approach for unveiling both global and local movement pat-
terns. We here review some influential techniques. The interested
reader is referred to a more comprehensive survey in [8].

Clustering has been naturally exploited to uncover a variety of
global behavioral patterns. The problem of discovering dense re-
gions is covered in [24]. Here, the goal is twofold, i.e. both discov-
ering those areas than are deemed to contain more than a certain
threshold of objects in a specified time period and finding for how
long those areas can still be considered dense.

A generative probabilistic approach is used in [21] to model the
individual trajectories as sequences of points yielded by a finite
mixture of regression models. Clusters of such sequences are then
found by means of a suitable EM estimation procedure.

The approach in [19] is devoted to the discovery of moving clus-
ters, i.e. groups of objects that move similarly and close to each
other for a long time. Differently from the methods in in [24, 19],
resulting in cluster that are, respectively, either static in space or
in content over time, moving clusters do not necessarily maintain
their inner content: moving objects can join and/or leave any mov-
ing clusters at any given point in time. The only requirement is that
the individual moving cluster preserves its density over its lifetime.

The identification of local patterns in movement data, i.e. of con-
cise representations of interesting local behavioral patterns of mov-
ing objects, has been also a fertile area of research. The approach
in [22] is devoted to the identification of common sub-trajectories.
This is accomplished by partitioning the individual routes into line
segments by means of the minimum description length principle
and then grouping such segments through a density-based clus-
tering strategy. Each resulting cluster is equipped with a repre-
sentative common sub-trajectory, summarizing the overall move-
ment of the line-segments in the spatial region associated to the
group. Trajectory pattern mining in [5] is instead pursued to un-
veil T-patterns, i.e. sequences of temporally-annotated spatial re-
gions. Each T-pattern concisely represents all those trajectories of
moving points that share the common property of visiting the same
chronologically-ordered sequence of places (i.e. spatial regions)
with nearly similar travel times. The T-pattern mining scheme is
currently implemented in the mining engine of the DAEDALUS
system, discussed in section 5.

2.3 Progressive Mining and Querying
The last decade has seen a proliferation of approaches to Data

Mining query languages, proposed with different focuses. In a first
research direction, the focus is to provide an interface between data
sources and data mining tasks. Under this perspective, a DMQL
is seen as a standard mean for specifying data sources, patterns of
interest and properties characterizing them. In a second direction, a
DMQL is meant to support the design of specific procedural work-
flows which integrate reasoning on the mining results and possibly
define ad-hoc evaluation strategies and activations of the Data Min-
ing tasks. Therefore, the idea here is to embody Data Mining query
languages in a more general framework, where effective support to
the whole knowledge discovery process is provided.

A recent survey on the above mentioned issues appeared in [9].
To the purpose of this paper, however, it is important to briefly re-
view the approach proposed in [18] and subsequently refined by [3],
namely, the 3W Model. 3W Model stands for Three Worlds for
data mining: the D(ata)-world, the I(ntensional)-world, and the
E(xtensional)-world. The D-World represents the raw data to be

analyzed in terms of the basic entities of relational algebra, i.e. re-
lational schemas and extensions. The attributes of such entities are
associated with corresponding domains, that can be either categor-
ical or numeric. Most activities, carried out in the preprocessing
phase of a typical knowledge discovery application, can be mod-
eled by means of specific operators of an extended relational alge-
bra, that adds to the usual algebraic operators.

Objects in the I-World represent, instead, a particular class of
data mining models, i.e. regions that can be defined as (sets of)
conjunctions of linear inequality constraints on the attributes of the
entities in the D-World. Starting from a set of basic regions, further
regions can be formed via the definition of composition operators.

In the E-World, a region is simply represented as an enumeration
of all the tuples belonging to that region. Relations in this world are
obtained by combining the relations of the two worlds previously
defined, so that the schema of the resulting relation is the union of
the schemas of some relation in the D-World and some other rela-
tion in the I-World. Thus, the resulting 3W Model can be specified
as a set of three worlds: the D-World (data world), the I-World
(intensional world), and the E-World (extensional world). Entities
in the three foresaid worlds can be related via suitable inter-world
operators. Precisely, a generic mining operator regionize extracts
regions in the I-World from data in the D-World. These regions can
be iteratively refined by means of a mining loop from the I-World
to the I-World. The populate operator POP creates a relation in
the E-World, starting from some regions in the I-World and some
other relations in the D-World. Finally, composite objects of the
E-World can be projected to the other two worlds via the operators
πRDA and πA, that allow to return in the I-World and D-World,
respectively, via a simple selection of the proper attributes (data or
constraints) within the E-World relation.

The 3W Model is mightily interesting for many reasons. Fore-
most, it provides a view of data mining in algebraic terms: a knowl-
edge discovery process is the application of a sequence of operators
in order to transform a set of tables. Furthermore, it is also fasci-
nating from a methodological point of view: the object representa-
tion of 3W Model entities and the implementation of a suitable set
of operators are key elements in the design of a powerful tool for
knowledge discovery. However, some major limitations affect the
3W Model. In the D-World there is no possibility to express com-
plex relations (i.e. cyclic relation), because the nesting of this data
model has a fixed depth. Furthermore, a more serious limitation
lies in the I-World, where regions are expressed by linear inequality
sets. This means that fundamental mining models are not express-
ible, since their representations require more complex mathematic
structures (i.e. SVM and clustering results, time point series, sur-
rounding regions and so forth). The 2W Model in section 3 avoids
both the foresaid limitations of the 3W Model. Indeed, it enables
the description of complex objects and their properties and also
supports the extraction all required patterns from raw data.

3. THE 2W MODEL FRAMEWORK
The proposed 2W Model summarizes the essence of a knowl-

edge discovery process, within any applicative setting, as the inter-
action between two (apparently) different worlds: the data world
and the model world. Whenever each world is populated by the
appropriate entities, a set of operators can be defined and used, in
order to specify any complex process targeted at the extraction of
actionable knowledge.

Within the 2W Model, we explicitly model a knowledge discov-
ery process as a functional expression relating entities in the two
worlds, as shown in fig. 1. There are three main kinds of interac-

tion between data and models:

• Filtering functions are self-injecting operations: indeed, they
take a set of entities as input and produce a new set of entities.
Within the figure, the Data Filtering and Model Filtering ar-
rows denote such operations.

• Mining functions relate data entities to model entities. In
practice, such operations correspond to the application of a
data mining algorithm to a given data source. The result is a
composite object, describing a pattern holding over such data
sources.

• Apply functions are meant to model a sort of dual operation
w.r.t. mining functions. In general, a model is a specification
of a set of properties holding in the data. Applying a model
to a data source essentially means making such properties
explicit in extensional form: e.g., by associating each trajec-
tory in a table with the most likely target class according to
the model, or by enumerating the frequent patterns appearing
within the trajectory.

For the definition of the contours of the two worlds and their
operators, one has to concentrate on which entities (i.e. which pat-
terns) are supported in the model world, how data entities relate to
model entities, and how constraint solving takes place. The formal-
ization of such aspects strictly depends on the nature of the under-
lying applicative domain and pursued objectives. Subsections 3.1
and 3.2 provide, respectively, an instantiation the D-World and M-
World in the context of movement data analysis.

