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Abstract

This paper presents “Self-Chord”, a bio-inspired P2P
algorithm that can be profitably adopted to organize the
information service of distributed systems, in particular
of Computational Grids. Self-Chord inherits the ability
of Chord-like structured systems for the construction and
maintenance of an overlay of peers, but features enhanced
functionalities deriving from the activity of ant-inspired mo-
bile agents, such as autonomy behavior, self-organization
and capacity to adapt to a changing environment. The
agents, through simple local operations driven by proba-
bilistic choices move resource keys across the ring of peers,
and sort them in a self-organizing fashion. Self-Chord fea-
tures three main benefits with respect to classical P2P struc-
tured systems: (i) it is possible to give a semantic meaning
to keys, which enables the execution of “class” and range
queries; (ii) the keys are fairly distributed over the peers,
thus improving the balancing of storage responsibilities;
(iii) maintenance load is reduced because it is not neces-
sary to immediately place the keys published by new or re-
connecting peers: the mobile agents will spontaneously re-
organize the keys in a time that is logarithmic with respect
to the network size. The efficiency and effectiveness of Self-
Chord have been assessed with a simulation framework and
a prototype, which is available at the Web page http://self-
chord.icar.cnr.it.

1 Introduction

The information service is an important component
of distributed computing systems, such as computational
Grids [11], since it provides information and enables the
discovery of the resources that can be used to build and run
complex applications. The dynamic nature of Grids makes
human administrative intervention difficult or even unfea-
sible and centralized information services are proving unfit
to scale to hundreds or thousands of nodes. To tackle these

issues, the scientific community has proposed to design in-
formation services according to the P2P paradigm, which
offers better scalability and adaptivity features [23].

P2P models are classified intounstructuredand struc-
tured, based on the way nodes are linked to each other and
data about resources is placed on the nodes [2]. In unstruc-
tured systems, resources are published by peers without any
global planning. This facilitates network management but
reduces the efficiency of discovery procedures. In struc-
tured systems, resources are associated with specific hosts,
often throughDistributed Hash Tables. For example, in
Chord [21], each peer is assigned a binary code, or “key”,
by a hash function, and peers are organized in a ring and or-
dered following the values of their keys. Resources are also
indexed by keys, and each resource is consigned to the peer
that has the same key as the resource or, if such a peer is not
present in the ring, to the first following peer, called “suc-
cessor”. Other structured P2P systems use different struc-
tures to organize the peers, but the basic principle is the
same: every resource is assigned to a well specified peer
on the structure. Structured systems are generally more ef-
ficient in terms of search time and network load but, with
respect to unstructured systems, can limit the expressive-
ness of discovery requests: users are only allowed to search
for specific resources but cannot issue complex or “range”
queries. Moreover, structured systems may be difficult to
administer in the case of high churn rate, because new or
modified resources must be immediately (re)assigned to the
corresponding peers.

Along with the P2P approach, another interesting and re-
cent trend is the design ofself-organizing Grids[9], often
inspired by biological systems such as ant colonies and in-
sect swarms. Complex functionalities are achieved by mo-
bile agents that perform simple operations at the local level,
but at the global level engender an advanced form of in-
telligence that would be impossible to obtain with central-
ized or human-driven strategies. Bio-inspired techniques
have already been exploited to solve a number of com-
plex problems, such as task allocation, routing problems,
graph partitioning, etc. [5]. Recently, these techniques have



been proposed to design “self-structured” P2P systems, so
called because the association of keys with hosts is not pre-
determined but adapts to the modification of the environ-
ment [10, 16].

This paper presentsSelf-Chord, a P2P system that in-
herits from Chord the ability to construct and maintain a
structured ring of peers, but features enhanced functional-
ities achieved through the activity of ant-inspired mobile
agents. Self-Chord does not place resource keys to speci-
fied hosts, as Chord does: this feature is actually unneces-
sary and strongly limits the system flexibility. Conversely,
Self-Chord focuses on the real objective, which is the re-
ordering of keys over the ring, and their fair distribution to
the peers. Self-Chord agents move resource keys across the
ring and sort them in a self-organizing fashion. They act
on the basis of probabilistic choices, which are driven by
the system state in the local region. The sorting of keys
allows discovery operations to be executed in logarithmic
time, exploiting the pointers (thefinger tables) provided by
the Chord structure. In Self-Chord, the length of the next
jump of a query message is calculated by making a propor-
tion between the peer indexes, which are ordered over the
ring, and the resource keys, which are also ordered in an in-
dependent fashion. Simulation results show that the number
of hops of discovery messages is comparable to that expe-
rienced in Chord, therefore this basic functionality is un-
altered. However, the bio-inspired approach of Self-Chord
leads to several benefits with respect to Chord [21], as illus-
trated in the following:

(i) In Chord, both peer and resource keys are mapped by
hash functions into the same number of bits, which is usu-
ally very large. Each resource is given a unique key, and
is assigned to a well specified host. This obliges users to
search for a specific resource, using its resource key as a
search parameter, but it is not possible to issue a query for
a class of resources. The same restriction is also present
in other structured P2P systems. In Self-Chord, there is no
relation among the space of resource keys and the space
of peer indexes, because they can be defined on different
numbers of bits. In this way it becomes possible to define
“classes” of resources; a class being defined as a set of re-
sources that share common characteristics, and are mapped
to the same key value by a hash function. This way, a user
can explore the network to find a number of resources be-
longing to the same class and then select the most appro-
priate for his/her purpose. This is a frequent issue in Grid
Computing: for example, a user might search for hosts for
which the CPU speed and the memory size are within a
specified range, and choose among the discovered results
in a successive phase.

(ii) The flexibility assured by Self-Chord for the defini-
tion of the space of resource keys enables a semantic mean-
ing to be given to them. For example, each bit in the re-

source key may represent the presence/absence of a given
topic [19]: this is appropriate if resources are documents,
because it is possible to specify the topics on which a given
document focuses. Alternatively, a resource or service can
be mapped into a binary key by alocality preservinghash
function, as for example in [6]. If such functions are used
in Self-Chord, resources that are similar, but not enough to
belong to the same class, are assigned similar keys. Both
methods allow “range queries” to be executed efficiently:
since keys related to similar resources are placed into neigh-
bor hosts, they can easily be found with a single discovery
request.

(iii) Structured systems can produce imbalance problems
depending on the location of peers and the distribution of
keys. As already mentioned, in Chord a resource is man-
aged by the peer whose index is equal to the resource key or
by its successoron the ring. Therefore, a peer might store
a large number of keys if the distance between this peer
and its predecessor is large. If keys are not uniformly dis-
tributed, because some resources are more popular than oth-
ers, imbalance problems are even worse, because the peers
that store popular keys may be overloaded. In Self-Chord,
the number of keys stored by a peer does not depend neither
on the distance from its predecessor nor on the popularity
distribution of keys. Instead, the keys are fairly distributed
over the peers that are actually present in the system, thus
fostering a fair balancing of storage responsibilities. More-
over, results show that the efficiency of discovery operations
is not affected by a non-uniform distribution of keys.

