

Consiglio Nazionale delle Ricerche
Istituto di Calcolo e Reti ad Alte Prestazioni

Multi-scenario Analysis

and Prediction of Business
Processes

Francesco Folino1, Gianluigi Greco 2,

Antonella Guzzo 3, Luigi Pontieri1

RT-ICAR-CS-09-07 Luglio 2009

Consiglio Nazionale delle Ricerche, Istituto di Calcolo e Reti ad Alte Prestazioni (ICAR)
– Sede di Cosenza, Via P. Bucci 41C, 87036 Rende, Italy, URL: www.icar.cnr.it
– Sezione di Napoli, Via P. Castellino 111, 80131 Napoli, URL: www.na.icar.cnr.it
– Sezione di Palermo, Viale delle Scienze, 90128 Palermo, URL: www.pa.icar.cnr.it

Consiglio Nazionale delle Ricerche
Istituto di Calcolo e Reti ad Alte Prestazioni

Multi-scenario Analysis

and Prediction of Business
Processes

Francesco Folino1, Gianluigi Greco 2,
Antonella Guzzo 3, Luigi Pontieri1

Rapporto Tecnico N.:
RT-ICAR-CS-09-07

Data:
Luglio 2009

1 Istituto di Calcolo e Reti ad Alte Prestazioni, ICAR-CNR, Sede di Cosenza, Via P.
Bucci 41C, 87036 Rende(CS)
2 Università degli Studi della Calabria, Dipartimento di Matematica, Via P. Bucci
30B, Rende (CS)
3 Università degli Studi della Calabria, Dipartimento di Elettronica, Informatica e
Sistemistica, Via P. Bucci 41C, Rende (CS)

I rapporti tecnici dell’ICAR-CNR sono pubblicati dall’Istituto di Calcolo e Reti ad Alte
Prestazioni del Consiglio Nazionale delle Ricerche. Tali rapporti, approntati sotto l’esclusiva
responsabilità scientifica degli autori, descrivono attività di ricerca del personale e dei
collaboratori dell’ICAR, in alcuni casi in un formato preliminare prima della pubblicazione
definitiva in altra sede.

Multi-scenario Analysis and Prediction of Business Processes

F. Folino1, G. Greco2, A. Guzzo3, and L. Pontieri1

ICAR-CNR1, Via P. Bucci 41C, 87036 Rende, Italy
Dept. of Mathematics2, UNICAL, Via P. Bucci 30B, 87036, Rende, Italy

DEIS3, UNICAL, Via P. Bucci 41C, 87036, Rende, Italy
{ffolino,pontieri }@icar.cnr.it , {ggreco }@mat.unical.it , {guzzo }@deis.unical.it

Abstract. Process Mining techniques exploit the information stored in the logs of a variety
of transactional systems in order to extract some high-level process model, which can be
eventually used for both analysis and design tasks. To deal with the inherent flexibility of
real-life processes, recent process mining research evidenced the opportunity of automati-
cally recognizing the different variants, by means of approaches that cluster the input traces
based on their behavioral/structural similarity. However, many technical as well as concep-
tual questions involved in the problem of clustering process traces were not investigated
enough, despite their relevance for practical applications. In this paper, we shall focus on
two questions arising there: (i) Outlier Detection and (ii) Modelling the association of dis-
covered structural clusters with with other process features (ranging from the executors of
the tasks, to the performance metrics, and to the data managed and queried by the transac-
tional system). The former issue clearly impacts on the quality of the clustering results, and
requires defining novel outlier detection approaches that are capable to effectively deal with
peculiarities of workflow processes, including concurrency and synchronization constructs.
As to the latter issue, it would be beneficial to adopt predictive models that allow to exploit
additional non-structural information at run-time to foresee as accurately as possible the
behavioral class of the current enactment. This advanced capability could be particularly
precious in complex and dynamical process management environments. Therefore, in this
paper we first address the problem of identifying anomalous traces in the context of pro-
cess mining applications, and propose a cluster-based outlier detection approach, where a
structure-oriented clustering is computed for the logs, while reckoning as outliers those indi-
viduals that hardly belong to any of the computed clusters or that belong to clusters whose
size is definitively smaller than the average cluster size. We then address the problem of
identifying the links between the various structural classes (i.e., the execution scenarios)
discovered via the above clustering algorithm and the non-structural features of the process
at hand, by introducing a framework for the discovery of a special kind of decision trees,
such that the sooner an attribute tends to be known along the course of process enactments,
the closer it should appear to the root. Both techniques are synergically applied on two real
applicative scenarios in order to prove their efficacy and potentiality.

Keywords: Business Process Intelligence, Process Mining, Clustering, Decision Trees

1 Introduction

In the context of enterprise automation, process mining has recently emerged as a power-
ful approach to support the analysis and the design of complex business processes [24].

In a typical process mining scenario, a set of traces registering the sequence of tasks
performed along several enactments of a transactional system—such as a Workflow
Management (WFM), an Enterprise Resource Planning (ERP), a Customer Relationship
Management (CRM), a Business to Business (B2B), or a Supply Chain Management
(SCM) system—is given to hand, and the goal is to (semi)automatically derive a model
explaining all the episodes recorded in them. Eventually, the “mined” model can be used
to design a detailed process schema capable to support forthcoming enactments, or to
shed lights into its actual behavior. Thus, process mining is of particular interest when
no formal description of the process is available beforehand, or when its observed enact-
ment deviates from the expected one.

s1 : abdfnmlgeh (2) s9 : acdfmlgeh (1)
s2 : abdfelmngh (2) s10 : acdih (10)
s3 : abdeflmngh (3) s11 : abdih (8)
s4 : abdfmnlgeh (1) s12 : afih (1)
s5 : abdeflnmgh (2) s13 : ah (1)
s6 : acdfmlgeh (2) s14 : aeg (2)
s7 : acdfelmgh (2) s15 : adfemh (1)
s8 : acdeflmgh (3) s16 : acdfmenlgh (2)

Fig. 1: A schema Wex (left) and a log Lex(right) – frequencies of (aggregated) traces are shown in brackets.

Traditional process mining approaches focus on capturing the “structure” of the pro-
cess by way of some sort of control-flow model, which mainly expresses inter-task de-
pendencies via precedence/causality links and other routing constructs, specifying, e.g.,
the activation/synchronization of concurrent branches, exclusive choices, and loops over
all the registered traces. For instance, given the event log (over tasks a,b, ...h) shown
in the right side of Figure 1 and consisting of the traces s1, ...,s14, a traditional process
mining algorithm would derive an explicative model such as the one depicted in the
left side of the same figure, which represents a simplified process schema according to
the intuitive notation where precedence relationships are depicted as directed arrows be-
tween tasks (e.g., m must be executed after f, while it can be executed concurrently with
l). While this kind of approach naturally fits those cases where processes are very-well
structured, it would hardly be effective in real-life processes that tend to be less struc-
tured and more flexible. Indeed, in such cases, equipping all the traces with one single
model would lead to mix different usage scenarios, thereby resulting in a spaghetti-like
model, which is rather useless in practice.

To deal with the inherent flexibility of real-life processes, recent process mining re-
search [11, 10, 2, 22, 3, 27] evidenced the opportunity of automatically recognizing the
different variants, by means of approaches that cluster the input traces based on their be-

havioral/structural similarity. In particular, much efforts have been spent to define suit-
able metrics that can be used to compare the various traces and to establish their simi-
larity, which is a pre-requisite for clustering algorithms. For instance, [11, 22] proposed
to transform each trace into a vector of a space whose dimensions are one-to-one associ-
ated with the frequent substrings emerging from the input logs, whereas [3] considered
an edit-distance measure, based on the idea of computing the best possible alignment
between the two traces at hand. As a matter of fact, however, beside these issues related
to the definition of clustering metrics, many technical as well as conceptual questions
involved in the problem of clustering process traces were not investigated in earlier lit-
erature, despite their relevance for practical applications. In this paper, we shall focus on
two questions arising there:

(1) Outlier Detection. In the case where no exceptional circumstances occur in enact-
ments, clustering approaches for process mining have been proven to be effective
in discovering accurate set of process models. However, logs often reflect tempo-
rary malfunctions and anomalies in evolutions, whose understanding may help in
recognizing critical points in the process that could yield invalid or inappropriate be-
havior. Indeed, if such exceptional individuals (usually referred to as outliers in the
literature) were not properly identified, then clustering algorithms will likely mix
the actual variants with specific behaviors that are not representative of some usage
scenario, but which rather reflect some malfunctioning occurred in the system. Thus,
towards improving the quality of the clustering results, it is of utmost importance to
define suitable approaches for identifying outliers from a given event log, which are
instead currently missing in the literature.

