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ABSTRACT
Planning adequate audit strategies is a key success factor
in a posteriori fraud detection applications, such as in fiscal
and insurance domains, where audits are intended to detect
fraudulent behavior. In this paper we describe an experi-
ence resulting from the collaboration among Data Mining
researchers, domain experts of the Italian Revenue Agency,
and IT professionals, aimed at detecting fraudulent VAT
credit claims. The outcome is an auditing methodology
based on a rule-based system, which is capable of trading
among conflicting issues, such as maximizing audit bene-
fits, minimizing false positive audit predictions, or deterring
probable upcoming frauds. We describe the methodology in
detail, and illustrate its practical effectiveness compared to
classical predictive systems from the literature.

1. INTRODUCTION AND CONTEXT
Fraud detection represents a challenging issue in several

application scenarios, and the automatic discovery of fraud-
ulent behavior is a very important task with great impact
in many real-life situations. In this context, fiscal fraud de-
tection has witnessed an increasing interest and has become
a widespread application field for data mining techniques.

In this paper we describe the experience we made on the
Value Added Tax (VAT) fraud detection scenario. Like any
tax, the VAT is open to fraud and evasion. There are sev-
eral ways in which it can be abused, e.g. by underdeclar-
ing sales or overdeclaring purchases. However, opportunities
and incentives to fraud are provided by the credit mechanism
which characterizes VAT: tax charged by a seller is available
to the buyer as a credit against their liability on their own
sales and, if in excess of the output tax due, refunded to
them [14]. Thus, fraudulent claims for credit and refunds are
an extensive and problematic issue in fiscal fraud detection.
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For example, [14] reports that 44 percent of all VAT fraud
found in an investigation in the Netherlands took the form
of false claims for tax paid at previous stages, for example
by presenting forged invoices for non-existent or exaggerated
purchases. The situation is further exacerbated in Italy by
current laws which allows to compensate VAT credit with
other taxes, thus boosting the trend for fraudulent behav-
ior.

The DIVA project, that we report in this paper, tries to
tackle the VAT Fraud Detection issue raised by the credit
mechanism via the adoption of data mining techniques. The
project involved computer science researchers, as well as ex-
perts from the Italian Revenue Agency and IT professional
with expertise in managing the tax information system on
behalf of the Italian Tax Administration. The objective of
the project was to design a predictive analysis tool able to
identify the tax payers with the highest probability of be-
ing VAT defrauders to the aim of supporting the activity
of planning and performing effective fiscal audits. The con-
struction of the model is based on historical VAT declaration
records labeled with the outcome of the audit performed by
the Agency.

The domain of the DIVA project is particularly challeng-
ing both from a scientific and a practical point of view. First
of all, audited data available are only 0,004% of the over-
all population of taxpayers who file a VAT refund request.
This resource-aware restriction inevitably raises a sample se-
lection bias. Indeed, auditing is the only way to produce a
training set, and auditors focus only upon subjects which are
particularly suspicious according to some clues. As a conse-
quence, the number of positive subjects (individuals which
are actually defrauders) is much larger than the number of
negative (i.e., non-defrauders) subjects. This implies that,
despite the number of fraudulent individuals is far smaller
than those of non-fraudulent individuals in the overall pop-
ulation, this proportion is reversed in the training set.

Since auditing is resource-consuming, the number of in-
dividuals reported as possible fraudsters is of high practical
impact. Hence, a scoring system should primarily suggest
subjects with a high fraudulent likelihood, while minimiz-
ing false positives. From a socio-economic point of view, it
is preferable to adopt a rule based approach to modeling.
Indeed, intelligible explanations about the reason why indi-
viduals are scored as fraudulent are by far more important
than the simple scores associated to them, since they al-



low auditors to thoroughly investigate the behavioral mech-
anisms behind a fraud. Rule-based classifiers [20, 19, 11]
are a mainstay of research in the field of concept learning,
because of various desirable properties such as, e.g., their
high expressiveness and understandability. Unfortunately,
like most classification models, rule-based classifiers exhibit
a poor predictive accuracy in highly imprecise learning set-
tings, such as fraud and intrusion detection, where the un-
derlying data distribution is inherently characterized by rar-
ity and, hence, primary aspects of the concept to learn are
infrequently observed. The situation is further exacerbated
by the quest for a multi-purpose modeling methodology:
typically, several objective functions characterize the fraud
detection scenario, and a traditional classification scheme
may fail in accomplishing such a multi-purpose task.

Former works in fraud detection rely on statistical tech-
niques such as linear discriminant analysis or logistic dis-
crimination [5]. Approaches based on the estimation of the
underlying distribution and a direct modeling of the fraudu-
lent behavior [4] exhibit shortcomings due to both the com-
plexity of the domain under consideration, and the pres-
ence of noise which prevents suitable model fitting. Super-
vised techniques (where the a training set of already known
fraudulent cases is available) typically suffer from the class-
unbalance problem [9]: Typically, only a limited number
of behavioral cases is recognized as fraudulent within the
training set. Approaches based on hybrid or cost-sensitive
classification techniques have been proposed and found ef-
fective in this context [8, 18, 12]. However, these techniques
in general suffer from low interpretability which make them
inadequate for the problem at hand. More generally, the
above mentioned sample selection bias problem makes diffi-
cult to devise a proper training set upon which to rely.

Recently, semi-supervised techniques [21, 16, 10] have been
proposed to partially overcome the drawbacks due to super-
vised techniques. In semi-supervised approaches, the train-
ing set of known cases is supported by further (unknown)
cases, which can ease the learning process by refining the
detection of the decision boundaries characterizing fraudu-
lent behavior. Unsupervised techniques [3, 15, 7, 17, 1] do
not need supervised information, and fraudsters are typically
identified as outliers: the goal of finding outliers in a given
data set is pursued by computing a score for each object
suited to reflect its degree of abnormality. These techniques
are quite effective in scenarios like anomaly-based intrusion
detection, where real-time response is crucial. However, they
again fail in providing interpretable explanations of the out-
lierness of a fraudster, although some initial study has been
started in this context [2].

The contribution of this paper is the design of a supervised
methodology capable of coping with all the above mentioned
issues in a unified framework. The outcome that we describe
in this work is Sniper, a predictive system capable of produc-
ing high-quality classification rules. On the basis of specific
auditing requirements, the extracted rules in Sniper are able
to select individuals from a population which likely exhibit
high levels of proficiency, equity, and efficiency. It is worth
to point out that although the above depicted issues are
focused on the specific VAT refund fraud application case,
similar concerns may actually arise on many real world situ-
ations. Clear enough, the framework presented in this paper
goes beyond the specific application case and can be easily
adapted whenever the illustrated aspects represent a chal-

lenging issue.
The paper is organized as follows. Section 2 introduces

the main aspects of the problem addressed and of the Sniper
technique, proposed to solve it. Section 3 formally describes
the main problem tackled in this work and the subsequent
Section 4 presents the proposed technique in details. Section
5 reports the description and the results of the application
of Sniper on the real case study in the Italian scenario.