(iv) In Chord, appropriate operations are necessary when
a peer joins the ring or when new resources are published:
these resources must be immediately assigned to the peers
whose indexes match the resource keys. These opera-
tions are not necessary in Self-Chord, because the mobile
agents are always active also after the correct reordering
has been achieved, and will spontaneously reorganize the
keys. Therefore, in Self-Chord the computational load is
constant, whereas in Chord it strongly depends on the dy-
namic behavior of the system, for example on the churn
rate of peers. In Self-Chord, the placement of new/modified
keys in the correct position of the ring is achieved in a log-
arithmic time, so it is as fast as a resource discovery opera-
tion. Experiments have been performed to assess the system
reaction in the case that a large number of peers join the ring
at the same time. It was found that the keys are reordered
very rapidly, which means that Self-Chord is scalable (keys
are continuously reordered as the network grows) and ro-
bust with respect to environmental changes.

All the mentioned results were obtained both with an
ad hoc event-based simulator and with a prototype avail-
able at the Web site http://self-chord.icar.cnr.it. This pro-
totype is based on the Open-Chord open source imple-
mentation of the Chord system, available at http://open-
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chord.sourceforge.net/.
This paper aims to make a novel contribution with regard

to two aspects. First, it opens a new research avenue for P2P
frameworks, because it presents a P2P system that inherits
the beneficial characteristics of structured systems, but ex-
ploits a self-organizing algorithm to distribute the resource
keys on the structure, which improves scalability, flexibil-
ity and load balancing characteristics. It should be noted
that, while the presented system is partly based on Chord,
similar algorithms can be defined for any structured system.
For example, in CAN [20], resources are placed in a multi-
dimensional structure: the position of a resource on each
dimension is computed from the value of a corresponding
numerical parameter. A bio-inspired algorithm can be de-
vised also in this case: the agents would traverse the net-
work across the n-dimensional structure to reorder the keys.

Secondly, Self-Chord fosters the integration of Grid and
P2P worlds. In fact, it supports class queries, issued to dis-
cover the resources that belong to a given class, as well as
range queries. These queries are typical in Grid systems.
When a Grid complex application has to be designed, a user
generally needs to collect a number of basic services that
will be orchestrated to compose the application. The ul-
timate selection must be made at run time: owing to the
volatility and dynamic nature of Grid resources and ser-
vices, it is possible that some of them become unavailable
or their characteristics change with time: in this case, alter-
native resources, among those collected in the search phase,
may be used.

The rest of the paper is organized as follows: the follow-
ing section illustrates the state of the art in the mentioned
fields. Section 3 gives an overview of the Self-Chord model
and describes how the model organizes the resource keys
on the network. Section 4 gives more details about the Self-
Chord algorithm and the operations that are performed by
ant-inspired mobile agents to correctly place the keys. Sec-
tion 5 shows the results of simulation experiments that con-
firm the effectiveness of Self-Chord, with particular empha-
sis given to important features such as scalability, load bal-
ancing and dynamic behavior. Finally, Section 6 concludes
the paper.

2 Related Work

In most distributed systems, and particularly in Grid sys-
tems, information services are implemented in accordance
with centralized or hierarchical approaches, mostly because
the client/server approach is still used today in the major-
ity of distributed systems and in Web service-based frame-
works. However, these approaches are impractical in large
multi-institutional Grids because they undergo severe draw-
backs such as poor scalability, limited autonomy of Grid or-
ganizations, unfair balance of load, lack of fault-tolerance

owing to the presence of single points of failure or bottle-
necks [17].

In the last few years, the P2P paradigm has emerged as
an alternative to centralized and hierarchical approaches.
Novel approaches for the construction of scalable and ef-
ficient Grid information systems need to have the following
properties [14, 24]: self-organization (meaning that Grid
components are autonomous and do not rely on any external
supervisor), decentralization (decisions are to be taken only
on the basis of local information) and adaptivity (mecha-
nisms must be provided to cope with the dynamic charac-
teristics of hosts and resources).

Requirements and properties of “Self-Organizing Grids”
are sketched in [9]. In the architecture proposed in [1], Grid
nodes self-organize in groups on the basis of the similarity
among the resources that they offer to the network. Each
group elects a leader node that receives requests tailored to
the discovery of resources which are likely to be maintained
by the group. This is an interesting approach but it still has
non-scalable characteristics: for example, it is requiredthat
each Grid node has a link to all the leader nodes, which is
problematic in a very large Grid. A self-organizing mech-
anism is also exploited in [7] to build an adaptive overlay
structure for the execution of a large number of tasks in a
Grid.

The Self-Chord algorithm presented in this paper shares
several characteristics from mobile agent systems (MAS),
which are often adopted to emulate the behavior of biologi-
cal systems [22]. For example, insects and birds can be imi-
tated by mobile agents that travel through the hosts of a Grid
and perform their simple operations. Agent-based systems
may inherit useful and beneficial properties from biologi-
cal counterparts, such as self-organization, decentralization
and adaptivity. Coordination among agents is essential to
improve the effectiveness of their tasks, in particular forre-
source discovery. It is usually achieved through a direct
exchange of messages among agents, as in theUWAgents
system [12]. Conversely, Self-Chord exploits thestigmergy
paradigm [13]: agents interact and cooperate through the
modifications of the environment that are induced by their
operations. In fact, the behavior of an agent is driven by
the state of the local region of the Grid, which in turn is
modified by the operations of other agents.

Self-Chord is specifically inspired by ant algorithms, a
class of agent systems that can solve very complex prob-
lems by imitating the behavior of some species of ants [5].
Ant algorithms are one of the most popular examples of
“swarm intelligence” systems, in which a number of agents
follow very simple rules with no centralized control, and
complex global behavior emerges from their local interac-
tions. Among such systems, Anthill [4] is tailored to the
design, implementation and evaluation of P2P applications
based on multi-agent and evolutionary programming. It is
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composed of a collection of interconnectednests. Each nest
is a peer entity that makes its storage and computational
resources available to swarms ofants, mobile agents that
travel the Grid to satisfy user requests. However, whereas
in Anthill, ants are generated after user requests, in Self-
Chord agents operate continuously and autonomously, since
the reorganization of keys is essential for the efficient per-
formance of discovery requests.