Data ModelsData Filtering Model Filtering

Mining

Population

Figure 1: The 2W Model

3.1 The D-World
The D-World represents the entities to be analyzed, as well as

their properties and mutual relationships. Raw data is organized
in an object-relational format. The D-World can be viewed as
a database D = {r1(R1), . . . , rn(Rn)} of meaningful entities.
The generic entity r(R) is a relation with schema R. Formally,
R = {A1 : Dom(A1), . . . , Ah : Dom(Ah)}, where A1, . . . , Ah

correspond to descriptive attributes of the data within r(R) and
Dom(A1), . . . ,Dom(Ah) are their respective domains. Relation
r(R) is defined as r(R) ⊆ Dom(A1) × . . .Dom(Ah). Attribute
domains can be either primitive or object data types. Primitive
types are assigned to simple features of the data and divide into
categorical and numerical domains. Instead, object data types ab-
stractly represent complex real-world entities as objects, equipped
with application-dependant operations. Hereafter, we omit the spec-
ification of relation schema and use the resulting simplified notation
to indicate an entity of D. Furthermore, we denote by t ∈ r a tuple
of relation r and, also, exploit notation t[Ai] to indicate the value
of tuple t over a schema attribute Ai. So far, the description of the
D-World is general enough to be employed within any applicative
setting. Since we aim at dealing with movement data, hereafter the
D-World is assumed to be a repository of movement data. From

this point of view, relation schemas involve object data types, mod-
eling the addressed moving entities (such as points and regions).

To elucidate, we introduce the reference relation Trajectories,
that shall be used throughout the paper to describe pedestrian and/or
vehicle routes. Depending on the specific modeling requirements,
a possible choice of its schema attributes may comprise ID of type
integer, Typewhich takes on the categorical values (i.e. vehicle
and pedestrian), and Trajectory that is of an object data
type, named Moving_Point. The latter object type actually mod-
els the notion of trajectory. More precisely, given a tuple t ∈
Trajectories, t[Trajectory] represents a sequence of ob-
ject locations evolving over time and, also, provides a set of ba-
sic operations, for manipulating route data as well as answering
topological and distance queries. An in-depth coverage of the Mo-
ving_Point object type is beyond the scope of the paper. See [25]
for further details on Moving_Point as well as other object types,
that can in principle be used as basic domains in the D-World to
represent a wealth of distinct moving entities.
D-World Operators. Data in the D-World is manipulated via the
usual (unary and binary) operators of traditional relational algebra,
namely ρ, σ, π,∪,∩, \ and ×. Also, aggregation functions (such
as SUM, COUNT, AVERAGE, MIN and MAX) are allowed to oper-
ate on collections of domain elements. Algebraic operators can be
used to model suitable data preparation/manipulation tasks. As an
example, the composite operator below

πTrajectory(σType = "vehicle"(Trajectories))

represents a trivial reduction of data size and dimensionality.
More complex preparation/manipulation tasks can be expressed

by incorporating the basic operation of the (domain-specific) object-
relational entities in the corresponding algebraic formulation. To
exemplify, a basic operation of the Moving_Point data type is
intersects, which queries whether two trajectories encounter
each other. Such a functionality can be exploited to filter from
Trajectories and count all those vehicle routes that encounter,
somewhere and at any given point in time, the route followed by a
reference moving point (i.e. with a specified identifier). To this
purpose, by means of the expression

T = ρRoute←Trajectory(σID = 3(Trajectories))

one obtains a new answer relation T consisting of the route fol-
lowed by the moving point with ID=3. Here, for convenience, the
Trajectory attribute of T is renamed as Route.

As to the aggregation functions, these are not relational algebra
operators. In principle, they are used as parameters of some suit-
able aggregate formation operator. In our formalization, we express
queries involving aggregates by means of suitably extended projec-
tion operators, in the spirit of the idea in [23], that allow the in-
corporation of aggregation functions into the algebra. For instance,
consider to join T with Trajectories to count those routes that
intersect the one in T. This query can be expressed as

πcount(Trajectory)(σT rajectory.intersects(Route)(Trajectories× T))

where πcount(Trajectory)(·) returns the size of the column Tra-
jectory if it appears in the input relation, 0 otherwise. Extended
projection operators come in two flavors, depending on whether
relation columns are viewed as bags.

Notably, spatio-temporal operations allow the qualitative formu-
lation of queries over movement data, which is relevant for two

major reasons. Firstly, it permits to abstract away from the huge
amount of punctual data, inherent in the complexity of trajectory
data. From this perspective, query formulation can be considered
as closer to the way humans reason. Secondly, it somehow allows
to deal with imprecision and uncertainty.

Finally, as it shall be clear from the elaboration in subsection 3.2,
the D-World algebraic operators also play a fundamental role in
post-processing the data resulting from the application of a pattern
in the M-World to raw route data.

3.2 The M-World
Movement patterns concerning data entities, their properties and

relationships are mapped to objects in the model world, which pro-
vides an elegant and expressive framework for both exploratory
analysis and reasoning. Different types of movement patterns can
be defined to populate the M-World, on the basis of the specific
applicative requirements.

Formally, the M-World can be represented as a collection of pat-
tern objects P = {p1, . . . , pv}, unveiled at the different stages
of the knowledge discovery process. The latter are instances of
various abstract data types P1, . . . , Pt (with t ≤ v). The class
of all instances of the generic abstract data type P is defined as
I(P) = {p ∈ P|p : P}, where ":" indicates instantiation. Inside
I(P), instances are univocally distinguished by means of a unique
identifier. Depending on the nature of P , I(P) consists of either
singleton or composite pattern objects. The former are individual
models such as classifiers. The latter correspond to suitable col-
lections of singleton pattern objects. From an expressiveness point
of view, collections are relevant as they allow to capture the natu-
ral behavior of several mining tasks: for instance, a clustering task
yields a collection of clusters, whereas the outcome of a pattern
mining algorithm is usually represented by a set of singleton pat-
terns. Structurally, any composite pattern object p is modeled as
an aggregation and equipped with a set attribute, that comprises the
singletons grouped by p. In the rest of the paper, for readability
sake, we shall denote the i-th singleton pattern in p by p[[i]] rather
than using notation p.set [[i]]. Also, we shall interchangeably use
the notions of composite pattern object and object collection.

Abstract data types also declare the properties that can be carried
out on their instances. All pattern objects within each class I(P)
expose a common interfaceFP , that can be formalized as a schema
FP = {f1, . . . , fm} (with m > 0), where individual features are
class operations. In our formalization, each f ∈ FP is an instance
operation, i.e. an operation accessible trough a host pattern object
p ∈ I(P), which is hereafter indicated as p.f. Clearly, if P models
a class of composite pattern objects, it also holds that [[]] ∈ FP .
Notwithstanding, as already anticipated, we use the more readable
notation p[[. . .]] to mean the exploitation of the subscript operator.