2. DIVA OVERVIEW
In this section we provide an overview of the experience we

tackled and the related technique we propose. The section
is intended to clarify the choices about the formal building
raised up. The data coming from the governmental Rev-
enue Agency is concerned with the VAT declarations of Ital-
ian business companies. In particular the experience is fo-
cused on the companies claiming a VAT refund. The data
made available by the agency consisted of about 34 millions
VAT declarations spread over 5 years. Data contain general
‘demographic’ information, like ‘Zip of the registered office,
‘start-up year’ and ‘Legal status’, plus specific information
about VAT declarations, like ‘Business Volume’, ‘Sales’, ‘Im-
port’, ‘Export’ and the total amount of ‘VAT Refund’. As
a result of a data understanding process conducted jointly
with domain experts, we chose a a total of 135 such features.

Out of the 34 millions declarations, we collected further
information about 45,442 audited subjects. The results of
auditing for such subjects are summarized in the further fea-
ture ‘VAT refund fraud’ (the difference between the amount
of VAT Refund claimed and the VAT Refund actually due).
Thus, audited subjects can be roughly classified into de-
frauders (when ‘VAT refund fraud’ > 0) and non-defrauders
(in the other case). The resulting labeled training set is
extremely biased, consisting of 38,759(85.29%) subjects be-
longing to the “defrauder” class, and 6,683(14.71%) belong-
ing to the “non-defrauder” class.

The situation is further exacerbated by the quest for a
multi-purpose modeling methodology. Experts are inter-
ested in scoring individuals according to three main criteria:

Proficiency: scoring and detection should rely not only on a
binary decision boundary separating defrauders from
non-defrauders. Better, higher fraud amounts make
defrauders more significant. For example, detecting
a defrauder whose fraud amounts to 1,000$ is better
than discovering a defrauder whose fraud amounts to
100$.

Equity: a weighting mechanism should leverage detection
and scoring to include those cases where the amount of
fraud is relevant related to their business volume. In
practice, it should be avoided that individuals with low
business volumes are never audited. For example, an
individual whose fraud amounts to 1,000$ and whose
business volume amounts to 100,000$, is less interest-
ing than an individual whose fraud amounts to 1,000$
but the business volume amounts to 10,000$.

Efficiency: Since the focus is on refunds, scoring and detec-
tion should be sensitive to total/partial frauds. For
example, a subject claiming an amount of VAT refund
equal to 2,000 and entitled to 1,800 is less significant
than a different subject claiming 200 and entitled to 0.
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1: Flowchart of the SNIPER technique

A further requirement is represented by the limited audit-
ing capacity of the Revenue Agency: auditing is a time-
consuming task, involving several investigation and legal
steps which ultimately require a full-time employ of human
resources. As a consequence, the scoring system should re-
trieve from the population a user-defined fixed number of
individuals with high defrauder likelihood.

SNIPER has been devised to accommodate all the above
mentioned issues in a unified framework. The idea of the
approach is to progressively learn a set of rules until all the
above requirement are met. The approach is summarized in
Figure 1.

As a first step, a scoring function is computed which as-
sociates an individual with a value representing its degree of
interestingness according to the proficiency, equity and effi-
ciency parameters. Clear enough, this function is not known
for the individuals in the whole population. Nevertheless,
the training set of audited subjects allows the computation
of such a function and its analytical evaluation over those
known cases.

A discretization step is accomplished for the scoring func-
tion, thus associating a class label to each discretization
level. This leads to the definition of a class containing the
individuals scoring to the maximum value of the function.
Such a class is referred to in the following as top class.

The main objective is hence to build a rule set able to
identify individuals belonging to the top class, with two main
objectives: (i) false positives should be minimized; (ii) the
number of subjects should be as close as possible to an user-
specified value. To this purpose, a set of classifiers is trained,
where each classifier provides a set of rules. These sets are
collected in a global set R after a filtering phase that re-
moves rules not complying with a minimum quality criteria.
The set of rules R taken as a whole is not, in general, the
best according to the two objectives cited above, since (i)
its accuracy (the percentage of subjects of the top class re-
trieved) can be too low, and (ii) the number of retrieved
subjects can be too high. This will be better clarified in
Section 4.

The global set of rules R is employed as input in order
to build a final binary classifier, consisting in the optimal
subset of the rules in R, according to the two main quality
criteria. Notice that the problem of finding the best subset
is intractable, thus triggering SNIPER to the adoption of a
greedy strategy. The latter consists into iteratively selecting
the “best” rule, until the quality criteria are met.

3. PROBLEM STATEMENT
This section provides a formal description of the different

aspects which characterize the problem introduced in the
previous section.

Some useful preliminary notions will follow. An attribute
a is an identifier with an associated domain denoted as
Dom(a). Given a set of attributes A = {a1, . . . , ah}, Dom(A)
denotes the set Dom(a1)× · · · ×Dom(ah).

Let Ad = {ad
1, . . . , a

d
m} and Ac = {ac

1, . . . , a
c
n} be two sets

of m and n attributes respectively, let C be a set of labels,
and let ⊥ is a special value standing for unknown. An object
o on Ad, Ac and C is a triple (vd,vc, c), where vd is an
m-ple 〈vd

1 , . . . , vd
m〉 of values, where vd

i ∈ Dom(ad
i ); vc is an

n-ple 〈vc
1, . . . , v

c
n〉 of values, where vc

i ∈ Dom(ac
i )∪{⊥}; and

c ∈ C ∪ {⊥} is called the class of o. In the following o[ad
i ]

(o[ac
i ], resp.) denotes the value vd

i (vc
i , resp.), while class(o)

denotes the label c.
A dataset D on two sets of attributes Ad and Ac and on a

set of class label C is a multi-set of objects on Ad, Ac and C.
Ad is referred to as the set of describing attributes, namely
the set of attributes which describe an object; while Ac is
referred to as the set of checking attributes, namely the set
of attributes whose value is known only for some objects and
has to be predicted for the other objects. C is the set of class
labels associated with the objects in D.

Let A be a set of attributes. A condition on A is an
expression of the form a ∈ V , where a ∈ A and V ⊆ Dom(a).
The expression a 6∈ V is a shortcut for the condition a ∈
Dom(a) \ V .