Self-Chord puts itself along the research avenue of P2P
resource discovery algorithms. Structured P2P algorithms
are usually efficient in file sharing P2P networks, but struc-
ture management can be cumbersome and poorly scalable
in large and dynamic Grids, especially when the churn rate,
the frequency of peer disconnections, is high. Owing to its
delf-organizing nature, Self-Chord proves to be both scal-
able and robust with respect to environmental modifica-
tions. Moreover, one of the main objectives of Self-Chord
is to serveclass and range queries. The efficient man-
agement of these queries is a fundamental requirement in
Grid systems, as users do not often need to discover well-
defined resources, but resources having more loosely speci-
fied characteristics. For example, a query might be issued to
discover a supercomputer with CPU speed comprised in a
given range, or a Web service whose estimated service time
is within a given interval. A naive way to manage these
queries is to issue as many simple queries as are sufficient
to cover all the possible values of target keys, and then col-
lect the results. This solution is clearly inefficient, since it
does not exploit the similarity of the target keys specified
in the different simple queries. The efficient execution of
range queries is indeed a very tough issue for Grids and
P2P systems [8]. Some types of structured systems are ca-
pable of serving range queries, but often at the cost of either
maintaining complex tree-like structures [18] or increasing
the traffic load by issuing a number of sub-queries [3]. The
Self-Chord information system naturally supports class and
range queries. As mentioned in the introductory section,
this feature derives from the flexibility provided by Self-
Chord in the definition of the number of bits of resources
keys, and from the utilization of two separate algorithms
that are used to reorder the peers and the keys in an inde-
pendent fashion.

3 The Self-Chord Model

In Self-Chord, peers are organized in a logical ring. Each
peer is given an index that is obtained with a uniform hash
function and can have values between0 and2Bp −1, where
Bp is the number of bits in peer indexes. The ring is con-
structed and maintained as in Chord (see [21] for the de-
tails).

Each published resource is associated with a binary key
that will be used to discover and access the resource. The

values of resource keys range from0 to 2Br − 1 and can be
obtained in two ways. The first way is through the use of
a locality preservinghash function, so that similar keys are
associated with similar resources. The number of possible
values of the resource key,Nc = 2Br , can be viewed as the
number of classes in which the resources are categorized.
As mentioned in the introductory section, aclassis defined
as a set of resources having a specified set of characteristics,
and therefore associated to the same value of the key. Alter-
natively, resource keys have a semantic meaning: for exam-
ple, the value of each bit indicates the presence/absence of
a specific topic, for example if the resource is a document.
Note that in both cases, similar resources are given similar
key values, which enables the support of “range” queries.

In Chord,Bp andBr must be set to the same value, be-
cause there is a precise association between resources and
peers. Conversely, in Self-Chord the values ofBp andBr

can be set independently: the granularity of resource cate-
gorization may be chosen depending on the specific appli-
cation domain, without any constraint related to the range of
peer indexes. Consequently, there is no obligation to assign
a key to the peer having the same index, or to its successor,
as in Chord. However, to inherit the efficiency of resource
discovery operations offered by Chord, the resource keys
must be sorted on the ring. Whereas in Chord sorting is the
outcome of a global planning, in Self-Chord it is obtained
through the operations of ant-inspired agents that move the
resource keys across the ring.

For their work, the agents use the concept of peercen-
troid. The centroid of a peer is defined as the real value,
between0 andNc, which minimizes the average distance
between itself and all the keys stored by this peer and the
two adjacent peers on the ring1. For example, withNc=64,
a peer that stores three keys with values{4,6,8} (assuming
for simplicity that the two adjacent peers do not store any
key) has a centroid equal to 6. With another example, a peer
that stores two keys with values{63, 0} has a centroid equal
to 63.5. The centroid value is an indication about the keys
stored in the local region of the ring and is used by agents
to move the keys. In fact, the agents tend to take a key out
of a peer if its value is distant from the peer centroid, and
tend to forward this key towards a peer whose centroid is as
close as possible to the key value. These simple operations
are performed on the basis of local information, and gradu-
ally achieve the global sorting of the keys. The details are
discussed in Section 4.

Agents do not operate forever, but are generated and die
like the real ants from which they are inspired. Each peer,
at the time that it connects to the network, generates an
agent with a given probabilityPgen. The lifetime of this

1Key values are defined in a circular space, in which value 0 succeeds
valueNc − 1: the distance between two values is defined as the length of
the minimum circle segment that separates these values.
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agent is randomly generated with a statistical distribution
whose average is related to the average connection time of
the connecting peer, calculated on the past activity of this
peer. Therefore, the turnover rate and the average number
of operating agents are related to the dynamic characteris-
tics of the network, i.e., to the frequency of peer joinings
and departures. Specifically, if the average connection time
of all the peers isTpeer, and the average lifetime of agents
is Tagent, the average number of agentsNa that circulate in
the network at a given instant of time is associated with the
number of peers present in the network at the same time,
Np, in the following way:

Na
∼= Np · Pgen ·

Tpeer

Tagent

(1)

Notice that this statistical relationship does not imply that
any peer is aware of the values ofTpeer andNp. However,
the formula can be useful to tune the velocity of the reorder-
ing process and the traffic load. For example, if each agent
is given a lifetime equal to the average connection time of
the peer that generates it, it results thatTagent

∼= Tpeer ,
therefore the average number of agents isPgen times the
number of peers connected in the ring.

After a transient phase, the keys will be sorted on the
ring, as the rest of the paper will show. Moreover, the ob-
tained order is very robust with respect to successive modi-
fications of the environment, for example to the connections
and disconnections of peers. The sorting of keys allows
Self-Chord to rapidly serve discovery requests, because it
is possible to send a search message towards the peer that
stores the desired key. Both the sorting process and the dis-
covery procedures exploit Chord-likefinger tables, so as to
assure logarithmic search times, as Sections 4 and 5 will
show.

As mentioned before, the sorting of resource keys is not
tied to the values of peer indexes. To clarify this point, Fig-
ure 1 gives an example of the way resource keys are sorted.
In this sample scenario, the values ofBp andBr are respec-
tively equal to 6 and 3. At the interior of the ring, the figure
specifies the indexes of the peers, whereas at the exterior it
reports, for every peer, the keys stored by the peer (only the
first three keys are shown for simplicity) and the peer cen-
troid c. It can be noted that both the values of centroids and
peer indexes are sorted in clockwise direction. However,
there is no relation between the peer indexes and the values
of the keys stored in the respective peers, because different
approaches are used to sort them. In fact, the peer indexes
are sorted by the Chord management operations, whereas
the resource keys are sorted by the self-organizing opera-
tions of the Self-Chord agents.

Figure 1. Distribution and ordering of re-
source keys in the peers of Self-Chord.

4 Operations of Self-Chord Agents

Each mobile agent gives its contribution to the reorder-
ing of resource keys over the ring. Two different approaches
are discussed in the following: they will be referred to
as “linear” and “logarithmic”, respectively. With the lin-
ear approach, resource keys are moved by agents between
adjacent peers, whereas with the logarithmic approach the
agents can exploit the peer finger tables to hop towards
distant peers. The logarithmic approach is understandably
much faster, but it easily origins a higher imbalance in the
number of keys that are stored by the peers. Therefore, it
will be shown later that a hybrid strategy, which combines
the two basic approaches, leads to the best performance re-
sults.