The generic operation f ∈ Fp can be defined into two alter-
native ways, depending on the type of its input parameters. Pre-
cisely, assume that f requires data from the tuples of a D-World
relation r with schema R = {A1, . . . , Ah}. In particular, let
1 ≤ i1 ≤ . . . ≤ ik ≤ h represent the coordinates of the values
in each tuple t ∈ r in input to f. In such a case, the latter operation
can be defined as f : I(P) × V[×Dom1 × . . . × Domu] → A,
where I(P) is the class of host objects on which f can be invoked
and V ≡ Dom(Ai1)× . . .× Dom(Aik). Also, A coincides with
P if f returns a pattern object; it is otherwise any categorical or nu-
meric set. Yet, Dom1, . . . ,Domu represent the domains of some
additional input arguments that, in principle, may be required by f .
The foregoing definition remains almost unchanged whenever f is
fed with pattern objects from the M-World, apart from domain V

that, in such cases, is replaced by P .
Figure 2 exemplifies the notions of composite and single abstract

data types. The illustration shows the definition of the T-pattern
abstract data type, which intuitively represents a sequence of re-
gions traversed by some moving entities within certain time con-
straints [5]. We here use a pseudo F-Logic [10] formalism, where
a type is associated with a type name (in bold) and consists of
a collection of properties, enclosed by square brackets. For each
property, the double-shafted arrow ⇒ stands for type declaration,
whereas notation @ divides property name (on its left) from the
formal-parameter types (on its right). Notably, the composite ab-
stract data type T_Patterns_ADT is formalized as a set of sin-
gleton T_Pattern_ADTs, individually accessible through the op-
erator [[]]. In turn, T_Pattern_ADT is modeled as an annotated
sequence of two-dimensional spatial regions. The foresaid anno-
tations are stored in the transition_intervals attribute, a
set of time intervals. The sequence of traversed regions is instead
hold by region_sequence. The i-th interval within transi-
tion_intervals catches the minimum and maximum amount
of time required for the underlying trajectories to traverse the cor-
responding i-th region in region_sequence.

T_Patterns_ADT[
set ⇒ SetOf(T_Pattern_ADT);

operator [[]]@int ⇒T_Pattern_ADT;
west@Region ⇒ T_Patterns_ADT;
east@Region ⇒ T_Patterns_ADT;
south@Region ⇒ T_Patterns_ADT;
north@Region ⇒ T_Patterns_ADT;

]

T_Pattern_ADT[
transition_intervals ⇒ SetOf{Time_Interval};
region_sequence ⇒ SetOf{Region};
contains@Moving_Point ⇒ boolean;
crossed@Moving_Point ⇒ boolean;
disjoint@Moving_Point ⇒ boolean;
lies@Region ⇒ boolean;
overlaps@Region ⇒ boolean;

]

Figure 2: The T_Patterns_ADT abstract data type.

In principle, different abstract data types provide distinct fea-
tures. Furthermore, there exists a wealth of applicative scenarios,
which require various modeling properties for the same abstract
data type. An exhaustive analysis of all possible abstract data types
in the different applicative scenarios is clearly infeasible. There-
fore, we next provide an insight into class operations as well as their
possible uses in practice, by focusing on the abstract data types of
fig. 2 and briefly discussing the operations reported in the illustra-
tion.

Let us suppose that p : T_Patterns_ADT is a composite
pattern object extracted from the foregoing Trajectories re-
lation. Several useful operations can be envisaged for the generic
singleton p[[i]] : T_Pattern_ADT, whose definition is however
omitted due to space restrictions. In particular, with respect to
a tuple t ∈ Trajectories, the three operations contains,
crossed and disjoint can be used, respectively, to ask whether
the route of the Moving_Point argument falls inside, intersects,
does not meet p. Interestingly, some operations can also be em-
ployed to manipulate data other than Trajectories, from which
p was originally extracted. For instance, assume that the D-World
stores a further relation Places, whose schema includes a region

identifier ID and an object-relational attribute Region, modeling
two-dimensional spatial boundaries. For any place t′ ∈ Places,
one can use the spatial features lies and overlaps to verify
whether p[[i]] lies, respectively, partly overlaps the place area de-
limited by t′[Region]. Suitable operations can also be defined for
the composite object p. These are however devoted at retrieving
specific singletons. In the spirit of fig. 2, retrieval operations use
the positional information region_sequence within the indi-
vidual singletons p[[i]], to find out the ones sited, respectively, to
the west, east, south, north of a certain place. Precisely, given
a place t′ ∈ Places, p.west(t’[Region]) returns a new
T_Patterns_ADT instance, whose set attribute is narrowed to
the singletons of p that reside to the west of t’[Region].

Interactions between raw data within the D-World and the ob-
jects in the M-World are the basic building-blocks for the defi-
nition of multi-step knowledge discovery processes. Interactions
correspond to 2W Model operators, that establish connections be-
tween two worlds. Operators acting on patterns in the M-World di-
vide into mining and population operators. Precisely, starting from
some raw data in the D-World, mining operators define the patterns
that populate the M-World. Instead, population operators specify
how to create new data in the D-World. Mining and population
operators are the subjects of the following paragraphs.

3.3 Mining and Population Operators
The population of the M-World starting from the data in the D-

World is delegated to the so-called mining operator κ. Let ri1 , . . . , ril

be a subset of relations in D from which to extract some suitable
movement pattern. The inter-world mining operator κ is defined
as κ : Dl → P . The resulting object is an instance of one of the
available abstract data types P1, . . . , Pt mentioned in subsec. 3.2.

To exemplify, if κ represents the mining scheme in [5] and Tra-
jectories is the reference relation introduced in subsection 3.1,
κ(Trajectories) extracts an object p : T_Patterns_ADT.

Once accomplished the forward population of the M-World with
the required patterns, their operations can be employed in the op-
posite direction, i.e. to backward populate the D-World with fur-
ther data. Indeed, pattern operations allow the definition of suit-
able criteria, required to suitably populate the D-World with new
data. Interestingly, this does not involve the explicit representation
of further (composite) objects as in the E-World of the 3W Model.
Simply, the raw data of a relation r with schemaR, that meets some
population criterion (i.e. any constraint on a certain pattern opera-
tion), originates a new relation r′ in the D-World whose schema is
still R. The inter-world population operator 1Constr(fi(·)): P ×
D → D, is used to formalize the semantics of population process in
terms of constraints on pattern operations. Precisely, given a pattern
p ∈ P and a relation r ∈ D, notation Constr(fi(·)) represents the
constraint on fi(·), which must be satisfied by all tuples t ∈ r that
ultimately populate the resulting relation r′. Notably, the proce-
dural definition of the population process slightly varies depending
on the nature of the argument model p. More specifically, if p is
a singleton pattern object, the outcome of the population operator
1Constr(fi(·)) is simply the subset of all tuples in r that satisfy the
corresponding constraint on p.fi(·):

r′ = p 1Constr(fi) r = {t ∈ r|Constr(p.fi(t)) holds}

Instead, if p is a composite pattern object, the population opera-
tor identifies the union of all tuples in r, that satisfy any constraint
Constr(p[[j]].fi(·)), for each p[[j]] ∈ p:

r′ = p[[·]] 1Constr(fi) r = {t ∈ r|p[[j]] ∈ p,Constr(p[[j]].fi(t)) holds}
To exemplify, assume that p is an instance of T_Patterns_ADT

and, hence, groups a number of singleton T_pattern_ADT ob-
jects p[[1]], . . . , p[[n]]. The expression

Trajectories′ = p[[i]] 1contains Trajectories

originates a new relation Trajectories′ in the D-World, with a
same schema as the one of the original relation Trajectories.
Trajectories′ is populated with those moving objects from
Trajectories, whose route is inside the individual T-pattern
p[[i]]. On the contrary, the below expression

Trajectories′ = p[[·]] 1contains Trajectories

populates Trajectories′ with the moving objects of Traje-
ctories, whose routes is inside any singleton in p.