(2) Predictive Models. A tacit assumption in all the approaches to clustering log traces
is that the “structure” of each trace reflects some specific behavior of the enactment,
so that each cluster can ultimately be associated with a scenario that is characterized
by some homogeneous features (ranging from the executors of the tasks, to the per-
formance metrics, and to the data managed and queried by the transactional system).
Thus, if such additional non-structural information were available at run-time, the
natural question comes into play about whether it might be used to predict the clus-
ter where the current enactment will likely belong to. In other words, one may ask
for evidencing the hidden associations between the cluster structure and the underly-
ing non-structural data. Knowing these associations paves, in fact, the way to build
forecasting tools (in the spirit, e.g., of [23, 12, 19]) that predict as accurately as possi-
ble the behavioral class of the current enactment. This advanced capability could be
particularly precious in complex and dynamical process management environments,
but mining techniques tailored for its automatic support were not investigated in the
literature.

Despite their relevance for practical applications, the problems of singling out outliers
from the input traces and of finding predictive models for the clustering results received
little attentions so far. The aim of this paper is precisely to complement current research
on clustering approaches for process mining applications, and to discuss techniques de-
voted to provide support in these two contexts.

In more detail, in the first part of the paper, we consider the problem of identifying
anomalous traces in the context of process mining applications. To face this problem,
we propose to firstly characterize the “normality” of a given set of traces, by mining the
(concurrency-aware) structural patterns that frequently occur in the log. Then, we use
an outlier detection approach which is cluster-based, i.e., it computes a clustering for
the logs (where the similarity measure roughly accounts for how many patterns jointly
characterize the execution of the traces) and finds outliers as those individuals that hardly
belong to any of the computed clusters or that belong to clusters whose size is definitively
smaller than the average cluster size.

In the second part of the paper, we address the problem of identifying the links between
the various structural classes (i.e., the execution scenarios) discovered via the above
clustering algorithm and the non-structural features of the process at hand, in order to
build a predictive model on the structure of forthcoming process instances. Technically,
the model is conceived as a decision tree. In order to classify as soon as possible novel
enactments at run-time, a desirable feature for such a decision tree is that the sooner an
attribute tends to be known along the course of process enactments, the closer it should
appear to the root. To guarantee such feature, an ad-hoc induction algorithm is also
defined and illustrated.

Eventually, in the last part of the paper, the two above techniques are synergically ap-
plied on two real applicative scenarios. In particular, experiments are conducted to assess
the efficacy of the outlier detection and of the tree induction techniques, by showing how
the quality of the clustering and of the predictive models is strongly related to the ability
of properly singling out the abnormal circumstances registered in the log.

2 Outlier Detection in Process Mining Applications

2.1 Overview of the Approach

Outlier detection has already found important applications in bioinformatics [1], fraud
detection [7], and intrusion detection [4, 13], just to cite a few. The basic observation
underlying the various approaches is that abnormality of outliers can not, in general,
be defined in “absolute” terms, since outliers show up as kinds of individuals whose
behavior or characteristics “significantly” deviate from the normal one(s) that can be
inferred through some statistical computation on the data to hand. When extending this
line of reasoning towards process mining applications, some novel challenges however
come into play:

(C1) On the one hand, looking at the statistical properties of the sequencing of the
events might be misleading in some cases. Indeed, real processes usually allow for
a high degree of concurrency in the execution of tasks and, hence, a lot of process
traces are likely to occur that only differ among each other in the ordering between
parallel tasks. As a consequence, the mere application of existing outlier detection
approaches for sequential data to process logs may well suffer from a rather high
rate of false positives, as a notable fraction of task sequences might have very low
frequency in the log. As an example, in Figure 6, each of the traces in {s1, ...,s5}
rarely occurs in the log. Yet, it has not to be classified as anomalous, since we may
easily see that each of such traces corresponds to a different interleaving for the same
enactment, which occurs in 10 out of 43 traces.

(C2) On the other hand, considering the compliance with an ideal schema might lead to
false negatives, since some trace might well be supported by a model, even though
it identifies a behavior that is deviant with respect the one observed in the majority
of the traces. As an example, in Figure 6, the trace s16 correspond to cases where all
the tasks but b are executed. Even though this is possible according to the process
model on the left, it is yet anomalous since it is registered only in 2 out of 43 traces.

In addition, facing (C1) and (C2) above is complicated by the fact that the process
model underlying a given set of traces is generally unknown and has to be inferred
from the data itself. E.g., in our running example, a preliminary question is how we can
recognize the abnormality of a trace, without any a-priori knowledge about the model for
the given process. Addressing this question and subsequently (C1) and (C2) is precisely
the aim of this section, where an outlier detection technique tailored for process mining
applications is discussed. In a nutshell, rather than extracting a model that accurately
describes all possible execution paths for the process (but, the anomalies as well), the
idea is of capturing the “normal” behavior of the process by simpler (partial) models
consisting of frequent structural patterns. Then, outliers are identified in a two-steps
approach:

– First, we mine the patterns of executions that are likely to characterize the behavior
of a given log. In fact, our contribution is to specialize earlier frequent pattern mining
approaches to the context of process logs, by (i) defining a notion of pattern which
can effectively characterize concurrent processes by accounting for typical routing
constructs arising in process models, and by (ii) presenting an algorithm for their
identification.

– Second, we use an outlier detection approach which is cluster-based, i.e., it computes
a clustering for the logs (where the similarity measure roughly accounts for how
many patterns jointly characterize the execution of the traces) and finds outliers as
those individuals that hardly belong to any of the computed clusters or that belong
to clusters whose size is definitively smaller than the average cluster size.

By this way, we will discover, e.g., that traces s11, ...,s14 are not characterized by any
of the frequent behaviors registered in the log. Moreover, we will reduce the risk of
both false positives (traces are compared according to their characterization in terms of
patterns rather than in terms of tasks’ sequencing) and false negatives (traces compliant
with the model might be seen as outliers, if their behavior is witnessed just in a small
group of other traces)—cf. (C1) and (C2).

The above techniques are illustrated in Section 2.2, while some basic algorithmic is-
sues are discussed in the subsequent Section 2.3.

2.2 Formal Framework for Outlier Detection

Process-oriented commercial systems usually store information about process enact-
ments by tracing some events related to the execution of the various tasks. By abstracting
from the specificity of the various systems, as commonly done in the literature, we may
view a log L over a set of tasks T as a bag of traces over T , where each trace t in L has
the form t[1]t[2]...t[n], with t[i] ∈ T for each 1≤ i≤ n. Next, these traces are assumed to
be given in input and the problem of identifying anomalies among them is investigated.

Behavioral Patterns over Process Logs. The first step for implementing outlier detec-
tion is to characterize the “normal” behavior emerging from a given process log. In the
literature, this is generally done by assessing the causal relationships that hold between
pairs of tasks (e.g., [21, 14]). However, this is not sufficient to our aims, since abnor-
mality of traces may emerge not only w.r.t. the sequencing of the tasks, but also w.r.t.
other more complex constructs such as branching and synchronization. Hence, towards
a richer view of process behaviors, we next focus on the identification of those features
that emerge as complex patterns of executions.

Definition 1 (S-Pattern). A structural pattern (short: S-pattern) over a given set T of
tasks is a graph p = 〈Tp,Ep〉, with Tp = {n,n1, . . .nk} ⊆ T such that either:

(i) Ep = {n}× ({n1, . . .nk}) – in this case, p is called a FORK-pattern–, or
(ii) Ep = ({n1, . . .nk})×{n} – in this case, p is called a JOIN-pattern.