4.1 Linear Ordering of Keys

With the linear approach, each agent periodically hops
from a peer to its predecessor or successor, depending on
the agent being left-handed or right-handed. When an
agent, which currently is not carrying any key, moves to
a new peer, it must decide whether or not to take a key out
of the visited peer. On the assumption that the centroid of
the current peer isc and the agent is right-handed, the agent
examines only the keys whose valuesr are higher thatc,
because these keys should be moved tosuccessorpeers to
improve the overall ordering. These keys are identified by
evaluating the condition,

c < r < (c + Nc/2)mod(Nc) (2)
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Conversely, a left-handed agent, which moves in counter-
clockwise direction, evaluates the keys that satisfy,

(c − Nc/2)mod(Nc) < r < c (3)

All calculations must take into account the circular or-
dering of peer and resource indexes. To make the follow-
ing discussion more fluent, in the following this assumption
will be given for granted, and an arithmetic moduloNc will
be used. For example, conditions (2) and (3) are simplified
respectively toc < r < c + Nc/2 andc − Nc/2 < r < c.

To foster the correct sorting of keys, it is convenient to
pick keys that are very different from the peer centroid,
whereas the keys that are similar to it are probably already
placed in the correct place. Therefore, the probability of
taking a keyr is defined to be inversely proportional to the
similarity betweenr and the peer centroidc. The similarity
functionf(r, c) and thetakeprobabilityPtake are,

f(r, c) = 1 −
d(r, c)

Nc/2
(4)

Ptake =
kt

kt + f(r, c)
with 0 ≤ kt ≤ 1 (5)

whered(r, c) is the distance betweenr andc, computed on
the circular space of the keys. For example, withNc=64,
d(12, 18.7)=6.7 andd(3, 63.5)=3.5. The value off(r, c) is
comprised between 0 (maximum diversity betweenr and
c) and 1 (maximum similarity). With high probability the
agent takes a key whose value is distant from the peer cen-
troid. This key will be carried by the agent and moved
towards successor or predecessor peers, depending on the
agent being right-handed or left-handed. The parameterkt,
whose value is between 0 and 1, can be tuned to modulate
the take probability. In fact, the probability is equal to 0.50
when the values ofkt andf(r, c) are comparable, whereas
it approaches 1 whenf(r, c) is much lower thankt (i.e.,
when the keyr is very different from the peer centroid) and
0 whenf(r, c) is much larger thankt (i.e., when the keyr
is very similar to the centroid). In this work,kt is set to 0.1,
as in [5].

When an agent that is carrying a key moves to another
peer, it must decide whether or not to leave the key on this
peer. Theleaveprobability,Pleave, is defined regardless the
type of agent, left- or right-handed, and is,

Pleave =
f(r, c)

kl + f(r, c)
with 0 ≤ kl ≤ 1 (6)

wherer is the value of the key carried by the agent and
the similarity functionf(r, c) is computed as in (4). As
opposed toPtake, Pleave is directly proportional to the sim-
ilarity betweenr andc, therefore the agent tends to leave a
key if it is similar to the other keys stored in the local re-
gion of the ring.The parameterkl is set to a higher value

thankt, specifically to 0.5, in order to limit the frequency
of leave operations. Indeed, it was observed that if the leave
probability function tends to be too high, it is difficult for
an agent to carry a key for an amount of time sufficient to
move it into an appropriate Grid region. Here it is worth
specifying that the values of parameterskt andkl have an
impact on the velocity and duration of the transient phase of
the sorting process, but they have little influence on the per-
formance observed under steady conditions. In other words,
Self-Chord was found to be robust with respect to the vari-
ation of these parameters.

Take and leave operations contribute to the correct re-
ordering of keys, because the agents tend to place every key
in a peer that has a centroid value close to the key value.
The progressive sorting is guaranteed by the fact that the
centroid of a peer is calculated not only on the keys stored
in the peer itself, but also on the keys stored by the two
adjacent peers.

4.2 Logarithmic Ordering of Keys

With the logarithmic approach, agents move “linearly”,
through adjacent peers, only when they are not carrying any
key. Thetakeoperations are performed as described in Sec-
tion 4.1. However, once an agent has taken a key from a
peer, it immediately tries to go to the region of the ring
where this key should be deposited, in other words it tries
to jump directly towards the peer whose centroid is as close
as possible to the carried key. To calculate the length of
the jump, the agent exploits the fact that the peer indexes
are ordered and the resource keys are also being ordered.
First, the agent calculates the differencer − c in the arith-
metic moduloNc. Then, it makes a proportion between this
distance, calculated in the space of resource keys, and the
distance between the current peerPs and the “destination”
peerPd, calculated in the space of peer indexes2:

r − c

Nc

=
Pd − Ps

Nr

(7)

Accordingly, the agent tries to jump to a peer whose index
is as close as possible to:

Pd = Ps +
Nr

Nc

(r − c) (8)

To do this, the agent exploits thefinger tableof Ps. In
Chord, theith finger of peerp, denoted byp.finger(i) con-
tains the index of the first peer,d, that succeeds the index of
p by at least2i−1, namelyd = successor(p + 2i−1), i =
1..Bp. The finger table is used by Chord to let the search

2In formula (7),Nr is the number of potential index values that can be
assigned to a peer, and is equal to2

Br
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messages jump to distant peers, so as to speed up the dis-
covery procedures. A search request can be served in a log-
arithmic time, since at every jump of the search message the
search space is halved.

Self-Chord uses abidirectionalfinger table, in which a
second finger table is defined to point to the peers that fol-
low the current peer in thecounterclockwisedirection. Are-
versefinger, denoted asp.rev finger(i), points to the peer
with indexd = predecessor(p−2i−1), i = 1..Bp. This re-
verse finger structure is symmetrical to that used by Chord
and can be easily maintained with the only additional cost
of doubling the storage memory for the fingers. A similar
structure has been defined in the “BiChord” system [15].

After calculating the indexPd, the agent selects the peer
of the finger table whose index is the closest toPd and uses
the corresponding finger to jump to that peer. At the new
peer, the agent evaluates the “leave” operation, in the same
fashion as with the linear approach. If the key is deposited,
the agent will again move with the linear mode, and will
hop to the successor or predecessor peer, until it will take
another key. Conversely, if the leave operation is not per-
formed, the agent will make another “logarithmic” jump,
trying to approach better the region of the ring where the
carried key should be deposited.

The reason why a reverse finger table is used is now
easily explained. While in Chord it is always possible to
choose a finger that points to a peer whose index is not
higher than the target peer, this cannot be assured in Self-
Chord, as the placement of keys over the ring is based on the
agents’ statistical operations, not on a well defined assign-
ment pattern. If only the forward finger table were available,
an agent that overcomes the target peer in the clockwise di-
rection could not move backward, but would be obliged to
perform another round trip in the clockwise direction to re-
turn to the target peer. With a bidirectional finger table, a
key can be moved in both directions, so this problem does
not occur. If the doubled storage memory in an issue, a peer
can simply discard half the pointers, for example by storing
only the fingers corresponding to odd values ofi. The loga-
rithmic approach of Self-Chord is hardly affected by such a
reduction in the number of fingers.