3.4 Discussion
The 2W Model introduces several meaningful differences w.r.t.

the 3W Model. Firstly, entities in the M-World can represent any
required patterns, even if with a mathematically complex structure,
whereas I-World models correspond to simple regions, expressible
via linear inequalities on the data attributes. Secondly, in the 2W
Model, κ is not predefined and acts as a template to extract a model
from a table. Thirdly, we directly map objects in the E-World to
counterparts in the D-World, without an explicit representation in
the E-World. By definition of population operator, the application
of any model to the data in a relation of the D-World always pro-
duces a further relation within the D-World. This ensures that min-
ing results can be progressively analyzed on a par with raw data, via
further manipulations. To exemplify, consider the case where one
wishes to uncover the common sub-trajectories of those moving
points, whose route is inside a specified T-pattern. In such a case,
T-patterns [5] are first extracted into the M-World via a specific
mining operator κ1. Data and unveiled patterns are then treated on
a par to the purpose of identifying the trajectories inside the l-th T-
pattern, which is accomplished by applying the contains feature
to the trajectory data. Common sub-trajectories [22] are then dis-
covered within the specified T-pattern, by applying a second mining
operator κ2 to the new raw data. In the 2W Model, the algebraic
formulation of the foresaid knowledge discovery process is

κ2(κ1(Trajectories)[[l]] 1contains Trajectories)

from which it clearly appears that κ1 and κ2 are pipelined via
the population operator.

Finally, we recall that the D-World operators contribute to the
expressiveness of the 2W Model framework, by playing a twofold
role. On the one hand, such operators can be used to represent pre-
processing tasks, e.g. the reduction in size and/or dimensionality of
the available data. On the other hand, they are useful for postpro-
cessing purposes, such as in the act of filtering interesting patterns.

The 2W Model is adopted in section 4 as a foundation for the
definition of the procedural semantics of a language, designed for
interactively querying and mining movement data.

4. IMPLEMENTING THE 2W MODEL
The 2W Model is a natural foundation for the development of

domain-specific data mining query languages. Within a specific

applicative domain, this mainly involves the definition of appro-
priate mining and population operators, as well as the specifica-
tion of the basic object-relational entities. In the present paper,
we propose MO-DMQL, a data mining query language, designed
to support knowledge discovery from movement data as an actual
multi-step knowledge discovery process. The intuition consists in
starting from the conventional SQL language, that provides basic
mechanisms for interactively querying and manipulating the enti-
ties within the D-World (i.e. both original raw data and the out-
come of population operators). These are extended in two major
respects. Firstly, the introduction of a pattern definition statement,
i.e. CREATE MODEL, for the specification of the required move-
ment models, with which to populate the M-World. Secondly, the
capability of supporting generic population operators, which ulti-
mately allows the application of models in the M-World to raw
data within the D-World. For this reason, we revised the traditional
join semantics inherent in the SELECT-FROM-WHERE statement,
so that raw data and unveiled patterns can be uniformly manipu-
lated and joined for further analysis. The semantics of the inherent
MO-DMQL statements is elaborated next.

4.1 Model Definition
CREATE MODEL implements the mining operator κ of the 2W

Model and builds a particular model in the M-World. Its syntax is
reported below.

CREATE MODEL <model_name> AS MINE <mining_algorithm>

FROM <<table>>

WHERE <mining_algorithm>.param1 = val1 ⊗ . . .⊗
<mining_algorithm>.paramn = valn

The above statement specifies a pattern-discovery task, via a
call to some corresponding mining algorithm. In terms of the 2W
Model algebra, the definition creates a model object in the M-
World named <model_name>, according to the procedural se-
mantics k(table), where the effect of the mining operator κ is
the application of the <mining_algorithm> to table. In this
respect, an important difference with respect to the traditional SQL
CREATE statement is that the latter guarantees closure by return-
ing a table, so that further SQL statements can be issued over it.
Instead, the CREATE MODEL statement results into a (singleton
or composite) object, that is an instance of some corresponding ab-
stract data type. Closure is enforced by the possibility of manipulat-
ing both raw data and pattern objects, described in subsection 4.2.

The CREATE MODEL statement enables the development of data-
mining query languages, that meet user’s requirements in any given
applicative setting. In this paper we focus on movement data anal-
ysis and, hence, assume that, hereafter, <mining_algorithm>
denotes any methods for discovering movement patterns. <<table>>
denotes the primary trajectory data of the D-World, from which
<model_name> is extracted, that can be in the form of either
a materialized database table, a view, or a query. The WHERE
clause allows to properly specify the input parameters of the in-
voked <mining_algorithm>, that involve algorithm-specific
parameters, search biases and thresholds for interestingness mea-
sures. Combinations of logical conditions on input parameters are
expressed via any connectors ⊗ from traditional SQL grammar.

Notice that, depending on the <mining_algorithm>, back-
ground knowledge within some further table of the D-World can
be directly taken into account to assist pattern discovery, by either
specifying further tables in the FROM clause or exploiting the rela-
tional organization of the trajectory data. This is useful for several
reasons, such as either enriching the data at hand, deriving good
initial hypotheses with which to start the search for patterns, defin-

ing preference biases that prune the pattern search space, or pro-
viding a reference for the interpretation of the discovered patterns.
Furthermore, since it is often difficult to define adequate statistical
measures for subjective concepts like novelty, usefulness, and un-
derstandability, background knowledge can be also helpful in cap-
turing such concepts more accurately.

The following CREATE MODEL statement exemplifies the defi-
nition of a T-pattern mining task, which requires the availability in
the D-World of the Trajectories table introduced in subsec-
tion 3.1.

CREATE MODEL T_Patterns AS MINE Dynamic_TPattern_Mining

FROM Trajectories

WHERE Dynamic_TPattern_Mining.density = δ AND

Dynamic_TPattern_Mining.snr = ε AND

Dynamic_TPattern_Mining.tt = τ

The T_Patterns composite object is instantiated from the ab-
stract data type T_Patterns_ADT of figure 2, by applying the
Dynamic_TPattern_Mining to the basic Trajectory data.
Algorithm-specific parameters appear in the above syntax as fea-
tures of the T_Patterns object and are suitably set in the WHERE
clause. Here, the minimum density threshold (density), spatial
neighborhood radius (snr) and temporal threshold (tt) are set to
suitable values, respectively represented by δ, ε and τ . Further de-
tails on the T-pattern mining algorithm and the mentioned input
parameters are provided in [5].