Moreover, the size of p, denoted by size(p), is the cardinality of Ep. ut

Notice that, as a special case, an S-pattern with unitary size is both a FORK-pattern
and a JOIN-pattern, and simply models a causal precedence between two given tasks.
This is, for instance, the case of patterns p3, p4, and p5 in Figure 6. Instead, higher
size patterns account for fork and join constructs, which are typically meant to express
parallel execution (cf. p1) and synchronization (cf. p2), respectively, within concurrent
processes.

The crucial question is now to formalize the way in which patterns emerge for process
logs.

Definition 2 (Pattern Support). Let t be a trace and let p = 〈Tp,Ep〉 be an S-pattern.
We say that t complies with p, if (a) t includes all the tasks in Tp and (b) the projection
of t over Tp is a topological sorting of p, i.e., there not exist two positions i, j inside t
such that i < j and (t[j], t[i]) ∈ Ep. Then, the support of p w.r.t. t, is defined as:

supp(p, t) =
{

min(t[i],t[j])∈Ep e−|{t[k]6∈Tp|i<k< j}|, if t complies with p
0, otherwise.

This measure is naturally extended to any trace bag L and pattern set P as follows:
supp(p,L)= 1

|L| ×∑t∈L supp(p, t) and supp(P, t)= 1
|P| ×∑p∈P supp(p, t). 2

In words, a pattern p is not supported in a trace t if some relation of precedence en-
coded in the edges of p is violated by t. Otherwise, the support of p decreases at the
growing of the minimum number of spurious tasks (i.e., {t[k] 6∈ Tp | i < k < j}) that
occur between any pair of tasks in the endpoints of the edges in p.

Example 1. Consider again the example shown in Figure 6. It is clear that all traces cor-
responding to any of the sequences s9, ...,s15 do not comply with p1. For the remaining
traces, the application of the support function defined in [9] gives the following results:

supp(p1,s1) = supp(p1,s6) = supp(p1,s7) = supp(p1,s8) = supp(p1,s9) = e−0 = 1
supp(p1,s2) = supp(p1,s3) = supp(p1,s4) = supp(p1,s5) = e1 = 0.368
supp(p1,s16) = e−2 = 0.135

Therefore, given the frequencies in Figure 6, the support of p1 w.r.t. the whole log thus
is 0.307. By similar calculations we also have that p5 gets full support (i.e 1) by s1, ...,s5,
and a support of 0.368 by s16, for a total of 0.249 against the whole log. ¢

While at a first sight this notions may appear similar to classical definitions from fre-
quent pattern mining research, some crucial and substantial differences come instead
into play. Indeed, the careful reader may have noticed that our notion of support is not
anti-monotonic regarding graph containment. This happens because adding an edge of
the form (x,y) to a given pattern may well lead to increase its support, since one further
task (either x or y) may be no longer viewed as a spurious one. Consequently, the space
of all the possible S-patterns does not form a lattice, and classical level-wise approaches
cannot be used to single out those patterns whose support over a log L is greater than a
given threshold σ, hereinafter called σ-frequent patterns.

In addition, differently from many pattern mining approaches, the frequency of a pat-
tern p is not necessarily an indication of its relevance in the regard of modeling the
process behavior. In particular, when comparing two σ-frequent patterns p1 and p2 such
that p1 is a subgraph of p2, we can safely focus on p2 if its frequency is not significantly
different from the one of p1; otherwise, i.e., if p1 happens to be much more frequent than
p2, the subpattern p1 has also its own interest in the characterization of the process. This
is formalized below.

Definition 3 (Interesting Patterns). Let L be a log, and σ,γ be two real numbers. Given
two S-patterns p1 and p2, we say that p2 γ-subsumes p1, denoted by p1 vγ p2, if p1 is a
subgraph of p2 and supp(p1,L)−supp(p2,L) < γ×supp(p2,L). Moreover, an S-pattern
p is (σ,γ)-maximal w.r.t. L if (a) p is σ-frequent on L and (b) there is no other S-pattern
p′ s.t. size(p′) = size(p)+1, p′ is σ-frequent on L, and pvγ p′. 2

Example 2. Let us consider the patterns p5 and p1 in Figure 6, σ=0.1 and γ=0.2. Then,
even though p1 is contained in p5 (and both of them are frequent), the former is still max-
imal as (supp(p1,L)−supp(p5,L))/supp(p5,L) = (0.307−0.249)/0.249 = 0.233 > γ.
Therefore, this sub-pattern still encodes interesting knowledge as it captures a far more
frequent way of executing the tasks m and g than the one expressed by its super-pattern
p5. Conversely, no subgraph of p2 is (σ,γ)-maximal, being the support of all these pat-
terns lower than the support of p2. ¢

Clusters-based Outliers. Once that “normality” has been modeled by means of the dis-
covery of interesting patterns, we can then look for those individuals whose behavior
deviates from the normal one. To this end, the second step of our outlier detection ap-
proach is based on a coclustering (see, e.g., [5]) method for simultaneously clustering
both patterns and traces, on the basis of their mutual correlation, as it is expressed by the
measure supp.

Intuitively, we look for associating pattern clusters with trace clusters, so that outliers
emerge as those individuals that are not associated with any pattern cluster or that belong
to clusters whose size is definitively smaller than the average cluster size. Abstracting
from the specificity of the mining algorithm (discussed in Section 2.3), the output of this
method is formalized below.

Definition 4 (Coclusters and Outliers). An α-coclustering for a log L and a set P of
S-patterns is a tuple C=〈P ,L ,M 〉 where:

– P ={p1, ..., pk} is a set of non-empty P’s subsets (named pattern clusters) s.t.
⋃k

j=1 p j=P;

– L={l1, ..., lh} is a set of non-empty disjoint L’s subsets (named trace clusters) such
that

⋃h
i=1 li = {t ∈ L | ∃pi ∈ P s.t. supp(pi, t)≥ α};

– M : P 7→ L is an bijective function that associates each pattern cluster p j to a trace
cluster li and vice-versa, i.e., li = M (p j) and p j = M −1(li).

Given two real numbers α,β in [0..1], a trace t ∈ L is an (α,β)-outlier w.r.t. an α-
coclustering C = 〈P ,L ,M 〉 if either (a) t 6∈ ⋃h

i=1 li, or (b) |li| < β× 1
|L | ∑l j∈L |l j|,

where t ∈ li. 2

In words, we define outliers according to a number of clusters, discovered for both
traces and patterns based on their mutual correlations, which represent different behav-
ioral classes. More specifically, two different kinds of outlier emerge; indeed, condition

(a) deems as outlier any trace that is not assigned to any cluster (according to the mini-
mum support α), while condition (b) estimates as outliers all the traces falling into small
clusters (smaller than a fraction β of the average clusters’ size).

Example 3. Let us consider again the example log and patterns shown in Figure 6. By
evaluating the support measure in Definition 2, one may notice that the traces corre-
sponding to s1, ...,s5 highly support patterns p2, p4 and p5, while s6,s7 do the same
with both patterns p1 and p3. Moreover, s8 highly supports both p3 and p6, whereas s9
is strongly associated with both p4 and p6. Finally, sequence s14 is associated with all
of the patterns in Figure 6 but p4. By using some suitable co-clustering method on the
correlations between these patterns and log traces, one should hence be able to identify
five trace clusters: one corresponding to the sequences s1, ...,s5; one for s6, ...,s9, one for
s10; one further for the trace s11, and the last for s16. All the other traces would be hence
perceived as outliers, for they are not correlated enough with any of these frequent be-
havioral patterns. A special case concerns the last sequence s16. In actual fact, the above
sketched clustering approach would originate a separate cluster, which just consists of
the two traces that correspond to s16. However, this cluster reflects a somewhat rare be-
havioral scheme (evidenced by only 2 of 43 traces), and should not be considered when
modelling the main behavioral classes of the process. Clearly, this can be accomplished
by properly setting the threshold β, controlling the minimal cluster size. ¢

2.3 An Algorithm for Detecting Outliers in a Process Log

In this section, we discuss an algorithm, named structuralClustering , for singling
out a set of outliers, based on the computation scheme and the framework described
so far. The algorithm is shown in Figure 2: Given a log L, a natural number pattSize
and four real thresholds σ,γ, α and β, it first employs the function FindPatterns to
compute a set P of (σ,γ)-maximal S-patterns, while restricting the search to patterns
with no more than pattSize arcs. Then, an α-coclustering for L and P is extracted with
the function FindCoClusters (Step 2). The following steps are just meant to build a set
U of traces that are (α,β)-outliers w.r.t. this coclustering, by checking the conditions in
Definition 4 on every trace. Eventually, the (α,β)-outliers are returned together with the
set of trace clusters (from which such outliers are removed). Clearly enough, the main
computation efforts hinge on the functions FindPatterns and FindCoClusters , which
are thus thoroughly discussed next, in two separate subsections.