Intuitively, the reordering process is performed much
faster with the logarithmic approach than with the linear, as
a key can be moved through longer and better directed hops.
On the other hand, the linear approach allows a fairer load
balance among peers to be achieved. The two approaches
are compared in Section 4.3, and there it will be shown that
a hybrid approach can be defined to combine the benefits of
both of them.

An important consideration is that the logarithmic ap-
proach implicitly assumes that the values of resource keys
are uniformly distributed. With a non-uniform distribution
(some key values are more popular than others), the calcu-

lation of the target peer, in formula (8), may not be exact.
However, the logarithmic nature of the process can rapidly
compensate possible errors, as will be discussed in Section
5.2.

4.3 Comparison between linear and loga-
rithmic approaches

The linear and logarithmic approaches were evalu-
ated with an event-based simulator, for a sample scenario
in which Br=8 (resources are categorized intoNc=256
classes),Bp=12 (peer indexes are defined over 16 bits),
and the number of peers actually connected in the ring is
Np=256. It is also assumed that the average number of re-
sources published by a peer, referred to asNres, is equal to
10. The actual number of resources of each single peer is
extracted with a Gamma probability function.

The key value of each resource is generated with a uni-
form distribution, therefore at the beginning key values are
distributed randomly; afterwards, the keys are sorted ac-
cording to their values through the operations of Self-Chord
agents. ThePgen probability is set to 1: it means that each
new or reconnecting peer issues exactly one agent, which
will be left-handed or right-handed with equal probabili-
ties. The average timeTmov between two successive agent
movements is set to 10 seconds: after receiving an agent, a
peer forwards it to the next peer after a random interval hav-
ing an average 10 seconds. The next peer can be its succes-
sor/predecessor, or another peer pointed by the finger table,
depending on the adopted approach, linear or logarithmic.
Moreover, it is assumed that each peer has a different av-
erage connection time, and the global average for all the
peers,Tpeer, is set to 3 hours.

To evaluate the efficacy of the Self-Chord sorting pro-
cess, the distances are considered (in the space of resource
keys) between the centroids of every two consecutive peers,
and the mean and the standard deviation of these values
are computed. In fact, when the keys are correctly sorted
across the ring, the centroid values of the peers should be
sorted and equally spaced, and the distance between any
two consecutive centroids should always be comparable to
Nc/Np. Therefore, the average of this distance should be
aboutNc/Np, and the standard deviation should be as low
as possible.

Figure 2 reports the centroid distance obtained with lin-
ear and logarithmic approaches. The figure shows that,
starting at time 0 from a state with maximum disorder, and
owing to agent operations, the mean of the centroid dis-
tance decreases from very high values to the expected value
Nc/Np, in this case equal to 1, confirming the capacity
of the Self-Chord algorithm to order the keys on the ring.
However, the velocity of the reordering process is very dif-
ferent when using the linear or the logarithmic approach.
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With the latter, reordering is achieved after less than 25,000
seconds. On the other hand, with the linear approach, the
process takes almost 300,000 seconds, a time interval more
than ten times longer. Moreover, it has been found that the
difference between the two approaches increases with the
size of the system, i.e., with the number of peers and/or the
overall number of keys that must be ordered.
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Figure 2. Average distance between two con-
secutive centroids with linear and logarith-
mic approaches.

It is also interesting to note that the reordering process
experiences periods in which the average centroid distance
is stable, interleaved by abrupt changes: this is more evident
with the linear approach, because it is slower. The reason
for this behavior is that in the transient phase the keys are
only partially ordered over the ring and the centroid values
do not complete a single circle over the whole ring, but in-
stead two or more circles. For example, in the case of two
circles, there are two peers, typically positioned one oppo-
site to the other in the ring, both having a centroid value
equal to 0, whereas with a correct ordering there should be
only one of such peers. The reordering process progres-
sively lowers the number of circles, until it is reduced to
one, which corresponds to a correct and complete ordering.
Each partial ordering, with more than one circle, creates an
equilibrium state that the agents take some time to force:
this explains the time intervals in which the average distance
between consecutive centroid is almost constant. However,
as the agents manage to achieve a transition fromk circles
to k-1, an abrupt reduction in the average centroid distance
is experienced.

Unfortunately, the logarithmic approach has an impor-
tant drawback concerning the repartition of load among the
peers. With the linear approach, each peer receives agents
exclusively from the two adjacent peers, therefore all the
peers tend to store the same number of keys. Conversely,
with the logarithmic approach, a peer receives the agents
that carry the keys through the finger pointers of other peers.
However, the number of fingers that “point” to a given peer

is not a constant, but depends on the indexes of this peer and
of its neighbors on the ring. In fact, peer indexes are not
uniformly distributed over the ring: for any range of admis-
sible index values, the number of peers whose indexes are
comprised in this range has a logarithmic distribution [21].
As discussed in Section 4.2, a finger points to a peer index
that is the successor/predecessor of an index obtained with
a mathematical operation. Therefore a peer is pointed by a
large number of fingers if it is the successor/predecessor of
a large number of indexes; in other words, if it is the first
peer after a long range of indexes that are not assigned to
any peer. This imbalance in the number of inbound fingers
causes a corresponding imbalance in the number of agents
delivered to the peers through the fingers and - since each
of these agents carries a key that may be deposited with a
leave operation - in the number of keys that are stored by
peers.
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Figure 3. Standard deviation of the number of
keys stored by a peer with linear and logarith-
mic approaches.

This is confirmed by the results in Figure 3, which show
the standard deviation of the number of keys stored by a
peer (the mean of this variable is equal to 10, the average
number of resources published by a peer). In a steady sit-
uation, the standard deviation fluctuates around a value of
4 in the case of linear ordering, whereas it approximately
doubles with logarithmic ordering. This confirms that the
logarithmic ordering does not guarantee a good load bal-
ance among the peers.

4.4 Combined approach: switch from log-
arithmic to linear

The best solution would be the definition of an approach
that combines the rapidity of logarithmic ordering with the
fair load distribution assured by linear ordering. This can
be achieved by starting the ordering process in the “loga-
rithmic mode”, in order to rapidly reorder the resource keys
and, after the largest part of the reordering process has been
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performed, switching it to the “linear mode”, to better dis-
tribute the keys among the peers.

The switch between the two modes cannot be operated
with a centralized approach neither it can be simultaneous
for all the peers, since they cannot be aware of the global
state of the system. It must be a local decision made by
every peer only on the base of local information. Each peer
knows the value ofNc but in general does not know the
value ofNp, the number of peers of the network. Therefore,
the peer cannot base its decision on the average distance
between consecutive centroids in a local sector of the ring
and on its proximity to the target valueNc/Np. However,
it is observed that this value decreases with time, with a
slope that is high at the beginning and then becomes lower
as the curve approaches the value ofNc/Np, as Figure 2
shows. Therefore, the derivative of the centroid distance
can be used to perform the switch locally: the analysis of
the derivative can be made without any knowledge on the
global state of the system.