Let D be a dataset on Ad, Ac, and C. A rule on D is
an expression of the form B0 ∧ ¬B1 ∧ · · · ∧ ¬Bk → c, where
B0, . . . , Bk are conjunction of conditions on Ad, and c ∈ C.
B0 ∧ ¬B1 ∧ · · · ∧ ¬Bk is called body of the rule, whereas c
is the head of the rule; B0 is the positive component of the
rule, whereas B1, . . . , Bk are the negative components of the
rule. If the body of a rule is composed by only the positive
component, then the rule is called positive.

For a rule r : Body → c, r.class denotes the class label c.
A set of rules is also called model.

Given h rules, r1, . . . , rh, they are said to be same-head
rules if for each pair of rules ri, rj it holds that ri.class =
rj .class. The size of a rule r : B0,∧¬B1 · · · ∧ ¬Bk → c,
denoted as |r|, is the number of conditions in B0. An object
o of D satisfies a conjunction B = (a1 ∈ V1 ∧ · · ·∧am ∈ Vm)
of m conditions if and only if o[ai] ∈ Vi,∀i ∈ [1, m].

An object o of D is activated by a rule r : B0 ∧ ¬B1 ∧
· · · ∧ ¬Bk → c, if and only if o satisfies the positive com-
ponent, B0, and does not satisfy any negative component,
B1, . . . , Bk, appearing in the body of r. The set of objects
of D activated by a rule r is denoted as r(D). The size of
r(D) is called support of the rule and denoted as σ(r).



A rule r is exclusive with respect to a a rule r′ on the
dataset D, if no object in D activated by r is activated also
by r′, namely if r(D) ∩ r′(D) = ∅.

The objects activated by a rule r : Body → c whose class is
actually c are called true positive, the other objects activated
by r are called false positive.

Definition 1. Let r : Body → c be a rule on a dataset
D labeled w.r.t. a set of labels C. The confidence of r,
denoted as γ(r) is the ratio between the true positive objects
activated by r and the support of r.

The above notions, given for a single rule, can be naturally
extended to a set of same-head rules. An object o is said
to be activated by a set of same-head rules R if and only
if it is activated by at least one rule r ∈ R; more formally,
the set of objects activated by a set of same-head rules R is
R(D) =

S
r∈R r(D). A rule r is exclusive with respect to a

set of same-head rulesR if and only if r(D)∩R(D) = ∅. The
support of a set of same-head rules is σ(R) = |R(D)|, while
the confidence γ(R) is the ratio between the true positive
objects activated by R and the support of R.

Finally, the Z operator is introduced. Let r : B0 ∧ ¬B1 ∧
· · · ∧ ¬Bk → c be a rule and r′ : B′

0 → c be a positive
rule with the same head as r. r Z r′ denotes the rule r′′ :
B0 ∧ ¬B1 ∧ · · · ∧ ¬Bk ∧ ¬B′

0 → c. Note that r′′ is exclusive
with respect to r′. In other words, r Z r′ produces a rule
that activates all the objects activated by r and not by r′.

As previously discussed, the main problem to be solved is
to identify the individuals of a given population showing the
most exceptional behavior; and additionally, the number of
individuals to be retrieved is fixed by the user. Moreover,
an explanation about the reason for which the retrieved in-
dividuals are detected as the most interesting ones should
be provided to the user together with the individuals.

To formally define the problem, the meaning of “excep-
tional behavior” must be provided. The idea is to follow
a requirements-based approach, where the analyst together
with the user define an interesting function (called score
function in the following) that measures the exceptional-
ness of each individual. The goal is, then, to retrieve the
individuals scoring the maximum value of such interesting
function. Such a function is assumed to be not evaluable
on the individuals of the given population, and then the
challenge is to predict its value. Nevertheless, the value of
the score function is known for a certain set of individuals,
referred to as training set in the following, which are the
individuals selected by domain experts for being audited.

The second important issue is to provide an explanation
intelligible for the user, justifying the exceptionalness of the
retrieved individuals. The approach here pursued is to re-
turn a set of rules which directly provides an intelligible
justification for the exceptionalness of an individual. For
example, the rule r : Start-up Age > 2 ∧ Sales = high →
defrauder, immediately provides the user of a semantically
significant explanation about defrauders. In particular, r
asserts that any company claiming a VAT refund while ex-
hibiting more than two years of activity (Start-up Age > 2)
and a high amount of Sales is a defrauder.

The main problem we aim to solve can be formally defined
as follows.

Definition 2. Given a dataset D, a scoring function Ω,
three thresholds σmin, γmin and X, the problem is: find

the set R of rules each having at least confidence γmin and
support σmin such that |R(D)| is as close to X as possible,
and the objects in R(D) score the highest values of Ω.

4. SNIPER TECHNIQUE
In this section the SNIPER technique, designed to solve

the previously described problem, is presented. The main
steps of the technique are summarized in Figure 1 and can be
roughly subdivided into two main parts: the preprocessing
phase and the phase concerning the building of the classifier.

4.1 Preprocessing
The main objective of this phase is to formalize the no-

tion of interestingness and exceptionalness of an individual.
As already stated, auditing individuals is a very resource-
consumption task and then it should be focused on those
individuals which, among the defrauders, are the most in-
teresting ones Thus a scoring function capable of ranking
the whole population (and of detecting the top-fraudulent
individuals) is preferable to a rough classification of the pop-
ulation into fraudulent and non-fraudulent individuals.

The notion of “interesting” subjects is domain-dependent.
In general, many aspects should be taken into account for
dealing with the user notion of interesting individuals, and
then many parameters contribute at identifying an individ-
ual as interesting. The idea here pursued is to define, to-
gether with the user, a function (called first-level function)
for each of such parameters; then to combine them in a
second-level function, able to weight the different first level
functions in order to match as better as possible the user
needs; and finally to define, starting from the second level
function, a score function able to assign an interesting value
to each training set individual.

4.1.1 First-level functions

Definition 3. Let D be a dataset on the sets of attributes
Ad, Ac and C. A first-level objective function on D is a func-
tion f : Dom(Sd) ×Dom(Sc) → R, where Sd is a possibly
empty subset of Ad and Sc is a non-empty subset of Ac.

It follows from the definition that f requires the values
of some attributes in Ac, then f can be evaluated on the
individuals of the training set, but not on all the individuals
in the whole population.

For each first-level objective function f , two thresholds
σup

f and σlow
f are defined with σup

f ≥ σlow
f . These thresholds

split the codomain of f in three sets, and accordingly also
the individuals can be split into three sets:

1. Slow
f = {o ∈ D | f(o) ∈ (−∞, σlow

f )}

2. Smid
f = {o ∈ D | f(o) ∈ [σlow

f , σup
f ]}

3. Sup
f = {o ∈ D | f(o) ∈ (σup

f ,∞)}
The above thresholds can also assume value ±∞, meaning
that some of the above defined sets can collapse.