Function FindPatterns The main task in the discovery of (σ,γ)-maximal S-patterns
is the mining of σ-frequent S-patterns, as the former S-patterns directly derive from the
latter ones. Unfortunately, a straightforward level-wise approach cannot be used to this
end, since the support supp is not anti-monotonic w.r.t. pattern containment. To face
this problem, FindPatterns firstly exploits a relaxed notion of support (denoted supp′)

Input: A log L, an upper bound pattSize ∈ N+ for pattern size, and four real numbers σ,γ,α and β
Output: A set of (α,β)-outlier, and set of trace clusters;
Method: Perform the following steps:

1 P := FindPatterns (L,pattSize,σ);
2 〈P ,L = {l1, ..., lh},M 〉 := FindCoClusters (L,P,α);
3 U := /0; avgSize := 1

|L | ∑ l j∈L |l j|;
4 for each trace t in L do
5 if t 6∈⋃h

i=1 li, or |li|< β× 1
h ∑l j∈L |l j|, where t ∈ li then U :=U ∪{t};

6 return U , and L∗ = {li | li ∈ L ∧|li| ≥ β× 1
h ∑l j∈L |l j|};

Function FindPatterns (L: log; pattSize: natural number; σ: real number): set of S-patterns;
P1 Compute the set L1 = {p is an S-pattern | supp′(p,L)≥ σ and size(p) = 1 } in a scan of L;
P2 k := 2; R := /0
P3 repeat
P4 Candk := generateCandidates(Lk−1,L1);
P5 Compute supp(p,L) and supp′(p,L) for each p ∈Candk through a scan of L;
P6 Lk := {p ∈ Candk | supp′(p,L)≥ σ}; // filter out “unfrequent” patterns
P7 R := R∪{p ∈ Lk−1 |6 ∃p′ ∈ Lk s.t. pvγ p′ }; // select (σ,γ)-maximal patterns (cf. Def. 3)
P8 k := k +1;
P9 until Lk = /0 or k +1 = pattSize ;

P10 return R;

Function FindCoClusters (L: log; P: S-patterns; α: real number): α-coclustering;

C1 for each pair of patterns pi, p j in P do M(i, j) := | {t′ |supp(pi ,t′)≥α∧supp(p j ,t′)≥α} |
| {t′ |supp(pi ,t′)≥α∨supp(p j ,t′)≥α} |

C2 Compute a partition Pmcl of P by applying the MCL clustering algorithm to M;
C3 L := /0; P := /0; M := /0;
C4 for each trace t in L
C5 pt :=

⋃
p∈Pmcl

{p | supp(p, t)≥ α} ;
C6 if P contains pt // cluster pt already exists and is hence associated with some trace cluster
C7 Let lt = M (pt) be the cluster currently associated with pt , and lt

new = lt ∪{t} ;
C8 L := L−{lt}∪{lt

new}; M (pt) := lt
new;

C9 else
C10 L := L ∪{ {t} }; P := P ∪ {pt}; M (pt) := {t};
C11 end if
C12 end for
C13 return 〈P ,L ,M 〉;

Fig. 2: Algorithm structuralClustering

which optimistically decreases the counting of spurious tasks by a “bonus” that depends
on the size of the pattern at hand: the lower the size the more the bonus. More precisely,
within Definition 2, for each arc (t[i], t[j]) in p, we replace the term |{t[k] 6∈ Tp | i < k < j}|
with min{ |{t[k] 6∈ Tp | i < k < j}|, pattSize− size(p)}. The reason for this is that, in the best
case, each of the pattSize− size(p) arcs that might be added to p, along the level-wise
computation of patterns, will just fall between i and j.

It can be shown that function supp′ is both anti-monotonic and “safe”, in that it does
not underestimate the actual support of candidate patterns. Therefore, based on it we
have implemented a level-wise approach: After building (in Step P1) the basic set L1
of frequent S-patterns with size 1 (i.e., frequent task pairs), an iterative scheme is used
to incrementally compute any other set Lk, for increasing values of the pattern size k
(Steps P4–P8), until either no more patterns can be generated or k reaches the upper

bound given as input. In more detail, for each k > 1, we first generate the set Candk of
k-sized candidate patterns, by suitably extending the patterns in Lk−1 with the ones in L1,
by means of function generateCandidates (Step P4). The set Lk is then filled only with
the candidate patterns in Candk that really achieve an adequate support in the log (Steps
P5- P6). By construction of supp′, we are then guaranteed that Lk includes (at least) all
σ-frequent S-patterns with size k.

Eventually, by a straightforward application of Definition 3 to the patterns in Lk−1 and
Lk, we can single out all (σ,γ)-maximal S-patterns with size k−1, and add them to the
set R, the ultimate outcome of FindPatterns . In fact, in Step P7 the exact function supp
is actually used for checking (σ,γ)-maximality.

Function FindCoClusters The function FindCoClusters illustrates a method for
coclustering a log and its associated set of S-patterns. Provided with a log L, a set P
of S-patterns and a threshold α, the function computes, in a two-step fashion, an α-
coclustering 〈P ,L ,M 〉 for L and P, where P (resp., L) is the set of pattern (resp., trace)
clusters, while M is a mapping from P to L .

At start, a preliminary partition Pmcl of P is built by applying a clustering procedure
to a similarity matrix S for P, where the similarity between two patterns pi and p j in P
provides a sort of estimation for the likelihood that pi and p j occur in the same log trace.
More specifically, these similarity values are computed (Step C1) by regarding supp as a
contingency table over P and L (i.e., (p, t) measures the correlation between the pattern
p and the trace t), and by filtering out low correlation values according to the threshold
α. Clearly, different classical clustering algorithms could be used to extract Pmcl out of
the matrix M (Step C2). In fact, we used an enhanced implementation of the Markov
Cluster Algorithm that achieves good results on several large datasets [6], and selects the
number of clusters autonomously.

In the second phase (Steps C3-C13), the preliminary clustering Pmcl of the patterns is
refined, and yet used as a basis for simultaneously clustering the traces of L: new, “high
order” pattern clusters are built by merging together basic pattern clusters that relate to
the same traces. More precisely, each trace t in the log induces a pattern cluster pt , which
is the union of all the (basic) clusters in Pmcl that are correlated enough to t, still based on
the function supp and the threshold α. It may happen that the cluster pt is already in P ,
for it was induced by some other traces; in this case we retrieve, by using the mapping
M , the cluster lt containing these traces (Step C7), and extend it with the insertion of t
(Step C8). Otherwise, we save a new trace cluster, just consisting of t, in L , and update
M to store the association between this new cluster and pt , which is stored as well in P
as a novel pattern cluster (Step C10).

Before leaving this section, it is worth observing that the structuralClustering al-
gorithm can be implemented without importing the input log as a whole into the main
memory. Indeed, the input log can just be scanned k times for finding patterns of size k,

plus two further times for building matrix M and for assigning each trace to the various
clusters (Steps C4-C12). Thus, main memory computation is just limited to the cluster-
ing of the frequent patterns (whose number is generally small compared with the input
log—in any case, one usually desire to focus on the most frequent ones). This property
guarantees potential scaling over huge datasets.

3 Discovery of Context-based Predictive Models

After that a set L∗ of trace clusters has been computed, e.g., by means of the approach
discussed in the previous section, the natural question comes into play about whether
we can find a model predicting the membership into the various clusters based on the
(non-structural) data available for the process instances at hand. In this section, we shall
explore this issue, by conceiving the predictive model as a decision tree. In particular, in
Section 3.1, we shall formally describe the kind of context information that is assumed
to be available in the input log, and the features that should be enjoyed by the decision
trees we would like to associate with the trace clusters . A computation method allowing
to extract such a models is then illustrated in detail in Section 3.2.