Specifically, each peer maintains a variable∆ that is up-
dated every predetermined time interval, in our tests every
5 minutes, as follows:

δi =
Ci − Ci−1

Nc

(9)

∆0 = D0 (10)

∆i = δi + Fev · ∆i−1 (11)

The termCi is the centroid distance at timei, averaged
in a local sector of the ring, which includes the peer itself
and a small number of neighbor peers in the two directions.
Therefore,δi is the difference between the current and the
last value of the local centroid distance, normalized over the
number of resource classesNc. Since the derivative is gen-
erally negative (the average centroid distance decreases),
the initial value of∆ is set to a negative value,D0. For
successive calculations, the contributions of the past values
of ∆ are weighed through the evaporation factorFev, whose
value is between 0 and 1. The switch from the logarithmic
mode to the linear mode is performed as the value of∆ ex-
ceeds a given thresholdTd that is still negative, but closer
to zero thanD0. The fact that the threshold is exceeded is
an indication that the derivative is approaching a null value
and that the average centroid distance is getting stable. This
means that the largest part of the ordering process has been
completed, and it is convenient to pass to the linear mode in
order to better distribute the keys among the peers.

Each agent chooses its mode, “logarithmic” or “linear”
according to the mode that is set on the local peer. In turn,
each peer self-regulates its mode: at the beginning it sets
it to “logarithmic”, than switches it to “linear” as soon as
the value of∆, calculated locally, exceeds the thresholdTd.
As the ordering process proceeds, the peers will gradually

switch from the logarithmic to the linear mode, and so will
the agents.

Figures 4 and 5 compare the average centroid distance
and the standard deviation of the number of keys per peer,
over the whole network, and compare the results obtained
with the logarithmic, the linear, and the combined process
described so far. For this test, the parameters for the cal-
culus of the derivative were set as follows:D0 = −0.1,
Fev = 0.9 andTd = −0.01. It is noticed that the com-
bined approach accomplishes its purpose, since it reorders
the keys as fast as the logarithmic approach and, in the
steady situation, balances the load as well as the linear ap-
proach. The local centroid distance was calculated over a
local sector of 7 peers: the current peer plus 3 adjacent peer
on both sides. It is worth noting that a different setting of
these parameters can cause an anticipation or delay of the
switch operations performed by the peers. This can reduce
or extend the transient phase, but has hardly any effect on
the behavior of the system in the steady situation.

1

10

0 50000 100000 150000 200000

C
en

tr
oi

d 
D

is
ta

nc
e 

- 
M

ea
n

Time(s)

linear
logarithmic

combined

Figure 4. Average distance between two con-
secutive centroids with linear, logarithmic
and combined approaches.
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Figure 5. Standard deviation of the number of
keys stored by a peer with linear, logarithmic
and combined approaches.

To better illustrate the switch process, Figure 6 shows the
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trend of the∆ parameter, averaged over all the peers, and
in parallel the number of peers that have switched to the
linear mode. Note that the largest part of peers operate their
switch as the average value of∆ is around the threshold
value, -0.01.

Figure 6. Analysis of the combined approach.
Parallel trend of the number of peers that
have switched to the linear mode and of the
value of the ∆ parameter, averaged on all the
peers.

An important issue to tackle is the management of new
resources, for example those published by the peers that
join the network. To speed up the correct placement of the
corresponding keys, the agents adopt the logarithmic mode
when they pick the keys of new resources. In a stable situ-
ation, in which most of the keys have already been ordered,
the number of steps needed to correctly place a new key is
Θ(log(Np)). Though the exact value ofNp is not known by
the peers, it can be overestimated to assure that a new key
is moved with the logarithmic mode for at least a number of
jumps equal tolog(Np). After these logarithmic jumps, the
agents will again base their decisions on the value of the∆
parameter maintained by each single peer.

5 Performance Analysis of Self-Chord

So far, all the tests were performed with a limited num-
ber of peers (256) because the linear approach is very slow
in larger networks. In this section, however, the combined
approach is adopted for all the tests, with the mode switch
mechanism described in Section 4.4. This allows results to
be obtained with larger and more realistic networks.

In the tests, the parametersPgen, Nres, Tmov andTpeer

and are set as in Section 4.3: their respective vales are 1.0,
10 resources per peer, 10 seconds and 3 hours. The number
of resource classesNc is set to 1024, which corresponds to

a number of bits in resource keys,Bc, equal to 10. The av-
erage lifetime of an agent is set to the average connection
time of the peer that generates the agent: from formula (1),
the number of agents that travel the network is on average
equal to the number of connected peers. As discussed for
other parameters, these settings do not influence the behav-
ior of Self-Chord in the steady situation, but can only affect
the transient phase: for example, a larger number of agents
would reduce the duration of this phase.

The rest of this section will analyze three important as-
pects of Self-Chord: its scalability, its behavior with a non-
uniform distribution of keys, and its dynamic characteris-
tics.

5.1 Scalability Analysis

This section presents simulation results obtained with a
variable number of peersNp ranging from 256 to 4096.
Figure 7 shows the trend of the average distance between
consecutive centroids. In all the tested cases, reorderingis
performed correctly, which is confirmed by the fact that this
index tends toNc/Np, the value corresponding to an equally
spaced ordering of centroids.
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Figure 7. Average distance between two
consecutive centroids with 1024 resource
classes and variable number of peers.

Of course, the time needed to reorder the keys increases
with the number of peers. It ranges from less than 20,000
seconds with 256 peers to about 125,000 seconds with 4096
peers. The last value, corresponding to about 35 hours,
could seem long at a first sight, but it must be considered
that the overall reordering process is performed only once,
at the start up of the system, in a situation in which the keys
are randomly placed on the peers. However, this very unfor-
tunate situation will never occur again: in a steady situation,
in which most of the keys are already ordered, the correct
relocation of new keys will be much faster, as Section 5.3
will show.

A search request is issued by a peer to find as many keys
as possible that have a specified value, and therefore belong
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to a given class. The goal of the discovery procedure is to
drive a search message towards the peer whose centroid is
the closest to the target key value. Indeed, in the steady sit-
uation, the values of the keys stored by a peer are always
very close to the peer centroid. As a confirmation of this,
Figure 8 shows the distribution of the relative distance be-
tween the keys and the centroids of the peers on which these
keys are located, in a network with 4096 peers3. This figure
shows that the values of the large majority of the keys are
very close to the respective peer centroids: the number of
permitted key values is 1024, but the distance between the
key value and the respective centroid is very rarely larger
than 5.
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Figure 8. Distribution of keys with respect
to the peer centroid, in a network with 4096
peers, and 1024 resource classes. For each
key, the figure reports the relative distance
between the key value and the centroid of the
local peer.