4.2 Data and Model Manipulation
The SELECT-FROM-WHERE statement can be used in MO-DMQL

to accomplish several different tasks of the knowledge discovery
process. The procedural semantics of the individual statement is
defined as some suitable combinations of 2W Model operators. In
the following, we elucidate the SELECT-FROM-WHERE statement
in the manipulation of raw data as well as in the definition and fur-
ther analysis of movement patterns.
Raw Data Manipulation. Data manipulation and querying repre-
sents the simplest exploitation of the statement. Query Q1 defines
a simple preprocessing of trajectory data, before it is used in any
subsequent analytical task.

SELECT Trajectories.id, Trajectories.Trajectory

FROM Trajectories

WHERE Trajectories.type="vehicle"

Clearly, Q1 filters vehicle trajectories and projects them on at-
tributes ID and Trajectory, deemed relevant for subsequent
pattern discovery. In terms of D-World operators, the procedural
semantics of the above statement is

πID,Trajectory (σtype="vehicle"(Trajectories))

In the remainder of this subsection, we assume that the model
definition statement in subsection 4.1 is issued over the answer to
Q1 to specify the discovery of a model named T_Patterns.
Hybrid Manipulation of Raw Data and Models. The manip-
ulation of pattern objects in the M-World enables more advanced
uses of the SELECT-FROM-WHERE statement. By suitably joining
data within the D-World and models in the M-World, it is possible
to find out the raw data that meets a particular constraint on some
feature of a certain pattern. This is exemplified next, by means of
increasingly expressive formulations of a same query Q2. We start
with the selection of all trajectories inside the l-th T-pattern of the
foresaid model T_Patterns.

SELECT T.*
FROM Trajectories T, T_Patterns TS

WHERE TS[[l]].contains(T.Trajectory)

Here, notation TS[[l]] denotes the l-th pattern of the T_Patterns
object. The hybrid nature of the entities within the FROM clause re-
veals that the semantics of Q2 can be defined as

κ1(Trajectories)[[l]] 1contains Trajectories

which corresponds to a specific instantiation of a 2W Model
populate operator. The above query is not really user-oriented,
since it provides the user with a nonrealistic mechanism for manip-
ulating both data and models, which forces her/him to tentatively
find the desired answer to her/his own requirements. In general, a
user is not expected to blindly issue such a query, in the absence of
further information with which to contextualize the question for the
l-th pattern. Whenever contextualization is necessary for query for-
mulation, MO-DMQL allows the formulation of more sophisticated
statements, in which questions like the l-th singleton are functional
to identify one pattern in a subset of singletons satisfying a same
criterion. As an example, let us assume that the user is interested
in the T-patterns sited on the left of the city centre and that, from
the visual inspection of the city road map, it is possible to identify
a certain number of such patterns in the specific area of the city
map. In such a case, the user may properly ask for the trajectories
included in the l-th of such T-patterns, to better understand and/or
further analyze mobility throughout the specific city area. The be-
low statement reformulates Q2 to meet the foresaid requirement
and involves table Places (introduced in section 3.2), that here is
assumed to provide a localization for the different areas of the city
map:

SELECT T.*
FROM Trajectories T, T_Patterns TS, Places P

WHERE Places.id="centre",
(TS.west(Places.Region))[[l]].contains(T.Trajectory)

Procedurally, answering to the above statement involves two steps,
i.e. singleton selection and hybrid manipulation. If f indicates the
following algebraic expression concerning the identification of the
l-th T-pattern among those on the left of city centre

κ1(Trajectories).west(πRegion(σID=”centre”(Places))) (f)

the overall semantics of Q2 is

f [[l]] 1contains Trajectories

Alternatively, the user may be indifferently interested in investi-
gating mobility along T-patterns on the left of the city centre and,
hence, ask for all of trajectories therein. Q2 would now be formu-
lated as the following MO-DMQL statement

SELECT T.*
FROM Trajectories T, T_Patterns TS, Places P

WHERE Places.id="centre",
(TS.west(Places.Region))[[·]].contains(T.Trajectory)

whose semantics follows

f [[·]] 1contains Trajectories

Progressive Mining Tasks. The possibility of specifying suitable
population operators in MO-DMQL allows multiple stages of anal-
ysis for the mining results. For instance, to diagnose the causes
of mobility congestion, the user may wish to gain an insight into
the collective movement of the vehicles in the answer to the last
Q2. In particular, she/he may focus on the ones that move close
to one other for longer than 10 time units. The following model-
definition statement specifies the discovery of groups of vehicles
moving close to each other.

CREATE MODEL Moving_Clusters
AS MINE MC

FROM (SELECT T.*
FROM Trajectories T, T_Patterns TS, Places P
WHERE P.ID="centre",

(TS.west(P.Region))[[·]].contains(T.Trajectory))

This pattern discovery task involves the execution of the moving
cluster algorithm MC, that is one of the schemes in [19]. Notice that
the above task specification should be supplemented with a WHERE
clause, providing a suitable setting for the algorithm parameters,
which is here deliberately omitted, being of no practical relevance
for illustration purposes. Procedurally, its meaning is

κ2(f [[·]] 1contains Trajectories) (s)

where κ1 is the T-pattern mining algorithm and κ2 indicates the
adopted technique for unveiling moving clusters.

Despite their complex semantics, population statements provide
a simple mean to manipulate data in MO-DMQL. Query Q3 finds
all moving objects in Trajectories, that at time t are inside a
moving cluster, whose elements move for at least 10 time units:

SELECT Trajectories.*
FROM Trajectories T, Moving_Clusters MC

WHERE (MC.move_for(10))[[·]].inside_at(t,T.Trajectory)

Although moving clusters where not formally defined in sec-
tion 3 for lack of space, in the above statement we adopt them delib-
erately for illustration purposes. In particular, two suitable pattern
operations are exploited. In particular, move_for(·) is a retrieval
operation of the composite pattern object MC, which yields a new
instance of the moving clusters abstract data type. This groups the
singletons of p that move together for at least a certain amount of
time. Instead, inside_at(·, ·) is defined for the individual mov-
ing cluster in the collection MC and returns whether a particular
moving point of Trajectories resides within MC[[i]] at a given
point in time t. The semantics of Q3 in the 2W Model algebra is
reported below

(s.move_for(10))[[·]] 1inside_at(t) Trajectories

where s succinctly denotes the procedural definition of the fore-
said Moving_Clusters model reported above.

5. MO-DMQL ENGINE
Hereafter we discuss the design of the DAEDALUS framework,

an innovative computational engine, that supports the user in spec-
ifying and refining mining objectives as well as combining multi-
ple strategies for analyzing movement data. More specifically, the

process of knowledge discovery from moving object data can be
seen as an interaction between the data mining engine and the end
user, where the latter formulates a query or a statement in MO-
DMQL(that describes the patterns of her/his interest) and the for-
mer returns the required results.

DAEDALUS supports two extreme types of analytical users: the
domain expert and the data mining expert. The former is supported
in specifying and refining the analysis goals by means of highly
expressive declarative queries. On the contrary, the latter masters
the knowledge discovery process and aims at constructing com-
plex vertical analytical solutions and, hence, he/she is supported in
specifying and refining the analysis goals by means of procedural
abstractions to control the knowledge discovery process.