3.1 Formal Framework for the Induction of Predictive Models

In principle, process logs may contain a wide range of information about process exe-
cutions. The notion of log traces considered so far is therefore extended next in order
to represent context data associated with the execution of tasks. To this end, we assume
the existence of a set of process attributes A = {a1, . . . ,an}, and we assume that each
attribute is associated with one single task, referred to as task(ai) in the following. In
particular, case attributes can be associated with the starting (or final) task of the pro-
cess. Moreover, for ease of notation, for any attribute a and its corresponding task t (i.e.
t = task(a)), we will sometime refer to a as t.a, in order to represent its association with
t in a compact and intuitive enough manner. Each attribute a ∈ A is also equipped with a
domain of values, denoted by dom(a).

At run-time, the enactment of the process will cause the execution of a sequence of
tasks, where for each task t being executed, the set of all its activities will be mapped to
some values taken from the respective domains. This is formalized below.

Definition 5 (Data-Aware Logs). Let T be a set of tasks and let A be a set of process
attributes. A data-aware log over T and A is a tuple 〈L,data〉 where L is a log over
T , and where data is a function mapping each trace t ∈ L into a set of pairs data(t) =
{(a1,v1), . . . ,(aq,vq)} such that vi ∈ dom(ai) for each i ∈ {1, ...,q}, and{a1, ...,aq} =
{a ∈ A | task(a) = t[j], for some task t[j] ∈ T}. ut

In the following, we assume that the set L∗ of trace clusters at hand has been built
from a data-aware process log L. Thus, based on the knowledge of the data associated

with the execution of the various traces, it is our aim to build a decision tree that can be
used to predict membership into the clusters for forthcoming enactments.

Definition 6 (Data-Aware Decision Tree). Let L∗ be a set of trace clusters (for a data-
ware process log) over a set T of tasks and a set A of associated attributes. Then, a
data-aware decision tree (shortly, DADT) for L∗ is a triple D = 〈H,attr ,split 〉 such
that:

– H = (N,E) is a rooted tree, where N and E denote the set of nodes and the set of
(parent-to-child) edges, respectively;

– attr is a function mapping each non-leaf node v in N to an attribute in A;
– split is a function associating each edge from v to w (where w is a child of v) with

a propositional formula on attr (v). ut

Since we are interested in predicting the happening of behavioral classes based on
context data, a desirable property of a DADT concerns its ability to take care of the
task precedences holding over these classes. To formalize this concept, we need some
additional technical definitions first.

We say that a trace t is active in a node v ∈ N of a DADT D = 〈H,attr ,split 〉, if t
satisfies all the split tests defined in the path from the root of H to v. For a thresh-
old σ ∈ [0..1], we say that a cluster l ∈ L∗ is σ-active in a node v ∈ N if |{t ∈ l |
t is active in v}|/|l| > σ. The restriction of L∗ to the clusters that are σ-active in v is
denoted by L∗(σ,v). Moreover, for two tasks s and s′, we say that s σ-precedes s′ in l,
denoted by s≺l

σ s′, if there is a trace t ∈ l such that s = t[i] and s′ = t[j] with i < j, and
there is no trace t̄ ∈ l such that s = t̄[ī] and s′ = t̄[j̄] with ī > j̄.

Definition 7 (Temporal Compliance of a DADT). Let D = 〈H,attr ,split 〉 be a
DADT for the data-aware log L∗, and let σ be a threshold in [0..1]. We say that D is
σ-compliant w.r.t. L∗ if for each pair of nodes v and v′ of H such that v′ is an ancestor of
v, it holds that or each σ-active cluster l ∈ L∗(σ,v), either:

(a) task(attr (v))≺l
σ task(attr (v′)) does not hold, or

(b) there is an ancestor v′′ of v′ such that task(attr (v′′)) = task(attr (v)). ut

In words, condition (a) states that we cannot split a node v of the DADT by using an
attribute of a task t, if an ancestor of v is associated with an attribute of a task that is usu-
ally executed after t (w.r.t. the behavioral clusters in L∗(σ,v). This constraint is however
relaxed by the condition (b), which allows to reuse the attributes of a task associated with
v′′ in whichever node of the tree rooted in v′′. These two constraints therefore guarantees
that σ-compliant DADTs are suitable models to support on-the-fly prediction. The ques-
tion moves therefore on how we can mine a σ-compliant DADT, based on the clustering
L∗ at hand. This question is faced in the following section.

3.2 An Algorithm for Inducing a DADT Model

Several decision-tree induction approaches are already available in the literature (see,
e.g., [15, 18]) that might be used, in principle, to built a σ-compliant DADT. However,
by straightforwardly integrating the σ-compliance constraint into such approaches, we
risk obtaining a DADT tree of poor accuracy. Consider, as an example, the extreme case
where an attribute of the final task, say e, is chosen for performing the first split of the
training set, and consequently associated with the root of the decision tree – assuming
that all process instances finished with task e and that a top-down, recursive, partition
scheme is adopted for inducing the tree. Indeed, in such a case, Definition 7 would allow
to further partition the training set based only on attributes of task e, since attributes of
other tasks (which precede e in all log traces) cannot appear in any descendants of the
root.

To face the problem above, we modify the greedy split-selection criterion used by
classical decision-tree learning algorithms by introducing a bias towards attributes of
tasks that were executed in earlier phases of past process enactments. This is mainly ac-
complished by considering an ad-hoc attribute-scoring function for selecting split tests,
which ranks process attributes based on their capability to discriminate the clusters yet
supporting on-the-fly prediction.

An algorithm for inducing a σ-compliant DADT according to the strategy sketched
above is illustrated in Figure 3. The algorithm starts building a preliminary DADT that
just consists of one node (named r in the figure), gathering all log traces (indeed, the set
L contains the traces of all clusters given in input). Then (line 2) a decision tree is built
in a top-down manner, via a recursive partitioning procedure, named growDT , which
will be discussed in detail later. Once such a (possibly large and overfitted) decision
tree has been built, a pruning procedure (like in the J48 implementation of algorithm
C4.5 [18]) is exploited to improve its capability to make accurate prediction over new
process instances. The pruned DADT model is returned as the ultimate outcome of the
algorithm eventually.

Procedure GrowDT Let us now provide more details on the recursive procedure growDT ,
which encodes the core induction method for eventually yield a DADT model. The pro-
cedure takes as input a data-aware decision tree D, the leaf node v and its associated
set S of traces, which are to be considered for being split, and the original set L∗ of
(structural) trace clusters. After checking (in step B1) whether v contains a significant
number (according to the cardinality threshold minCard) of training instances, the pro-
cedure searches for a (locally) optimal way of partitioning these instances (steps B3-B4).
The split test for the node v is chosen greedily, by selecting the attribute that receives the
highest value by a split quality metrics score.

For each attribute a such a split score is computed via a linear combination (with a
coefficient ω ∈ [0,1]) of two components:

Input: A set L∗ of trace clusters over tasks T and attributes A, a set A′ ⊆ A of attributes, an integer number
minCardinality≥ 1 and two real numbers σ and ω;

Output: A σ-compliant DADT for L∗;
Method: Perform the following steps:

1 let L = ∪li∈LCi;
2 create a DADT D s.t. D.H = 〈{r}, /0,r〉 — functions D.attr , D.split and D.prob will be defined later
3 growDT (D ,r,L,L);
4 pruneDT (D ,L);
5 return D;

Procedure growDT (D: a DADT, v: a D’s node, S: a set of traces; L∗: a set of trace clusters);
B1 if |S| ≥ minCard
B2 let Lσ = {li ∈ L s.t. |li ∩S| ≥ σ · |S|};
B3 compute score(a) = ω ·g(a,S)+(1−ω) · ep(a,S,Lσ), ∀a ∈ A′;
B4 let s∗=maxa∈A{score(a)}, a∗=argmaxa∈A{score(a)}, and τ∗ be the split formula evaluated for a∗;
B5 if ω < 1 and checkCompliance (task(a∗),D,v,Lσ)
B6 D.split (v) := τ∗; D.attr (v) := a∗; D.prob (v, li) := |S∩ li|/|S|, for each li ∈ L∗;
B7 let S1, . . . ,Sk be the partition of S obtained by applying the test τ∗ to S;
B8 add k new nodes v1, . . . ,vk in D.H as children of v;
B9 for j=1..k growDT (D,v j ,S j ,L∗);

B10 end if
B11 end if

Fig. 3: Algorithm DADT-Induction

– a predictiveness measure, denoted by g(a,S) and computed through classical Gain
Ratio measure [16, 17], which mainly founds on evaluating the reduction of informa-
tion entropy that descends from splitting S according to some suitable split formula
over a1.