The importance of the thresholds is to let the score func-
tion be influenced by outstanding behaviors on a single first-
level function. Indeed, an individual assuming a very high
value on a first-level function f (beyond σup

f ) can be of inter-
est for the user even if its score (valuated on the combination
of all the first-level functions) is not very high. Analogously,



basic proficiency equity efficiency
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

S
ub

je
ct

s
non−defrauders
defrauders

2: Training set partitioning according to first-level functions

if an individual that assumes a very low value on a first-level
function (below σlow) and it is not outstanding (beyond σup)
in any of the first-level functions, then it is not interesting
for the user even if its score is high.

In the VAT refund fraud contest, we can devise three first-
level functions, which model the notions of proficiency, eq-
uity and efficiency described in section 2. In particular, fprof

represents the total amount of fraud, whereas fequ, is defined
as the ratio between the total fraud and the business vol-
ume, and feff is defined as the ratio between the total fraud
amount and the total VAT refund declared. Each of these
functions model a different notion of interestingness for the
subjects in the training set. In particular, for each function
f the subjects whose value assumed on f is higher than σlow

f

are classified as “interesting”.
Figure 2 reports the distribution of defrauders and non-

defrauders subjects belonging to the training set. The first
histogram represents the distribution as partitioned by fprof

with threshold 0. Note that this corresponds to roughly
classify as non-defrauders those subjects whose total fraud
amount is 0 and as defrauders all the other subjects, denoted
as fbasic. The other histograms represent the distribution as
partitioned by fprof , fequ, and feff , respectively. The low
thresholds employed for these functions, chosen with the aid
of domain experts, are σlow

fprof
= 2,000, σlow

fequ
= 0.0025, and

σlow
feff

= 0.2.
It is important to notice that a careful choice of the thresh-

old values allows to alleviate the sample selection bias, and
contemporarily does not alter the significance of the train-
ing set. Figure 3 shows the retrieved fraud (i.e., the sum
of the VAT refund fraud) associated with both the subjects
identified either as defrauders or as non-defrauders subjects
by each of the first level functions above considered. Figure
2 highlights that the size of the set Sf of subjects identified
as defrauders by the first level function f is strongly reduced
with respect to the size of the set Sfbasic of defrauders iden-
tified by fbasic. Nevertheless, as shown in figure 3 the re-
trieved fraud of Sf is almost similar to that in Sfbasic , thus
confirming that the most interesting defrauders are those
selected by the first-level functions.

4.1.2 Second-level functions
First-level functions play a major role in modeling local

properties of fraudulent behavior. The role of a second-level
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function is to combine such local properties into a global
interestingness measure capable of summarizing them.

More formally, given k first level objective functions f1, . . . , fk,
a second-level objective function is a function F , associating
each individual of a population with a real number ranging
in [0,1], by combining the values assumed by f1, . . . , fk. The
contribution of fi can also be weighted, in order to tune its
influence within F .

The combination is made of two step. A first prelimi-
nary step consists in harmonizing the values of the first-level
functions. Indeed, first-level functions are designed indepen-
dently to each other and to capture different features. Thus,
often they are in different ranges and in different scales.
Consider for example, the function fprof and the function
fequ. The former represents the absolute value of the fraud
amount, while the latter represents the ratio between the
fraud amount and the business volume, thus ranging in [0, 1].
Directly combining them is clearly misleading as they refer
to different unit measures.

Harmonization should also take care of rescaling values ac-
cording to threshold values, in order to preserve homogeneity
in comparisons. Consider for example two functions f1 and
f2, both ranging in [0, 1], whose thresholds are σlow

1 = 0.01,
σup

1 = 0.1, σlow
2 = 0.7 and σup

2 = 0.9. If for an object
o both f1(o) and f2(o) assume value 0.5, the semantic of
such a value is inherently different, and a combination of
such values without a proper adjustment would result into
a misleading score.

Within SNIPER, harmonization is accomplished by means
of a normalizing function N : R → [0, 1], associating each
value assumed by a first level function with a value in the
range [0, 1]. N can simultaneously account for the normal-
ization concerning scales, ranges and thresholds. In DIVA
we adopted hyperbolic functions for normalizing values and
making them comparable.

Second-level functions can be directly derived by combin-
ing and weighting the normalized versions of the first-level
functions. We considered two main combination functions:

FΠ(o) =
Y

i∈[1,k]

(N (fi(o)))
pi

FΣ(o) =
X

i∈[1,k]

pi · N (fi(o)),



where pi represents the weight associated with fi. The FΠ

function returns the weighted product of the fi, whereas the
FΣ function returns the weighted sum of the fi.

These two functions satisfy a different conceptual enforce-
ment, but both of them have guaranteed good experimental
results. Essentially, the former function is built by applying
a sort of conjunctive operator to the single first-level func-
tions; this fact causes that FΠ(o) assigns an higher value to
those subjects having high values for each first level func-
tions. The latter instead implements a disjunctive criteria,
which associates a high value with those subjects having an
high value for one first level functions at least.

Thus, the FΠ function is more selective than FΣ and
therefore it could assign a low value to some interesting
subjects, for instance, characterized by a low value for one
first level function at least and a very high value for the
other ones. Analogously, FΣ suffers of the opposite prob-
lem, namely, it could assign an high value to those subjects
having an high value for one first level function but low val-
ues for all the other ones.

In principle, any second-level function can be used as a
score function. We chose, however, to mitigate the effects
on the borders by directly controlling them. Hence, the score
function can be formally defined as follows.

Definition 4. Let D be a dataset, let f1, . . . , fk be k first
level objective functions on D on which are defined 2k thresh-
olds σlow

f1 , σup
f1

, . . . , σlow
fk

, σup
fk

, let p1, . . . , pk be k weights, and
let o be an object of D. A score function, or simply score,
is a function Ω such that:

Ω(o) =

(
0 if

W
i∈[1,k] o ∈ Slow

fi
∧Vi∈[1,k] o 6∈ Sup

fi

F(o) otherwise

where o ∈ D and F(·) is a second level function defined on
f1, . . . , fk and p1, . . . , pk.

Then, the score of an object o evaluates 0 if o belongs
to Slow

f for some first level function f , unless o belongs to
Sup

f ′ for some first level function f ′; otherwise the score is
the value of a suited second level-function assumed by the
object.

The adequacy of Ω for capturing the most prominent as-
pects of the first-level functions can be appreciated in fig-
ure 4. Here, we show the cumulative gains obtained for
decreasing values of the score function (equipped with FΠ),
relative to profitability, equity and efficiency. Notice that
top individuals cumulate the largest gain in practically all
the three parameters.