The ordering of keys over the ring can be profitably ex-
ploited by the discovery procedure: at each step, the query
message is forwarded, through the finger tables, to the peer
whose centroid is estimated to be the closest to the target
key value. As with the logarithmic ordering approach de-
scribed in Section 4.2, the destination peer is selected by
making a proportion between the resource keys and the peer
indexes. The destination peer is calculated as described in
formulas (7) and (8): if the centroid of the destination peer
is found to be closer to the target key than the centroid of the
current peer, the query message is forwarded to the destina-
tion peer, and the discovery procedure continues. Whenever
this condition is not satisfied, the discovery procedure ter-
minates, because with high probability the current peer is
the one that stores the largest number of keys having the
desired value.

If the keys are uniformly distributed - that is, if key val-
ues are assigned to resources in a completely random fash-

3Here a distance is considered positive if the key value is higher than
the centroid, in an arithmetic moduloNc, negative in the other case.

ion - the number of steps that are needed to reach the tar-
get peer is logarithmic with respect to the number of peers,
since each step allows the search space to be approximately
halved, as in Chord [21]4. Figure 9 reports the average,
the 1st and the 99th percentile of the path length, defined as
the number of steps/jumps performed by a search message.
These results are obtained with a uniform distribution of
keys and are relative to search requests issued in the steady
situation. Here it is worth recalling that the average number
of steps experienced in Chord is equal to1

2
lg

2
Np [21], but

it is reduced to1

3
lg

2
Np in BiChord [15], in consequence

of the presence of the reverse finger table. Figure 9 shows
that the self-organizing reordering of keys achieved by Self-
Chord agents does not worsen the performance of discovery
requests: the average number of steps is always very close
or slightly larger than1

3
lg

2
Np. Moreover, the 99th per-

centile is always lower thanlg
2
Np, meaning that the search

process is very fast also in the most unfortunate cases.
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Figure 9. Path length of discovery requests
with variable number of peers. The average,
the 1st and the 99th percentile are reported.

Figure 10 shows the mean number of keys discovered by
a search request, for different values ofNp. The assumption
is that a search message, after completing its path, retrieves
all the keys, having the desired value, that are located on the
current peer and on four adjacent peers, two on the left and
two on the right. Indeed, owing to the statistical nature of
the reordering process, it is possible that also these neigh-
bor peers store a significative number of keys having the de-
sired value. In Figure 10, the number of discovered keys is
reported versus time: it can be observed that this index grad-
ually increases as the agents relocate the keys. It is also no-
ticed that the steady value is comparable to(Np∗Nres)/Nc.
In fact, this is the average number of keys of a specific class
that are published in a network havingNp peers, in the case
thatNres is the average number of resources published by
a peer, equal to 10 in these experiments, andNc is the num-

4In Section 5.2 it will be shown that the discovery procedure is efficient
even with a non-uniform distribution of keys.
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ber of resource classes, which is equal to 1024. In conclu-
sion, the discovery procedure successfully discovers nearly
all the resources that have the desired value of the key.
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Figure 10. Average number of keys discov-
ered by a query vs. time, with variable num-
ber of peers.

5.2 Non-Uniform Distribution of Keys

So far, the performance of Self-Chord has been analyzed
under the assumption that the values of the keys associated
with the resources are distributed uniformly. This assump-
tion is generally valid in the case that the keys are com-
puted with a hash function, but still there can be very pop-
ular resources that map to the same key, thus invaliding
the assumption. Moreover, in Self-Chord a resource key
can also have a semantic meaning: for example, if the re-
source is a document, a bit of the key can express the fact
that a document focuses or not on a given topic. In a case
like this, some key values can be more frequent than oth-
ers. In the introductory section, it was mentioned that the
self-organization of keys performed by Self-Chord agents
allows the load to be fairly balanced among the peers, even
in the case of non-uniform distribution. This advantageous
characteristic is illustrated in this section.

A set of experiments was performed assuming that the
key values are distributed with a triangular distribution.
More specifically, if the number of admissible key values
is Nc, it is assumed thatNc

2
is the most frequent value,

whereas values 0 andNc − 1 are the least frequent. Fig-
ure 11 shows the pdf of the triangular distribution that is
obtained with these assumptions.

In classical structured P2P systems, a non-uniform dis-
tribution of keys produces a non-uniform balance of load.
In Chord, for example, under the described triangular dis-
tribution, the peer with indexNc

2
would store a large num-

ber of keys, since it would be assigned the keys of the most
popular resources. Conversely, Self-Chord distributes the

Figure 11. Example of a non-uniform distribu-
tion of keys: the triangular distribution. With
the number of resource classes set to Nc, Nc

2

is the most frequent key value.

keys to the peers in a fair fashion, both with uniform and
non-uniform distribution of keys. In the case of non uni-
form distribution, the most popular keys are placed by the
agents on several adjacent peers, so that no peer is given the
responsibility of storing a large number of keys. The conse-
quence of this is that the centroids of the peers that store the
most popular keys are close to each other, since the stored
keys are similar.

This phenomenon is shown in Figure 12, which reports
the centroid values of all the peers, in a network in which
Np andNc are both equal to 1024. The first peer on the
x axis is the one that has the lowest centroid value and the
other peers are taken from the ring following the clockwise
direction. The trend of the figure confirms that many peers
have centroid values that are close to the most frequent key,
Nc

2
, which in this case is equal to 512, while fewer peers

have centroids with values close to infrequent keys.
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Figure 12. Centroid values of peers. The first
peer on the x axis is the one with the lowest
centroid value. The others are taken from the
ring following the clockwise direction.

The distribution of the number of keys stored in a peer
confirms the fair balance of load. The average, the 1st and
the 99th percentile of this index were found to have the same

12



values both with the uniform and the triangular distribution
of keys, and are equal to 10, 2 and 22, respectively. Interest-
ingly, the variability of the number of keys stored per peer is
much lower than that experienced in Chord with a uniform
distribution. For example, the 99th percentile calculatedin
Chord under the uniform assumption, and reported in [21],
is about 50, compared to the value of 22 experienced in Self-
Chord. Therefore, the work of agents in Self-Chord is capa-
ble of significantly improving the load balance also with a
uniform distribution, and the advantage is much larger with
a non-uniform distribution. It should be remarked here that
this fair load balance is obtained in a totally decentralized
and self-organizing fashion, while it would be very difficult
to achieve with any centralized algorithm. This confirms
the surprising efficacy of these very simple nature-inspired
mechanisms, especially in a large distributed environment.