– an ad-hoc score, denoted by ep(a),S,Lσ), which tries to take account of dynamical
aspects of the process, by introducing a bias towards attributes that are associated
with tasks that occur earlier in the traces corresponding to the clusters of L∗ that are
correlated with v significantly.

More precisely, denoting by Lσ(v) the set of L’s clusters that are significantly repre-
sented in S according to minimal frequency threshold σ (cf. Line B2), the latter score is
computed as follows:

ep(a,S,L) =
1
|S| ∑

l∈L

|l| · |succ(task(a), l)|
|tasks(l)|

where tasks(l) simply indicates the set of tasks that appear in the traces of cluster l, while
succ(task(a), l) denotes the number of tasks in task(l) that follows task(a) according to
the ordering relationship ≺l

σ, i.e. succ(task(a), l) = {t ′ ∈ tasks(l) | t ≺l
σ t ′}.

1 A formula yielding a distinct outcome for each possible value is considered for nominal (discrete) at-
tributes. Conversely, in the case of a numeric (ordinal) attribute, the same heuristic method as J48 is
exploited to find a binary partition of its domain of into two continuous ranges

We pinpoint that when making score coincide with the Gain Ratio measure (i.e., when
ω = 1), it may happen that the check performed by checkCompliance arrests the growth
of the tree, without allowing the clusters in v to be separated neatly enough. It is just such
an undesirable effect that we want to prevent by correcting a classical (purity-based)
selection criterion through the ep score.

Once a (locally) optimal attribute a∗ has been chosen for splitting the traces in S, the
checkCompliance function is invoked to verify that the constraints in Definition 7 are
satisfied (Step B5). Indeed, the application of this function to the parameters a∗, D , v, and
Lσ will return false iff (i) there is an ancestor v′ of v in D such that task(v′) precedes
a∗ in some cluster of Cσ, and ii there is no ancestor v′′ of v′ in D s.t. task(v′′) = a∗.
Notice that such a test can be speeded up by maintaining some compact representation
of relevant task precedences (w.r.t. threshold σ) for each of the behavioral clusters in the
set L given as input to the algorithm. To this purpose, one could well think of resorting
to some kind of workflow model (possibly discovered through classical process mining
techniques, such as those presented in [24]). Since the compliance test is done only
when ω < 1, the behavior of algorithm DADT-Induction is made to coincide with that
of traditional decision tree learning algorithms in the case ω = 1.

In the case the check performed by checkCompliance is passed successfully, the cur-
rent (leaf) node v is mapped to both the selected split formula τ∗ and the associated
attribute a∗, by suitably updating the functions split and attr of the DADT D (line B6);
moreover, the joint probability value D.prob (v, li) is estimated, for each cluster li, as the
percentage of v’s instances that belong to li.

The decision tree is then expanded by adding as many children of v as the groups
S1 . . .Sk of traces produced by applying the partition formula τ∗ to S (lines B7-B8). Fi-
nally, the procedure growDT is recursively invoked over each new node vi, and its corre-
sponding set of traces Si.

4 Putting It All Together: A Toy Application Example

This section describes a complete application of the approach introduced so far to our
running example. In order to show, in particular, the discovery of data-aware predictive
models, a refined representation of the log of Figure 6 is given in Figure 4. Based on the
notation of Definition 5, each trace in this latter figure, generated from just one enactment
case, corresponds both to a sequence of tasks and to a number of non-structural data
(encoded in terms of attribute-value pairs). By the way, notice that this log concerns the
processing of liability claims in an insurance company, and was basically inspired to the
running example used in [19].

The behavior of the underlying process can be summarized as follows: after register-
ing data about the claim (a, Register claim), either a full check (c, Check all) or a shorter
one, only involving policy data (b, Check policy only), is performed. Once the claim has

trace ID task sequence data
t1 s1:abdfnmlgeh {(a .Amount,1000),(a .PolicyType,premium),(d .Status,approved)}
t2 s1:abdfnmlgeh {(a .Amount,1050),(a .PolicyType,premium),(d .Status,approved)}
t3 s2:abdfelmngh {(a .Amount,5000),(a .PolicyType,premium),(d .Status,approved)}
t4 s2:abdfelmngh {(a .Amount,500),(a .PolicyType,premium),(d .Status,approved)}
t5 s3:abdeflmngh {(a .Amount,495),(a .PolicyType,premium),(d .Status,approved)}
t6 s3:abdeflmngh {(a .Amount,500),(a .PolicyType,normal),(d .Status,approved)}
t7 s3:abdeflmngh {(a .Amount,480),(a .PolicyType,normal),(d .Status,approved)}
t8 s4:abdfmnlgeh {(a .Amount,6000),(a .PolicyType,premium),(d .Status,approved)}
t9 s5:abdeflnmgh {(a .Amount,6200),(a .PolicyType,premium),(d .Status,approved)}
t10 s5:abdeflnmgh {(a .Amount,5800),(a .PolicyType,premium),(d .Status,approved)}
t11 s6:acdfmlgeh {(a .Amount,500),(a .PolicyType,normal),(d .Status,rejected)}
t12 s6:acdfmlgeh {(a .Amount,490),(a .PolicyType,normal),(d .Status,rejected)}
t13 s7:acdfelmgh {(a .Amount,600),(a .PolicyType,premium),(d .Status,rejected)}
t14 s7:acdfelmgh {(a .Amount,610),(a .PolicyType,premium),(d .Status,rejected)}
t15 s8:acdeflmgh {(a .Amount,615),(a .PolicyType,premium),(d .Status,rejected)}
t16 s8:acdeflmgh {(a .Amount,605),(a .PolicyType,premium),(d .Status,rejected)}
t17 s8:acdeflmgh {(a .Amount,620),(a .PolicyType,premium),(d .Status,rejected)}
t18 s9:acdfmlgeh {(a .Amount,400),(a .PolicyType,premium),(d .Status,rejected)}
t19 s10:acdih {(a .Amount,501),(a .PolicyType,normal),(d .Status,approved)}
t20 s10:acdih {(a .Amount,555),(a .PolicyType,normal),(d .Status,approved)}
t21 s10:acdih {(a .Amount,560),(a .PolicyType,normal),(d .Status,approved)}
t22 s10:acdih {(a .Amount,565),(a .PolicyType,normal),(d .Status,approved)}
t23 s10:acdih {(a .Amount,570),(a .PolicyType,normal),(d .Status,approved)}
t24 s10:acdih {(a .Amount,575),(a .PolicyType,normal),(d .Status,approved)}
t25 s10:acdih {(a .Amount,580),(a .PolicyType,normal),(d .Status,approved)}
t26 s10:acdih {(a .Amount,585),(a .PolicyType,normal),(d .Status,approved)}
t27 s10:acdih {(a .Amount,590),(a .PolicyType,normal),(d .Status,approved)}
t28 s10:acdih {(a .Amount,595),(a .PolicyType,normal),(d .Status,approved)}
t29 s11:abdih {(a .Amount,550),(a .PolicyType,normal),(d .Status,rejected)}
t30 s11:abdih {(a .Amount,545),(a .PolicyType,normal),(d .Status,rejected)}
t31 s11:abdih {(a .Amount,540),(a .PolicyType,normal),(d .Status,rejected)}
t32 s11:abdih {(a .Amount,535),(a .PolicyType,normal),(d .Status,rejected)}
t33 s11:abdih {(a .Amount,530),(a .PolicyType,normal),(d .Status,rejected)}
t34 s11:abdih {(a .Amount,525),(a .PolicyType,normal),(d .Status,rejected)}
t35 s11:abdih {(a .Amount,520),(a .PolicyType,normal),(d .Status,rejected)}
t36 s11:abdih {(a .Amount,501),(a .PolicyType,normal),(d .Status,rejected)}
t37 s12:afih {(a .Amount,641),(a .PolicyType,normal)}
t38 s13:ah {(a .Amount,520),(a .PolicyType,normal)}
t39 s14:aeg {(a .Amount,580),(a .PolicyType,normal)}
t40 s14:aeg {(a .Amount,700),(a .PolicyType,normal)}
t41 s15:adfemh {(a .Amount,1000),(a .PolicyType,normal),(d .Status,rejected)}
t42 s16:acdfmenlgh {(a .Amount,0),(a .PolicyType,normal),(d .Status,rejected)}
t43 s16:acdfmenlgh {(Amount,0),(PolicyType,normal),(Status,rejected)}