4.1.3 Discretization
In the framework we are addressing, the goal is to retrieve

from the population X individuals scoring the maximum
value for the score function. Since Ω is a continuous func-
tion, then the score function must be discretized, so that
a class label can be associated with each discretization in-
terval. Then, the interval containing the highest values of
the score function identifies the top class. The width of the
top class strongly influences the quantity and the quality
of the individuals identified as members of the top class in
the population. Hence, the discretization phase plays a very
important role.

The approach used for the discretization in our experi-
ence is detailed next. First of all, two thresholds, ωlow and

4: Cumulative gains in proficiency, equity and efficiency
related to the score function.

48.65% 25.67%

17.97%

7.70%

(a) Subject partitioning

0.94%2.97%
11.42%

84.69%

(b) Retrieved fraud

5: Score function results

ωup are defined for the score function Ω. These thresholds
are obtained by computing the value that the second level
function assumes when evaluated on the normalized values
of the first level function thresholds. Then, the subjects are
partitioned in classes according to the threshold levels:e.g.,
the top class is made of subjects whose score is greater than
ωup.

Figure 5a reports the effects of the employed discretization
in partitioning the subjects. Specifically, from the lighter to
the darker colored slice, the figure reports the percentage of
subjects in classes 0, 1, 2 and 3, respectively. Conversely,
Figure 5b reports the percentage of total amount of fraud
made by the subjects of the different classes. It is worth
to point out that the subjects belonging to the top class,
represent only 7.70% of the total number of audited subjects,
but the total amount of fraud associated with them is 84.69%
of the total fraud amount made by the whole set of audited
subjects. This confirms the adequacy of the score function
and the related discretization to our needs.

4.2 Building the classifier
The second part of the SNIPER technique is the building

of the final binary classifier able to identify X defrauders
in the dataset, likely to be the most fraudulent individuals.
As introduced in Section 2, the SNIPER technique trains a
set of classifiers on the top class detected in the training set
by the preprocessing phase. This classifiers are then merged
into a single ruleset which is further processed.

4.2.1 Generating rules
The first step consists in extracting the rules from the



training set. The adoption of a single classifier directly
trained over the training is infeasible: as shown in fig. 4.1.3,
the preprocessed training set is highly unbalanced w.r.t. the
top class, and even the adoption of advanced mechanism for
resampling or cost-sensitive learning produces low-accuracy
models. The reason for this phenomenon is well-known in
literature as the problem of rare cases. The latter are very
small portions of the training data, that can be viewed as
exceptional sub-concepts seldom occurring within predom-
inant or rare classes. In the VAT refund fraud scenario,
this corresponds to the fact that each defrauder has a pecu-
liar behavior that does not generalize to other defrauders.
As pointed out in [22], rarity actually prevents a rule-based
classifier from finding and reliably generalizing the regulari-
ties within infrequent classes and exceptional cases. Indeed,
due to the commonly adopted metrics for growing classifi-
cation rules and evaluating their accuracy, class imbalance
leads to several accurate rules targeting the predominant
classes, supplemented by very few (if any) error-prone rules
predicting minority classes. Furthermore, rare cases tend to
materialize within the resulting classifier as strongly inaccu-
rate rules, referred to as small disjuncts [13], that in most
cases do not generalize actual exceptions, being a mere con-
sequence of noise in the training data [23] . In highly impre-
cise learning settings, noise often contributes to the effects
of rarity on predictive accuracy. On one hand, it may fur-
ther skew the already unbalanced class distribution. On the
other hand, rare cases may appear to the learner as indis-
tinguishable from noise, thus requiring a more specific in-
ductive bias, that would ultimately also induce noisy small
disjuncts.

The solution provided by SNIPER consists in building a
hybrid classifier, resulting from the combination of the whole
set of classifiers trained over the training set. The approach
is similar in spirit to a bagging methodology [6]. However,
rather than implementing a voting mechanism over an in-
dependent set of similar rule-based models, we chose to de-
compose each classifier into a single ruleset and to merge all
the rulesets into a global ruleset R, from which to extract
the most prominent rules.

Decoupling the model construction phase from model se-
lection, provides us with the further advantage of approach-
ing the rare case problem with a brute-force approach: in
the model construction, several different strategies are at-
tempted to build models specialized on local peculiarities of
the top class. In the model selection phase, several local
fragments can be combined or discarded if the global accu-
racy improves.

4.2.2 Merging rulesets
Let R1, . . . , Rh be the set of rules returned by h classifiers,

and let top be the class label assigned by the classifiers to
the objects belonging to the top class. The candidate ruleset
R is defined as follows:

R =

8<:r ∈
[

i∈[1,h]

Ri | r.class = top

9=;
The ruleset R still represents a classifier, and class top is
assigned to a non-labeled object o if and only if there exists
at least a rule in R that activates it. Hence, all and only the
objects in R(D) are labeled top.

Taken as a whole, the global ruleset R presents two rel-
evant shortcomings. first, |R(D)| can be larger than X.

Second, the confidence of R can be too low, and in partic-
ular, it could be lower than γmin. Indeed, R is the result
of merging different and independently designed classifiers
which are not necessarily exclusive.

Assume, for the sake of simplicity, that R is composed by
only two rules r1 and r2 having confidence γ(r1) = p1

p1+n1

and γ(r2) = p2
p2+n2

, respectively. Here, pi (resp., ni) denotes

the number of true (resp., false) positive objects activated
by the rule ri.

Let p1,2 (resp., n1,2) be the number of true (resp., false)
positive objects activated by both r1 and r2; with p1,2 rang-
ing in [0, min{p1, p2}] and n1,2 ranging in [0, min{n1, n2}].

Then, the global confidence of R = {r1, r2} is:

γ(R) =
p1 + p2 − p1,2

p1 + n1 + p2 + n2 − p1,2 − n1,2
.

Hence, the maximum value of γ(R) is obtained when p1,2 =
0 and n1,2 = min{n1, n2},

γmax(R) =
p1 + p2

p1 + n1 + p2 + n2 −min{n1, n2} ,

which is the case when the sets of true positive objects ac-
tivated by r1 and r2 are disjoint, whereas the sets of false
positive objects activated by r1 and r2 are overlapped.

Conversely, the minimum value of γ(R) is obtained when
p1,2 = min{p1, p2} and n1,2 = 0,

γmin(R) =
p1 + p2 −min{p1, p2}

p1 + n1 + p2 + n2 −min{p1, p2} ,

which is the case when the sets of true positive objects acti-
vated by r1 and r2 are overlapped, whereas the sets of false
positive objects activated by r1 and r2 are disjoint.