DAEDALUS implements an object-oriented view of the 2W Model:
the raw spatio-temporal data within the D-World and the pattern
types within the M-World are kept neatly separated as independent
objects and flexibly managed via suitable operators. The engine
supports (i) mining operators (i.e. mining algorithms), that enable
transitions from the D-World to the M-World; (ii) join operators,
that transition in the opposite direction; (iii) world-specific opera-
tors, such as data-from-data and model-from-model operators, that
manipulate, respectively, raw data (e.g. for preprocessing purposes)
and models (e.g. to meet post-processing requirements).

The query execution engine acts on top of a moving object database,
Hermes, an Object-Relational storage layer for persisting both D-
World objects and M-World models. D-World objects are sim-
ply persisted as instances of some predefined data-type in the rich
moving-object data model, natively provided by Hermes. M-World
entities depend on the pursued applicative purposes and, hence, re-
quire the previous definition of suitable pattern types, to be repre-
sented in Hermes.

In DAEDALUS, model definition statements are processed in
such a way that the involved mining operators trigger the execution
of corresponding mining algorithms over the referred collections
of trajectory data. Populate and world-specific operators are in-
stead delegated to Hermes, that is responsible of computing their
outcome.

5.1 The Hermes Moving Object Database
Hermes [25] is a framework for managing the historical move-

ments of spatial objects, that change their location over time, either
discretely or continuously. The framework is meant for provid-
ing any extensible Object-Relational DBMSs with spatio-temporal
capabilities. Currently, it is developed on a state-of-the-art ORB-
DMS, i.e. Oracle10g [?].

At the heart of Hermes is a Moving Data Cartridge (MDC) [?],
that combines standard data types in the ODMG object model [?]
with both the static spatial data types in the Spatial Oracle car-
tridge [?] and the temporal literal types within the TAU Temporal
Literal Library Data Cartridge [25], to the purpose of defining an
extensible spatio-temporal data model. The latter allows to natively
represent the D-World entities in terms of Moving_Point, Mov-
ing_LineString, Moving_Circle, Moving_Rectangle, Moving_Polygon
and Moving_Collection (useful for collections of moving objects),
i.e. as moving and morphologically changing object geometries.
The individual data types is equipped with a palette of methods,
useful for querying moving object properties and relationships.

Depending on the specific applicative goal, the basic data types
provided by Hermes can be suitably combined to define composite
pattern types, which also enables the representation of the M-World
entities. This feature is at the basis of the plug-in architecture of the
mining engine in the DAEDALUS framework.

Notably, the integration of the Hermes spatio-temporal data-model
within the Oracle ORDBMS results into an intuitive and expres-
sive language for trajectory databases, that essentially extends the
Oracle’s PL/SQL language with spatio-temporal facilities. Such
a language is exploited to support the interactions between DAE-
DALUS and Hermes, i.e. to store and query both D-World and
M-World entities. More specifically, whenever mining and/or pop-
ulate operators are processed in DAEDALUS, the eventual results
(i.e. either new raw data or progressively discovered patterns) are
persisted via statements in the extended PL/SQL language. Such
statements essentially translate movement data and model objects
from the application (i.e. mining algorithms) level into a convenient
object-relational representation within the Hermes storage level. In
principle, this can be accomplished by adopting one of two alterna-
tive design patterns, i.e. either by directly embedding the required
scripts within the mining algorithms or via the engineering of suit-
able stored procedures, providing a centralized access point to the
DAEDALUS engine. This latter option was chosen in the design of
the DAEDALUS framework, as shown in figure 3, since it confers
to the overall framework architecture a high degree of modularity
as well as ease of maintenance and still guarantees processing effi-
ciency.

We next provide a taste of the functionality that the Hermes
database layer enables in the DAEDALUS framework, by means of
an explicative example. Let us suppose that the Trajectories
table stores a set of routes. A typical applicative requirement is to
filter a subset of such trajectories, fulfilling some desirable proper-
ties, upon which to perform a subsequent manipulation task. More
precisely, the pursued goal may be to firstly find those trajecto-
ries, that were active between 6am and 2pm on Friday 29/2/2008,
to the purpose of retrieving their corresponding sub-trajectories
in the specified time period. Next, the identified sub-trajectories
may be exploited to find those routes that spent more than half an
hour inside a certain area, delimited by the two opposite points
< x1, y1 > and < x2, y2 >.

In Hermes, the above manipulation process can be performed by
issuing two simple statements, Q1 and Q2. The former performs a
spatio-temporal filtering of the Trajectories data and yields a
Morning_Trajectories view, from which the desired results
are then obtained through Q2. Specifically, the spatio-temporal
filtering behind Q1 can be formulated as follows:

CREATE VIEW Morning_Trajectories AS
SELECT T.Trajectory.at_period (

TAU_TLL.d_period_sec(
TAU_TLL.D_Timepoint_Sec(2008,2,29,06,00,00),
TAU_TLL.D_Timepoint_Sec(2008,2,29,14,00,00))

)
FROM Trajectories T

Notice here the use of the TAU_TLL data cartridge, that provides
a clear semantics for the time domain as well as a comprehen-
sive set of temporal types, equipped with related primitives [25].
TAU_TLL is also the name of an object, included in the cartridge,
that allows to manage temporal data. In particular, the TAU_TLL.
D_Timepoint_Sec primitive defines a generic point in time and
is often used in conjunction with the TAU_TLL.d_period_sec
facility, that specifies a temporal interval between two time points.
This mechanism is used in the example statement Q1 to filter, start-
ing from the available Trajectories repository, those routes
that were active in the required time period.

The desired results can now be obtained by querying the tem-
poral length of the sub-routes in the Morning_Trajectories
view, via the foresaid statement Q2, whose formulation is reported
below:

SELECT MT.id FROM Morning_Trajectories MT WHERE
(MT.Trajectory.f_intersection

(SDO_GEOMETRY(2003, NULL, NULL,
SDO_ELEM_INFO_ARRAY(1,1003,3),
SDO_ORDINATE_ARRAY(x1, y1, x2, y2))

).f_temp_element().duration() > 1800

This query exploits SDO_GEOMETRY, the basic spatial data type
of the Oracle Spatial Cartridge, that represents the geometry of any
spatial object. The latter is specified through an intricate use of sev-
eral parameters. A discussion of this topic is beyond the scope of
the paper. Further details can be found in [?]. In the specific case
of the above example, SDO_GEOMETRY is used to represent a bi-
dimensional rectangular area, whose opposite ends are represented
by the pair of points < x1, y1 >, < x2, y2 >. For each moving ob-
ject within the Morning_Trajectories view, the Moving-
_Point.f_intersection primitive identifies the portion of
trajectory followed by the object inside the considered area. The
temporal interval taken by object to follow the local route is then
computed via the Moving_Point.f_temp_element facility.
Finally, by means of the TAU_TLL.duration primitive, Q2 fil-
ters those moving points, whose route remained inside the given
area for more than 1800 seconds.

The usefulness and applicability of the server-side extensions
provided by Hermes into the proposed 2W model framework will
be further demonstrated in section 6.