Fig. 4: Example log for a claim handling process.

been evaluated (task d, Evaluate claim), either an approval letter (task e, Send approval
letter) or a rejection letter (task i, Send rejection letter) is sent to the customer. In the for-
mer case, a number of tasks are performed in order to eventually issue a payment for the

claim: task f (Submit Payment), task l (Validate Payment), task m (Update Reserves),
task n (Send Notification), task g (Register Payment). Finally, the claim is archived and
closed (task h, Archive claim). Notice that only the activities a and d have data items asso-
ciated: the amount of money involved (Amount), the customer (CustomerID) and the type
of policy (PolicyType) are all stored during claim registration (task a), while an annota-
tion (Status) about claim acceptance/rejection is held after evaluating the claim (d). By
the way, Amount is a numerical attribute, while both PolicyType and Status are nominal
attributes taking values from {“normal′′,“premium′′}, and {“approved′′,“re jected′′},
respectively.

4.1 Discovery of Behavioral Clusters and Outliers

Let us first examine the behavior of algorithm structuralClustering against the ex-
ample log of Figure 6, with σ = 0.1, γ = 0.2, α = 0.4, and β = 0.1.

By applying function FindPatterns , a number of frequent structural patterns are
found, which include those evidenced in Figure 6. By subsequently applying function
FindCoClusters algorithm structuralClustering eventually discovers four differ-
ent structural clusters: one with the traces t1, ...t10 (corresponding to the sequences s1, ...,s5
of Figure 6), one with the traces t11, ..., t18 (corresponding to s6 and s9), one with the
traces t19, ..., t28 (all corresponding to sequence s9), an the last with the traces t29, ..., t36
(corresponding to s10). On the other hand, all of the remaining log traces (associated
with s11, ...,s16) are recognized as anomalous process instances. It is worth noting that
this is in line with the observations made in Example 3, concerning desirable outcomes
of such a clustering process. Figure 5 shows some workflow models that we obtained by
processing these clusters with a classical workflow discovery tool (namely the Heuris-
ticMiner plugin ([28] provided by popular process mining framework ProM [25]), in
order to get further hints on the results found by algorithm structuralClustering .

Despite the simplicity of the process and log considered here, these workflow schemas
actually represent four major execution scenarios for the process itself, which mainly
differ for the kind of policy check performed (Check policy only) vs. Check all)) and for
the final decision (approval vs. rejection) on the claim. In general, such an effect can
well help improve the precision of classical process mining approaches, by preventing
the risk of having a single workflow that mixes up heterogeneous behaviors and models
situations that do not happen in reality. This is, in fact, the case of the overall schema
shown in Figure 6, which was obtained by directly applying such a process mining algo-
rithm (plugin HeuristicMiner was again used to this end) to the whole log of Figure 4).
Beside modelling some additional spurious task links (due to the presence of outlier
traces t37, ..., t41), this latter workflow schema incorrectly allows, indeed, for simulta-
neously executing the tasks e (Send accept letter) and i (Send rejection letter), despite
they only occur together in two (anomalous) log traces. Moreover, it does not capture the
fact that task n (Send Notification) never occurred in the cases where a complete check

(a) Cluster 0 (b) Cluster 1 (c) Cluster 2 (d) Cluster 3

Fig. 5: Workflow schemas found by algorithm structuralClustering on the running example.

Fig. 6: Workflow schema found with a classical technique on the running example.

Fig. 7: A 0-compliant DADT found by algorithm DADT-Induction on the running example (ω = 0.35).

of the claim was accomplished, by way of task c (Check all). It is worth noting that these
behavioral rules, effectively captured via our clustering-oriented approach, correspond
to very complicated workflow patterns (involving non-free choices and hidden tasks)
that are beyond the scope of most process mining approaches. By the way, we also pin-
point that erroneous log traces like t42 and t43 would hardly be detected out by previous
methods in the literature dealing with noised logs, which do not take account for the
existence of different execution scenarios (i.e. trace clusters). As a matter of fact, since
such methods focus on the frequency of tasks and of task links, they cannot recognize
anomalous situations corresponding to the enactment of multiple process patterns that
are frequent in the log separately, but rarely occur together with each other.

4.2 Discovery of Predictive Models

Let us now turn to the application of algorithm DADT-Induction to the 4 main clusters
found by algorithm structuralClustering , in order to find a predictive model ex-
pressing the correlation of these behavioral classes with non structural process attributes.
To this purpose, we retained all data attributes but CustomerID (which is indeed useless
for learning general behavior) and set minCardinality = 0, σ = 0.05 and ω = 0.35.

Figure 7 sketches the structure of the discovered DADT whereas Figure 8 reports the
model returned when using the same setting for all the parameters but ω = 1 — which
practically corresponds to applying a classical decision-tree induction algorithm like
C4.5 [18].

Differently from this latter tree, the topology of the model in Figure 7 fits well the task
precedences expressed by the schemas of Figure 5. Interestingly, in this special case, this
result has been achieved without paying any loss in the accuracy of the model (w.r.t. the
input log) — which is indeed maximal for both trees in Figures 7 and 8.

A notable feature of the decision tree in Figure 7 is that each of its nodes is associ-
ated with a joint probability function, relating the node with each cluster. For the sake

Fig. 8: A decision tree found on the running example without considering temporal aspects (i.e. ω = 1)].

of compactness, we here only report, beside each node non-leaf node v, the most prob-
able clusters for v and the number of input log traces that felt in v during the learning
process. Clearly, such information can be exploited to predict cluster membership for
ongoing process instances. For example, one can exploit the tree in Figure 7 to fore-
cast that the uncompleted trace [<Register Claim,{(Amount,50),(PolicyType,premium)}>] will fall
in Cluster 0. Conversely, the trace [<Register Claim,{(Amount,300),(PolicyType,normal)}>,<Check

policy only,{}>] is estimated to eventually fall in either Cluster 0 or Cluster 1.

5 Experiments

The approach proposed in the paper has been implemented integrated into a Java pro-
totype system, which is meant to support the analysis workflow logs represented in the
MXML format [26], used in the process mining framework ProM [25]. In particular, the
system can be exploited to detect structurally homogeneous trace clusters and anomalous
traces in a given input log. Moreover, given a set of logs, which are assumed to corre-
spond to different classes of behaviors, the system allows to discover a decision tree
model that predicts class membership based on context data encoded in the log traces
—incidentally, MXML format already admits registering such kind of data, in the form
of attribute-value pairs, which can be associated indeed with both process instances and
low-level log events.

This section discusses the application of the proposed approach on two different real-
life scenarios, with the aim of providing evidence for the practical usefulness of our
proposal. The remainder of this section is organized as follows. We first introduce, in
Section 5.1, a series of metrics enabling for a quantitative evaluation of experimental
findings. Concrete datasets used in the experimentation are then illustrated in section 5.2.
Section 5.3 offers a summarized view over a series of experiments and discusses results

obtained on overall quality metrics. A further series of test results, discussed in sec-
tion 5.5, is finally aimed at evaluating the capability of the our decision tree models
to support “on-the-fly” prediction over uncompleted process instance, compared with a
classical decision-tree induction approach.

Observe that, in all of the experiments described next, a fixed setting for parameters σ,
γ, α and β was considered: σ = 0.05, γ = 4, α = 0.4, β = 0.1. In general, the tuning of
these parameters is a tricky task in practical applications, which depends on the actual
distribution of data. Yet knowing that an absolutely optimal setting can hardly be stated
a-priori, our choice was mainly founded on observing that these values ensured satisfac-
tory results in several tests we carried out on different kinds of synthesized data (with
the aim of studying the sensibility of the approach to its parameters). Details on these
latter tests have been omitted from this paper for space reasons, as we believe that such
an issue is beyond the scope of this paper. On the contrary, different values of coefficient
ω will be explored, in order to allow the reader appreciate the advantage of using our
time-oriented approach to discovering a decision tree models for execution scenarios’
prediction.