It is worth to point out that γmax(R) can be larger than
max{γ(r1), γ(r2)}, whereas γmin(R) can be smaller than
min{γ(r1), γ(r2)}. This depends from both the confidences
and the supports of the rules r1 and r2.

In case the rules are exclusive, both p1,2 and n1,2 are equal
to 0. Then,

γ(R) =
p1 + p2

p1 + n1 + p2 + n2
.

Suppose, w.l.o.g., that γ(r1) < γ(r2), and then that p1
p1+n1

<
p2

p2+n2
. It follows that:

γ(R) =
p1 + p2

p1 + n1 + p2 + n2
>

p1 + p2

p1 + n1 + p2
p1

(p1 + n1)
>

p1

p1 + n1

Analogously, it can be shown that γ(R) < p2
p2+n2

.
Summarizing, if the rules are exclusive the value of the

global confidence γ(R) is greater than the minimum confi-
dence of the rules in R and lower than the maximum confi-
dence of the rules in R; conversely, these properties do not
hold if the rules are not exclusive.

Thus, R is not necessarily the optimal choice for the final
binary classifier. We can, however, look for an optimal sub-
set R∗ ⊂ R, which simultaneously reaches the two following
goals: (i) the number of objects retrieved in the dataset is
as close to X as possible, and (ii) the confidence of R∗ is as
high as possible.

The search for the best subset R∗ achieving these two
goals is referred to as SBR problem in the following. Solving
such a problem is a hard task. Unfortunately, the SBR
problem can be proved to be NP -hard.

The complexity of the SBR problem is formally provided
in the appendix.



Input: A set of non-exclusive positive rules R,
a confidence threshold γmin,
an integer X

Output: A model M
Method:
1: M := ∅
2: R :=

n
r ∈ R | γ(r) ≥ γmin

o
3: while R 6= ∅ do //first stop condition
4: r∗ := arg maxr∈R

�
γ(r)

	
//select the best rule

5: M := M∪ {r∗} //update the current model
6: if M(D) ≥ X then //second stop condition
7: return M

//update the set of rules

8: R :=
n

r′ = r Z r∗ | (r ∈ R \ {r∗})V (γ(r′) ≥ γmin)
o

9: return M

6: Selecting Best Rules Algorithm

4.2.3 Selecting the best rules
In this section we describe a greedy technique for obtain-

ing the resulting ruleset, starting from R. Loosely speaking,
the heuristic employed consists in iteratively taking the most
confident rules until X objects are retrieved from D, or until
no further rules with enough confidence exist in R.

The algorithm is shown in Figure 6. We employ the term
set of rules to refer to the input set of same-head rules com-
ing from the classifiers, whereas the term model refers to the
set of rules finally computed by the algorithm. The main
idea is to compute a model M by iteratively adding the
most confident rule to it. Since rules may overlap, the con-
fidence of the rules is evaluated with regards to the objects
not activated by the model M associated with the current
iteration, rather than the whole test set.

First of all, the algorithm removes from the input set R
those rules that are not at least γmin confident. Then, the
most confident rule r∗ in R is selected and added to M
(lines 4-5). Next, the set R is updated by removing r∗ and
by replacing each rule r other than r∗ with the rule r′ = rZr∗

if γ(r′) = γmin, otherwise r is just removed from R (line 8).
In such a way, the rules which are now in R can activate

only objects which are not contemporarily activated by any
other rule in M. In other words, each rule in R is exclusive
with respect to the set M of rules.

The main property of the algorithm consists in the fact
that, for a given rule r, the more the set of true positives
activated overlaps with the true positives activated by M,
the higher the confidence of r′ = r Z r∗ is. Hence, each
iteration selects the rule that gives the best contribution
to the global confidence of the model M. Moreover, since
at each iteration adds to M a rule which is exclusive with
respect to M, and since the confidence of such a rule is at
least γmin, the confidence of M cannot be lower than γmin.
This guarantees that the heuristic produces a high-quality
model.

The algorithm proceeds until one of the two stopping con-
ditions is reached, namely either no other rule is in R (line
3), or M activates X objects in the dataset (line 6).

5. RESULTS
In this section, we briefly show the main experimental

results obtained applying the SNIPER technique to the real-
life VAT refund fraud scenario so far considered.

5.1 Learning of single classifiers

First of all, we have separately computed several classifi-
cation models using a score function to label the examples
belonging to training set. Precisely, we have preferred to ex-
ploit the score function based on the FΠ function in order to
better fit the domain’s constraints. The classifiers have been
selected from the Weka workbench [24] and other commer-
cial tools. Several different parameters sets were adopted,
including cost models for cost-sensitive learning. The results
of some experiments are reported in Table 1. The experi-
ments marked with a“∗” refer to classifiers modified in order
to improve their performance in terms of subjects retrieved.
That is, if the underlying original classifier extracts more
than X subjects, the less confident rules are removed until a
number of subjects close to X is retrieved from the dataset.
Note that since all the algorithms employed extract a model
with exclusive rules, if the less confident rule is removed
from the model, the global confidence raises up.

For each classifier Ci, the table contains information about
the support and the confidence of the model extracted by
Ci on the test set (columns 2-3 ); and finally, the number of
subjects of the dataset identified as fraudulent by Ci. The
classifiers are ordered by increasing value of confidence.

None of the single classifiers satisfies our quality needs.
Indeed, they are not able to simultaneously ensure a small
number of false positives and a number of dataset subjects
retrieved close to X = 10,000. In particular, high-quality
models are only capable of selecting a small number of sub-
jects from the whole population, which is too far from the
value X required. Conversely, larger auditing sets can only
be obtained by low-accuracy classifiers.

classifier ID supp (%) conf (%) dataset subjects
C1 1.01 84.90 1,910
C2 1.10 82.97 2,240
C3 3.11 77.28 4,955
C4 3.44 77.12 5,675
C∗5 6.36 62.26 10,056
C∗6 6.81 60.80 8,875
C∗7 7.07 59.72 9,059
C∗8 5.22 52.64 9,950
C∗9 4.56 49.18 12,584

1: Single classifiers behavior

5.2 Sniper technique results

rule 1 2 3 4 5 6 7
supp 0.65 1.21 0.97 0.89 0.85 0.87 0.90
conf 97.64 94.53 88.41 88.09 87.76 87.66 87.29

rule 8 9 10 11 12 13 14
supp 1.01 0.12 0.17 0.52 0.26 0.17 0.19
conf 85.12 83.64 83.12 77.73 76.47 71.79 70.11

2: Rules of the final classifier

By contrast, the SNIPER technique steps until a small
set of rules, extracted from the set containing all the rules
of each classifiers, comes out as the final result of the pro-
cedure. The parameters we adopt in the experiments are
σmin = 0.1% (corresponding to 50 subjects), γmin = 70%,
and X = 10,000.