5.2 DAEDALUS Anatomy
The software architecture of the DAEDALUS framework, shown

in fig. 3, is designed to meet two desirable requirements for any
data-mining query-processing system. Firstly, it implements the
2W Model algebraic framework, which enables progressive query-
ing and mining of movement data. Secondly, it processes state-
ments in MO-DMQL, which provides the end user with an intu-
itive syntax for the definition of the required patterns and a uniform
mechanism for handling both movement data and patterns.

Figure 3: DAEDALUS anatomy

The User interface component provides the user with a front-
end, where to formulate MO-DMQL statements and visualize the
corresponding results.

The Controller is the core component in the DAEDALUS frame-
work, that is responsible of processing the above statements, via a

suitable coordination of the tasks performed by all other compo-
nents in the framework.

Precisely, the individual statement is validated by the Parser, that
then converts it into an equivalent OQL syntax, from which a suit-
able processing plan (i.e. an ordered sequence of steps) is built for
answering the statement. Plans are distinguished on the basis of the
nature of the statement currently processed. Precisely, statements
for data/model querying or manipulation are delegated to the Her-
mes data layer. Instead, model definition statements involve a very
complex management process, that is detailed later.

The DBManager provides centralized access to the data layer.
Basically, it interacts with the stored procedures in the extended
PL/SQL language (mentioned in subsection ??) in order to store
both movement data and patterns. Furthermore, the component
exposes facilities for the retrieval of such entities. These facili-
ties transparently perform a complex transformation of any entity
from the object-relational representation at the Hermes layer to the
object representation at the application level. This is achieved by
exploiting the Translation Libraries, that essentially convert one
representation into other. In practice, the management of a same
entity at both the data and application levels requires the addition of
suitable wrappers to the Translation Libraries, that allow to encap-
sulate Hermes entities into application-level objects and viceversa.

The Object Store is an object repository, that acts as a cache with
a twofold purpose: to speed up processing and partially mitigate
the object-relational impedance mismatch. The cache transparently
makes previously-retrieved data objects available to the mining op-
erator, without re-querying the database layer. For the same reason,
it also stores the discovered mining models, before these are per-
sisted within the database layer.

The Mining Engine is an environment for the management of a
collection of mining algorithms. While processing a given model-
definition statement, the Controller asks it to execute the one in-
voked by the MINE clause of the statement itself.

The interaction between the above components is discussed be-
low, in the context of the management of model definition state-
ments. As anticipated, these originate very complex processing
plans, roughly consisting of the following steps. Initially, the in-
put parameters for the mining algorithms are extracted from the
data layer. This step typically involves the retrieval of movement
data, whose size can be huge. In such cases, the possible reiter-
ated extraction of the same data, for subsequent processing tasks,
can degrade the processing time and, hence, the performance of the
overall DAEDALUS framework. To overcome such a shortcoming
the extracted data is cached within the Object Store, which prevents
from subsequently re-querying the database layer. To this point, the
Mining Engine is activated by the Controller to the purpose of ex-
ecuting the mining algorithm invoked in the MINE clause of the
model definition statement currently processed. The patterns un-
veiled by the algorithm are not directly stored into the Hermes data
layer. Rather, the discovered model objects are cached into the Ob-
ject Store, from where these can be rapidly retrieved by the mining
algorithms for possible later processing. Here, the Controller con-
verts such model objects into an object-relational representation,
by exploiting the Translation Libraries and, then, persists them into
the Hermes data layer through the DBManager.

The results of the processed model definition statement are dis-
played by the Controller on the User Interface, by means of an
appropriate visualization.

In the overall architecture of the DAEDALUS framework, each
component is neatly decoupled from the others and their interac-
tions are dynamically established and governed by the Controller,

that conforms to a specific coordination protocol, whose role is to
release the Controller itself from knowing and directly dealing with
the inner peculiarities of the individual components. Essentially,
the Controller knows only the interfaces exposed by the individ-
ual components, on the basis of their role in the framework. This
guarantees a high degree of modularity and extensibility. Further
components with new roles can be integrated within DAEDALUS
with minimum effort and maintenance, i.e. by simply specifying
their interfaces. As an example, this may be case of either the
adoption of multiple user interfaces, to serve different visualization
requirements of the end user, or the integration of a plan optimizer,
to speed up MO-DMQL statement processing. Also, the existing
components can be replaced with distinct ones, as in the case of the
adoption of a different moving-object database layer.

Modularity and extensibility are also major aspects of the in-
ner design of the Translation Libraries and Mining Engine compo-
nents. Indeed, both support the integration of plug-ins devoted to
extend the capabilities of the DAEDALUS framework. Precisely,
multiple mining algorithms can be deployed into the Mining Engine
environment, to the purpose of enlarging the spectrum of the sup-
ported mining operators, i.e. of possible patterns discoverable from
movement data. In general, the deployment of a mining algorithm
requires the definition of a suitable stored-procedure for storing the
newly added patterns in some convenient object-relational repre-
sentation within the Hermes layer as well as the specification of its
application-level counterpart. The latter is provided as a Pattern
type plug-in for the Translation Libraries, that also implements an
ad-hoc scheme for translating one representation into the other. Be-
sides, further Data type plug-ins can be deployed within the same
Translation Libraries component, for the definition of appropriate
object-oriented representations, that are exploited at the application
level to encapsulate the raw movement data, resident at the Hermes
layer. Both types of plug-ins define suitable wrappers with which
to encapsulate both raw data and mining results at the application
level. Such wrappers are actually manipulated by the mining algo-
rithms.

As a final remark, in the current implementation of the DAE-
DALUS framework, a single plug-ins is deployed within the Min-
ing Engine environment, that provides an implementation of the T-
pattern mining algorithm [5]. Similarly, the Translation Libraries
comprise a single plug-in, that specifies the object-oriented rep-
resentation corresponding to the complex Moving_Point data
type within Hermes.

Modularity and extensibility are also major aspects of the in-
ner design of the Translation Libraries and Mining Engine compo-
nents. Indeed, both support the integration of plug-ins devoted to
extend the capabilities of the DAEDALUS framework. Precisely,
multiple multiple mining algorithms can be deployed into the Min-
ing Engine environment, to the purpose of enlarging the spectrum
of the supported mining operators, i.e. of possible patterns discov-
erable from movement data. In general, the deployment of a min-
ing algorithm requires the definition of a suitable stored-procedure
for persisting the newly added patterns in some convenient object-
relational representation within Hermes as well as the specifica-
tion of its application-level counterpart. The latter is provided as a
Pattern type plug-in for the Translation Libraries, that also imple-
ments an ad-hoc scheme for translating one representation into the
other. Besides, further Data type plug-ins can be deployed within
the same Translation Libraries component, for the definition of ap-
propriate object-oriented representations, that are exploited at the
application level to encapsulate the raw movement data, resident
at the Hermes layer. Both types of plug-ins define suitable wrap-

pers with which to encapsulate both raw data and mining results
at the application level. Such wrappers are actually manipulated
by the mining algorithms. As a final remark, in the current im-
plementation of the DAEDALUS framework, a single plug-ins is
deployed within the Mining Engine environment, that provides an
implementation of the T-pattern mining algorithm [5]. Similarly,
the Translation Libraries comprise a single plug-in, that specifies
the object-oriented representation corresponding to the complex
Moving_Point data type within Hermes.