In Section 5.1 it was mentioned that the resource dis-
covery algorithm estimates the index of the next peer to
which a query message is forwarded, assuming a uniform
distribution of keys. The discovery procedure could be-
come longer with a non-uniform distribution, because the
destination peer could have a different centroid value than
the estimated one. Therefore, a set of experiments was per-
formed to observe what happens if the distribution of keys
is triangular. Figure 13 reports the average, 1st and 99th
percentile of the number of steps made by search messages,
and compares the values obtained with the uniform and the
triangular distributions of keys, with a variable value ofNp.
The comparison shows that a possible erroneous estimation
of the centroid value of the destination peer can be rapidly
compensated by the next steps of the search message. In-
deed, the average number of steps required with the non-
uniform case is only slightly larger than that obtained with
the uniform distribution, whereas in the most unfortunate
cases (evaluated through the 99th percentile) at most 2 more
steps are required to successfully complete the discovery
procedure. In all cases, the number of steps is logarithmic
with respect to the number of peers, thus guaranteeing an
excellent scalability behavior of the algorithm.

5.3 Dynamic Behavior

In Section 5.1, it was mentioned that the greatest part
of the reordering work must be executed only once, when
the algorithm is started for the first time. Once a correct
reordering has been obtained, it can be kept with few re-
locations of keys. In particular, it is necessary to reorder
the keys of the resources that are dynamically added to the
network, for example by new or reconnecting peers. In a
system like Chord, the keys must be immediately placed in
the correct hosts: this can originate a high network and pro-
cessing load if the system is highly dynamic, especially if
many resources are published in a short interval of time.
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Figure 13. Path length of discovery requests:
average, 1st and 99th percentile calculated
with uniform and triangular distributions of
keys and a variable value of Np.

In Self-Chord, the load is invariant because a new or re-
connecting peer does not need to perform any additional
operation: the keys of the new resources will be picked by
the agents that arrive at this peer. The processing loadL can
be defined as the average number of agents per second that
arrive and are processed at a peer. It does not depend on the
frequency of peer joinings and disconnections, but only on
the probability that a reconnecting peer generates an agent,
Pgen, and on the frequency of agent movements across the
Grid, 1/Tmov. In fact,L can be calculated by multiplying
the overall number of agentsNa by the frequency of their
movements 1/Tmov, so obtaining the number of times per
second that an agent arrives at any peer, and then dividing
the result by the number of peersNp, so obtaining the num-
ber of times per second that an agent arrives at a specific
peer5:

Lp =
Na

Np · Tmov

≈
Pgen

Tmov

(12)

In the described scenario, the average value ofTmov is
equal to 10 seconds, andPgen is set to 1.0: therefore, each
peer receives and processes about one agent every 10 sec-
onds, which is an acceptable load, since take and leave op-
erations are simple and quick. This result, obtained theo-
retically, has been fully confirmed by simulation data. Note
that the processing load does not depend on other system
parameters such as the network size, the average number of
resources published by a node and so on, which confirms
the scalability properties of Self-Chord.

To speed up the correct displacement of the keys of new
resources, they are moved by agents using the logarithmic
approach. Specifically, an agent that picks a “new” key uses
the finger table to jump to the next peer, even if the current
peer has already switched to the “linear” mode (see Section

5The simplification in formula (12) is obtained by using formula (1), in
which Tagent is assumed to be approximately equal toTpeer
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4.4). In fact, the linear mode would oblige the agent to carry
the key through all the intermediate peers before depositing
it in the correct peer. This functionality is easily obtained
by setting a counter on a new key and initializing its value
to a small integer value,c. The agent that picks the key
checks if the counter is greater than zero: if so, it jumps with
the logarithmic mode and decrements the counter, otherwise
it operates in the usual fashion and moves on the network
according to the mode of the local peer. Therefore a new
key is moved with the logarithmic mode at leastc times,
which assures that it can be rapidly placed in the correct
peer, with the only condition thatc is equal or larger than
log(Np). Of course, if the value ofNp is not known, which
is the general case, it can be overestimated by the peers in
order to setc to an appropriate value.

The disconnection of a peer does not need additional op-
erations of peers or agents. In Chord, the keys are consigned
to the successor peer, because this is the peer devoted to
handle them. In Self-Chord, they are passed half to the suc-
cessor and half to the predecessor peer, thus improving the
load balance even in this respect.

A set of specific experiments was performed to evalu-
ate the dynamic behavior of Self-Chord: once the reorder-
ing process has reached a steady condition, a perturbation is
generated by simulating the simultaneous arrival of a num-
ber of new peers in the system, each with 10 new resources
on average. The initial number of peersNp is set to 1024,
but after 100,000 seconds, a number of new peers, specified
as a percentagePjoin of Np, join the network.
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Figure 14. Average distance between two
consecutive centroids. At the beginning, the
values of Np and Nc are set to 1024. At time
100,000 a percentage Pjoin of new peers join
the network.

Performance analysis focuses on the average distance be-
tween consecutive centroids, since this index gives an im-
mediate indication about the effective reordering of keys
over the network. Figure 14 shows the value of this index
before and after the perturbation induced by the joining of a
percentagePjoin of new peers, withPjoin set to 25%, 50%

and 100%. The index experiences a sudden and prominent
increase at the joining time: since the new keys are pub-
lished randomly by the peers, the key ordering is disturbed.
However, the agents replace the new keys and restore the
correct ordering very rapidly, in no more than 2000 sec-
onds, about half an hour. It can be noticed that the steady
value of the average centroid distance, after the perturba-
tion, becomes equal to the new value ofNc/Np. With Nc

always set to 1024, the value of the ratio is equal, in the
three examined cases, to 4/5, 2/3 and 1/2, respectively. The
comparison between Figures 14 and 7 is interesting. While
the agents take about 50,000 seconds to order the keys in
a network with 1024 peers, if they start from scratch, they
take only 2000 seconds to order the keys published by ad-
ditional 1024 peers. The reason is that the new keys are
inserted in a network already ordered, in which it is much
easier to find their correct location by using the logarithmic
approach. This result is important, because it proves that
the Self-Chord algorithm is naturally scalable if peers join
the network gradually, which is the expected behavior in a
real network. In a steady condition any perturbation, even
very intense, such as those considered in Figure 14, is eas-
ily managed by Self-Chord agents, and the key ordering is
recovered very rapidly.

6 Conclusions

This paper presents Self-Chord, a “self-structured” P2P
system built in accordance with a bio-inspired algorithm. In
Self-Chord, a set of ant-inspired mobile agents move and re-
order the resource keys in a ring of peers. Self-Chord aims
to preserve the advantages of Chord, such as the logarith-
mic search time, but offers further profitable characteristics
inherited by biological systems, such as self-organization,
adaptivity, scalability and fast recovery from external per-
turbations. The efficiency and effectiveness of Self-Chord
are confirmed by results obtained with an event-based sim-
ulation framework. Even if Self-Chord is here compared to
Chord, the presented approach is extensible to other struc-
tured P2P systems, in which peers are not organized in a
ring, but in other structures such as multi-dimensional grids
or trees. Even in these cases, the self-organization and or-
dering of keys can be achieved with small modifications of
the bio-inspired algorithm presented in this paper.
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