Notice that, according to described approach, the mecha-
nism governing rules’ selection guarantees that the returned
set of rules is characterized by a global confidence value



greater than the fixed threshold γmin = 70%. Precisely, the
final model contains 14 rules coming from 9 distinct clas-
sifiers. Table 2 shows the characteristics of each of these
rules. The global confidence of the final model M is γ(R) =
80.41%; whereas the number of total subjects of the dataset
it activates is 9,840. Such results witness how the SNIPER
technique outperforms single classifiers.

6. CONCLUSION AND DISCUSSION
In this paper we presented SNIPER, a predictive modeling

technique for multi-purpose fiscal fraud detection in pres-
ence of biased and unbalanced training sets. The methodol-
ogy produces a rule-based classification system that can be
tuned to the requirements of the auditing agency, since it
concentrates on a user-defined fixed number of most promi-
nent subjects recognizable as fraudsters. The methodology
has been applied, in collaboration with the Italian Revenue
Agency, to the case of VAT refund fraud, although it can be
generalized to other situations where fraud detection can be
characterized by a multi-purpose objective in presence of a
noisy environment.

The SNIPER methodology is currently being validated on
stage: a number of subjects have been selected on the basis
of the SNIPER rules, and actual audits are being performed,
in order to asses the predictive accuracy and effectiveness.
At the time this paper is written, we can report only some
preliminary results

Two relevant outcomes are currently substantiating in the
validation process. The first is that most of the audited sub-
jects are unexpected cases, i.e., subjects the experts should
have never selected for auditing based on their current prac-
tices. That is, the adoption of Data Mining methodology
can ease the discovery of new fraud behaviors. The sec-
ond result is that audited subjects found positive typically
met all the three criteria of proficiency, equity and efficiency.
Proficiency and efficiency exhibit values close to those in the
top class in the training set. Equity, by contrast, exhibit an
impressive higher values, with increases ranging from 1% to
37%. The meaning is that the model succeeds in pursuing a
multi-purpose objective, being in particular able to identify
subjects with high fraud with respect to business volume.
Since these subjects were generally ignored by current audit
practices, the SNIPER methodology may represent a signifi-
cant advance in strategic planning for fiscal fraud detection.
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Appendix
Theorem 8.1. The SBR problem is NP -hard.

Proof. Consider the decision version of the problem at
hand. Let D be a dataset, R a set of rules and X a user
defined threshold. The SBR D problem is: let k be a real
number, find the subset R′ of R such that |R′(D)| = X and
γ(R′(D)) ≥ k. Next, it is proved that the SBR D problem
is NP -complete.

The proof is given by reduction from the Dominating
Set problem, which is well-known to be NP -complete. The
dominating set problem is the following: given a graph G =
〈V, E〉, with V a set of nodes and E a set of edges, and an
integer h: is there a subset W of V such that |W | ≤ h and
every node in V \W is joined to at least one node in W by
an edge in E?

Starting from a graph G, a dataset DG can be built as
follows. Let A = {A1, . . . , An} be a set of n attributes,
where n is equal to |V |, and let c be the class attribute. DG

is composed by 2n2 +n tuples. In particular, we distinguish
among three groups of tuples:

Group 1: for each node i in V there are in DG n identical
tuples ti

1, . . . , t
i
n such that ti

j [c] = 0, and ti
j [Ak] = 0∀k 6=

i, ti
j [Ai] = 1;

Group 2: for each node i in V there are in DG:

1. a tuple t′i1 such that t′ij [c] = 1, and t′i1[Ak] =

0, ∀k 6= i, t′i1[Ai] = −1

2. n−1 identical tuple t′i2, . . . , t
′i
n such that t′ij [c] = 0,

and t′ij [Ak] = 0,∀k 6= i, t′ij [Ai] = −1;

Group 3: there are in DG 2n tuples t01, . . . , t
0
n, t0n+1, . . . , t

0
2n,

such that t0j [c] = 1, and t0j [Ak] = t0j+n[Ak] = 1 if k = j
or there exists an edges joining the node 1 ≤ j ≤ n
and the node 1 ≤ k ≤ n in E, t0j [Ak] = t0j+n[Ak] = 0
otherwise.

Group 1 contain n2 tuples, Group 2 contain n2 tuples, and
Group 3 contain n tuples.

An example of such a reduction is reported in Figure 7.
Consider now the set of rulesRG = {r1, . . . , rn, rn+1, . . . , r2n}

consisting in 2n rules; specifically, for each i ∈ [1, n] there
are in R two rules ri : Ai ∈ {1} → c = 1, and ri+n :
Ai ∈ {−1} → c = 1. The former (resp., the latter) n rules
are called positive (resp., negative) rules. Moreover, given a
node vi ∈ V we refer to the rule ri : Ai ∈ {1} → c = 1 as the
positive rule associated with vi; whereas we refer to the rule
ri+n : Ai ∈ {−1} → c = 1 as the negative rule associated
with vi.

First of all, note that each negative rule r− selects exactly
n tuples, and no other rule inR can select these same tuples.
Conversely, each positive rule r+ selects n tuples of Group
1 and at least one tuple of Group 3. The tuples of Group
1 selected by r+ cannot be selected by any other rule in R,
whereas the one or more tuples of Group 3 selected by r+

can be selected by other rules.
Consider the example in Figure 7, and the rule A2 ∈

{−1} → c = 1. Such a rule selects five tuples: t′21, t
′2
2, t

′2
3, t

′2
4, t

′2
5,

that cannot be selected by any other tuple in R. Con-
sider now the rule A2 ∈ {1} → c = 1. Such a rule se-
lects nine tuples: t21, t

2
2, t

2
3, t

2
4, t

2
5 and t01, t

0
2, t

0
3, t

0
4. Note that,

while the tuples t2i cannot be selected by any other tuples,
the tuple t01 can be selected, for example, also by the rule

A1 ∈ {1} → c = 1, and the tuples t02, t
0
3, t

0
4 can be selected,

for example, also by the rule A3 ∈ {1} → c = 1.
As for the true positives, each negative rule selects one

true positive and n − 1 false positives; each positive rule
selects as many true positives as are the rule of the group 3
selected.

Let h be a fixed integer. Next, it is proved that G has a
dominating set D with |D| ≤ h if and only if there exists a
solution for the SBR D problem on the dataset G with the
set of rules R and parameters X = n2 + n and k = 2n−h

n2+n
.

As the first step, it is proved that if G has a dominating set
D with |D| ≤ h then there exists a solution for the SBR D
problem.