6. CONCLUSIONS AND FUTURE WORK
We proposed MO-DMQL, a language for formulating analytical

statements with which to progressively mine and query movement
data. The procedural semantics of the language is founded on the
2W Model algebraic framework, that allows to accommodate and
combine disparate mining tasks into a multi-step knowledge dis-
covery process. Finally, we designed DAEDALUS, an innovative
computational engine for processing MO-DMQL statements.

There are some challenging issues, that are worth further re-
search. Foremost, the identification of a compact 2W Model alge-
bra, consisting of a fixed, minimal set of operators. Analogously to
the case of the 3W Model framework, this is useful in two respects,
i.e. the possibility of expressing the required patterns via suitable
combinations of such basic operators, rather than relying on an ar-
bitrary number of task-oriented mining operators, and the develop-
ment of a solid theoretical background concerning expressiveness
and complexity results. Also, the development of strategies for op-
timizing processing plans would increase the overall performance
of the proposed MO-DMQL engine.

Acknowledgements
This work has been partially supported by the European Commu-
nity IST-6FP-014915 GeoPKDD project.

7. REFERENCES
[1] P.K. Agarwal, L. Arge, and J. Erickson. Indexing Moving

Points. In Proc. of ACM Symp. on Principles of Database
Systems, pp. 175 – 186, 2000.

[2] L. O. Alvares, et al. A Model for Enriching Trajectories with
Semantic Geographical Information. In Proc. of the ACM Int.
Symp. on Advances in Geographic Information Systems, pp.
162 – 169, 2007.

[3] T. Calders, L. V. S. Lakshmanan, R.T. Ng, and J. Paredaens.
Expressive Power of an Algebra for Data Mining. ACM
Transactions on Database Systems, 31(4):1169–1214, 2006.

[4] E. Frentzos, K. Gratsias, and Y. Theodoridis. Index-based
Most Similar Search. In Proc. of Int. Conf. on Data
Engineering (ICDE’07), 2007.

[5] F. Giannotti, M. Nanni, D. Pedreschi, and F. Pinelli.
Trajectory Pattern Mining. In Proc. of ACM SIGKDD Int.
Conf. on Knowledge Discovery and Data Mining, pages pp.
330 – 339, 2007.

[6] R. H. Güting and M. Schneider. Moving Objects Databases.
Elsevier, 2005.

[7] L. Forlizzi, R. H. Güting, E. Nardelli, and M. Schneider. A
Data Model and Data Structures for Moving Objects
Databases. In Proc. ACM SIGMOD Int’l Conf. on
Management of Data, 2000.

[8] M. Nanni, B. Kuijpers, C. Korner, M. May, and D. Pedreschi.
Spatiotemporal Data Mining. In F. GIANNOTTI and
D. PEDRESCHI, editors, Mobility, Data Mining, and

Privacy: Geographic Knoweledge Discovery.
Springer-Verlag, 2008.

[9] G. Manco, M. Baglioni, F. Giannotti, B. Kujpers,
A. Raffaeta, and C. Renso. Querying and Reasoning for
Spatio-Temporal Data Mining. In GIANNOTTI F. and
PEDRESCHI D., editors, Mobility, Data Mining, and
Privacy: Geographic Knoweledge Discovery.
Springer-Verlag, 2008.

[10] M. Kifer, G. Lausen, and J. Wu. Logical Foundations of
Object-Oriented and Frame-based Languages Journal of the
ACM, 42(4):741 – 843, 1995.

[11] O. Wolfson, B. Xuand, S. Chamberlain, and L. Jiang.
Moving Objects Databases: Issues and Solutions. In Proc.
Int Conf. on Scientific and Statistical Database Management,
pp. 111 – 122, 1998.

[12] Jose A. Lema, L. Forlizzi, R. Güting, E. Nardelli, and M.
Schneider. Algorithms for Moving Objects Databases. The
Computer Journal, 46(6):680–712, 2003.

[13] R.H. Güting, M.H. Böhlen, M. Erwig, C.S. Jensen,
M. Schneider, N.A. Lorentzos, and M. Vazirgiannis. A
Foundation for Representing and Querying Moving Objects.
em ACM Transactions on Database Systems. volume 25,
pages 1–42. 2000.

[14] R.H. Güting, V.T. de Almeida, and Z. Ding. Modeling and
Querying Moving Objects in Networks. VLDB Journal,
15(2):165 – 190, 2006.

[15] T. Imielinski and H. Mannila. A Database Perspective on
Knowledge Discovery. Commun. ACM, 39(11):58–64, 1996.

[16] O. Wolfson, A.P. Sistla, S. Chamberlain, and Y. Yesha.
Updating and Querying Databases that Track Mobile Units.
Distributed and Parallel Databases, 7:257 – 387, 1999.

[17] A. Prasad Sistla, Ouri Wolfson, Sam Chamberlain, and Son
Dao. Modeling and Querying Moving Objects. In W. A.
Gray and Per-Åke Larson, editors, ICDE, pp. 422–432. IEEE
Computer Society, 1997.

[18] T. Johnson, L. Lakshmanan, and R.T Ng. The 3W Model and
Algebra for Unified Data Mining. 26th Int. Conference on
Very Large Data Bases, 21 – 32, 2000.

[19] P. Kalnis, N. Mamoulis, and S. Bakiras. On Discovering
Moving Clusters in Spatio-Temporal Data. In C. B.
Medeiros, M. J. Egenhofer, and E. Bertino, editors, SSTD,
volume 3633 of Lecture Notes in Computer Science, pages
364–381. Springer, 2005.

[20] V. T. Almeida, Ralf Hartmut Güting, and Thomas Behr.
Querying Moving Objects in Secondo. In Proceedings of
Mobile Data Management, page 47, 2006.

[21] S. Gaffney and P. Smyth. Trajectory Clustering with Mixture
of Regression Models. In KDD Conf., pages 63–72. ACM,
1999.

[22] J.G. Lee, J. Han, and K.Y. Whang. Trajectory clustering: A
Partition-and-Group Framework. In Proc. of ACM SIGMOD
Int. Conf. on Management of Data, pages 593 – 604, 2007.

[23] S. Abiteboul, R. Hull, and V. Vianu. Foundations of
Databases. In Addison-Wesley, 1995.

[24] M. Hadjieleftheriou, G. KolliosĘ, D. Gunopulos, and V. J.
Tsotras. On-Line Discovery of Dense Areas in
Spatio-temporal Databases. In Proc. of Int. Int. Symposium
on Spatial and Temporal Databases, pp. 306 – 324, 2003.

[25] N. Pelekis and Y. Theodoridis. Boosting Location-based
Services with a Moving Object Database Engine. In Proc. of
Int. ACM SIGMOD/PODS Workshop on Data Engineering

for Wireless and Mobile Access, pp. 3 – 10, 2006.
[26] S. Spaccapietra, et al. A Conceptual View on Trajectories.

Data & Knowledge Engineering, 65:(1), pp. 126 – 146, 2008.