Let D = {vi1 , . . . , vi`} be a dominating set for G, with ` ≤
h. Consider the subset of rules RD consisting in the positive
rules associated with the nodes in D and the negative rules
associated with the nodes in V \D.

Consider Figure 7 again, and the dominating set D =
{v2, v3}. Then, the set RD is composed by the following
rules:

r6: A1 ∈ {−1} → c = 1,

r2: A2 ∈ {1} → c = 1,

r3: A3 ∈ {1} → c = 1,

r4: A4 ∈ {−1} → c = 1, and

r10: A5 ∈ {−1} → c = 1.

Since in RD there are n− ` negative rules and ` positive
rules, RD selects at least (n − `) · n + ` · n = n2 rules.
Moreover, since the nodes in D composed a dominating set,
each tuple of the Group 3 has a 1 in at least one column
associated with a node in D. Then, the positive rules of RD

select all the n tuples of the Group 3. Summarizing, RD

selects n2 +n rules, then the constraint on the parameter X
is complied with.

As for the true positives selected byRD, the n−` negative
rules select n− ` true positives, whereas the ` positive rules
selects n true positives (all the tuples of Group 3). Hence,
the global confidence of RD is 2n−`

n2+n
, then the constraint on

the global confidence is complied with, and this concludes
the first step of the proof.

As a second step, it is proved that if there exists a solution
R∗ for the SBR D problem with the set of rules RG such
that R∗(DG) = n2 + n and γ(R∗) ≥ 2n−h

n2+n
, then G has a

dominating set D such that |D| ≤ h.
First, it is proved that R∗ is composed by exactly n rules.

Suppose that in R∗ there are n − 1 rules. Such rules can
select at most all the n tuples of Group 3, and (n − 1) · n
tuples of Group 1 or 2. Then globally the rules in R∗ select
(n−1)·n+n = n2 tuples which is lower than X. Conversely,
suppose that in R∗ there are n + 1 tuples. Such rules at
least are n negative rules plus one positive rules. Since each
positive rule select at least n + 1 tuples, globally, the rules
in R∗ select n2 + (n + 1) tuples which is larger than X.

Moreover, in order for R∗ to select n2 + n tuples, some
positive rules must be in R∗. Indeed, if R∗ were composed
of only negative rules, it would select at most n2 tuples.

Let m be the number of positive rules in R∗. Then, in
R∗ there are n −m negative rules. Hence, R∗ select [(n −
m) ·n]+ [m ·n+ ν] tuples, where the first term is due to the
negative rules, while the second term is due to the positive
rules, and ν is the number of tuples of Group 3 selected by
the rules in R′.



Since the number of tuples selected by R∗ must be equal
to X, [(n−m) ·n]+ [m ·n+ ν] must be equal to n2 +n, and
then ν must be equal to n. This implies that the positive
rules in R∗ select all the tuples of Group 3.

Summarizing, in R∗ there are m positive rules and n−m
negative rules, and the m positive rules are able to select all
the tuples of Group 3.

As for the true positives selected by R∗, it holds that the
each negative rule of R∗ selects a true positive, then globally
the negative rules select n−m true positives; moreover, the
positive rules select as many true positive as tuples of Group
3 are selected, then they select n true positives. There-
fore, the confidence of R∗ is n+n−m

n2+n
. Since by hypothesis

γ(R∗) ≥ 2n−h
n+n

, it follows that m ≤ h.
Summarizing, we prove that if there exists a solution R∗

for the SBR D problem with the set of rules RG such that
R∗(DG) = n2 + n and γ(R∗) ≥ 2n−h

n2+n
, then the number of

positive rules in RG is lower than h.
Next, to conclude the proof, we obtain a dominating set

from R∗. Consider the positive rules in R∗. It follows form
the above discussion that they are m with m ≤ h and that
they select all the tuples of Group 3.

Hence, consider the set D of m nodes vi such that Ai ∈
{1} → c = 1 is a positive rule in R∗.

Since each tuple of Group 3 is selected, it follows that:

∀j ∈ [1, n]∃i | t0j [Ai] = 1 and Ai ∈ {1} → c = 1 ∈ R∗.
It follows, by construction, that the nodes in D are joined

to all the nodes of the graph by at least one edge. Hence, D
is a dominating set and |D| is equal to m ≤ h.

As an immediate consequence of what above proved, it
follows that the SBR problem is NP -hard.

4
1
 2


3


5


ID A1 A2 A3 A4 A5 c

t11 1 0 0 0 0 0
t12 1 0 0 0 0 0
t13 1 0 0 0 0 0
t14 1 0 0 0 0 0
t15 1 0 0 0 0 0
t21 0 1 0 0 0 0
t22 0 1 0 0 0 0
t23 0 1 0 0 0 0
t24 0 1 0 0 0 0
t25 0 1 0 0 0 0
t31 0 0 1 0 0 0
t32 0 0 1 0 0 0
t33 0 0 1 0 0 0
t34 0 0 1 0 0 0
t35 0 0 1 0 0 0
t41 0 0 0 1 0 0
t42 0 0 0 1 0 0
t43 0 0 0 1 0 0
t44 0 0 0 1 0 0
t45 0 0 0 1 0 0
t51 0 0 0 0 1 0
t52 0 0 0 0 1 0
t53 0 0 0 0 1 0
t54 0 0 0 0 1 0
t55 0 0 0 0 1 0

t′11 -1 0 0 0 0 1

t′12 -1 0 0 0 0 0

t′13 -1 0 0 0 0 0

t′14 -1 0 0 0 0 0

t′15 -1 0 0 0 0 0

t′21 0 -1 0 0 0 1

t′22 0 -1 0 0 0 0

t′23 0 -1 0 0 0 0

t′24 0 -1 0 0 0 0

t′25 0 -1 0 0 0 0

t′31 0 0 -1 0 0 1

t′32 0 0 -1 0 0 0

t′33 0 0 -1 0 0 0

t′34 0 0 -1 0 0 0

t′35 0 0 -1 0 0 0

t′41 0 0 0 -1 0 1

t′42 0 0 0 -1 0 0

t′43 0 0 0 -1 0 0

t′44 0 0 0 -1 0 0

t′45 0 0 0 -1 0 0

t′51 0 0 0 0 -1 1

t′52 0 0 0 0 -1 0

t′53 0 0 0 0 -1 0

t′54 0 0 0 0 -1 0

t′55 0 0 0 0 -1 0

t01 1 1 0 0 0 1
t02 1 1 1 1 0 1
t03 0 1 1 1 1 1
t04 0 1 1 1 0 1
t05 0 0 1 0 1 1

7: Example of the reduction employed in Theorem 8.1.