5.1 Evaluation setting

In the evaluation of experiment results we focused on two main aspects: (i) the quality
of discovered workflow models, as concerns specifically their ability to precisely model
the structure of process instances, by possibly capturing different execution scenarios;
and (ii) the quality of discovered DADT decision trees, as concerns their capability to
predict the structural class of process instances based on non-structural information,
and to fit temporal aspects of the process. A number of metrics adopted to this purpose
are illustrated next, which allow to quantitatively evaluate the quality of both kinds of
models.

Quality of structural (workflow-based) models. The conformance of a workflow
model W w.r.t. a log L can be measured through three complementary metrics (all de-
fined in [20]), ranging each over real interval [0,1]:

– Fitness, which essentially evaluates the ability of W to parse all the traces L, by
indicating how much the events in L comply with W .

– Advanced Behavioral Appropriateness (denoted by BehAppr, for short), which esti-
mates the level of flexibility allowed in W (i.e., alternative/parallel behavior) really
used to produce L.

– Advanced Structural Appropriateness (or StrAppr, for short), which assesses the ca-
pability of W to describe L in a maximally concise way.

These measures were defined for a workflow schema and cannot apply directly to the
MSSM model discovered by our approach. In order to have a single overall score for such

a model, we simply average the values computed by each of these measures for each
workflow schema (w.r.t. its associated trace cluster). More precisely, the conformance
values of these schemas are added up in a weighted way, where the weight of each
schema is the fraction of original log traces that constitute the cluster it was mined from.

Quality of predictive (DADT) models. For evaluating the precision of DADT mod-
els we essentially resort to the classical Accuracy measure, expressing the percentage
of correct predictions that would be made over all possible traces of the process, esti-
mated with 10-fold cross-validation [15]. By the way, we will also compute this measure
against incomplete log traces in order to assess the capability of DADT models to carry
out “on-the-fly” predictions (see section 5.5). In addition, in order to provide a “local”
evaluation of classification accuracy, we report, for each single cluster c (i.e. behavioral
class), standard measures of precision (Pc), Recall (Rc) and the well-known F-measure
(Fc = ((β2 +1)Pc×Rc)/(Pc +β2Rc), coinciding with the harmonic mean of the precision
and recall values for β = 1).

As a further quality measure, an overall score (ranging in real interval [0,1]) is intro-
duced which indicates as much the model complies with the precedence relationships
among process tasks. In order to make such an evaluation independent of discovered
workflow models, we only base compute it against the log, by measuring, for each leaf
node l and for each trace t assigned to l, as much the ordering of tasks within t agrees
with the sequence of split tests that lead from the root to l. More formally:

Definition 8. Let L be a log over task set T and attribute set A, and D be a decision
tree over the same attribute set. For any leaf l of D, let (i) al

1 . . .al
k be the attributes

associated with the sequence of non-leaf nodes nl
1 . . .nl

k in the path from D’s root to l
—i.e. al

i = D.attr (nl
i), for i = 1..k—, and (ii) path(l) = pl

1, . . . , pl
k be the sequence of

tasks corresponding to al
1 . . .al

k —i.e. pl
i = task(al

i) for i = 1..k. Then, the conformance
of D w.r.t. L, denoted by Conf (D,L) is defined as follows:

Conf (D,L) =
1
N ∑

leaf l of D
∑
t∈l

(
1− mismatches(t, path(l))

maxMismatches(t, path(l))

)

where mismatches(t,path(l)) is the number of times the task precedences in t are inverted
in path(l), while maxMismatches(t,pl) = |t∩pl ||t∩pl−1|

2 is the maximum number of such
inversions that may occur between two sequences containing the same tasks as t and
path(l), respectively. Moreover, for any DADT model D = 〈D,attr ,split, p〉, we will
also denote Conf (D,L) = Conf (D.D,L). ut
Example 4. Consider the decision trees in Figures 7 and 8, and the example log in Fig-
ure 4. Let la

1 and lb
1 indicate the leftmost leaf in the tree of Figure 8 and of Figure 7, re-

spectively. Let us also denote by t1 the first trace in the log of Figure 4, which clearly cor-
responds to the task sequence abdflenmgh . When considering the first tree, t1 is clearly

assigned to la
1 , which is associated with the task sequence path(la

1) = ad. Conversely, in
the other tree, t1 is assigned to la

1 , which is corresponds to the task sequence path(la
1) =

da. Therefore, as concerns the classification of trace t1, the first tree (induced with
ω = 1) causes 1 mismatch, while no mismatch arises with the second tree (mined using
ω = 0.35)— indeed, it is mismatches(t1,path(la1)) = 1, and mismatches(t1,path(lb1)) = 0.

It is worth noting that the measure Con f (D,L) defined above is a pessimistic estima-
tion for the capability of a DADT D to comply with the workflow models that could
be discovered for the log L, by using some suitable process mining technique. In fact,
if, e.g., d and b are parallel activities, the log L is likely to contain both some trace tdb
where d precedes b and some trace tbd where conversely b occurs before d. Then, for any
DADT D that make use both tasks, the Con f (D,L) will incorrectly count a mismatch
on either tdb or tbd .

5.2 Datasets

Experimental activities were carried out on datasets coming from two different real-life
application scenarios, which are described in the two following subsections, respectively.

Data from a logistic system (Logs A and B). The first application scenario concerns
the operational system used in an Italian maritime container terminal. Basically, the life
cycle of any container is roughly summarized as follows. The container is unloaded from
the ship and temporarily placed near to the dock, until it is carried to some suitable yard
slot for being stocked. Symmetrically, at boarding time, the container is first placed in a
yard area close to the dock, and then loaded on the cargo. Different kinds of vehicles can
be used to move a container, including, e.g., cranes, straddle-carriers (a vehicle capable
of picking and carrying a container, by possibly lifting it up), and multi-trailers (a sort
of train-like vehicle that can transport many containers). Each container hence under-
goes different logistic operations which determine its displacement across the “yard”,
i.e., the main area used in the harbor for storage purposes, logically partitioned into
bi-dimensional slots. Slots are the units of storage space used for containers, and are
organized into disjoint sectors.

In our experimentation, we focused on a subset of 5389 containers, namely the ones
that completed their entire life cycle in the hub along the first two months of year 2007,
and which were exchanged with four given ports around the Mediterranean sea. In order
translate these data into a process-oriented form, we regarded the transit of any container
through the hub as a single enactment case of a (unknown) logistic process, and derived
the following logs, based on two different analysis perspectives:

– Log A (“operation-centric”), storing the sequence of basic logistic operations applied
to the containers. More precisely, the following distinct operations may be registered

for any container c: MOV (c was moved from a yard position to another by a straddle
carrier), DRB , (c was moved by a multi-trailer), DRG (a multi-trailer movedd to get c),
LOAD (c was charged on a multi-trailer)), DIS (c was discharged off a multi-trailer),
SHF (c was moved upward or downward, possibly to switch its position with another
container), OUT (a dock crane embarked c onto a ship).

– Log B (“position-centric”), registering the flow of containers across the yard. Here,
the focus is on the slot/sector associated with each logistic event.

In both cases, two dummy activities, denoted by START and END , were introduced
to univocally mark the beginning and the end of each log trace, respectively. Further,
various data attributes have been considered for each container (i.e., for each process in-
stance), including its origin and final destination ports, its previous and next calls, diverse
characteristics of the ship that unloaded it, its physical features (e.g., size, weight), and
a series of categorical attributes concerning its contents (e.g., the presence of dangerous
or perishable goods). All of these data have been encoded in both logs as attributes of
task START .

Data from a collaboration work platform (Log CAD). This second application sce-
nario, studied in the research project TOCAI.it 2, concerns the collaborative processes
performed in a manufacturing enterprise in order to carry out the design and prototypi-
cal production and test of new items (i.e., both final artifacts and components).

In this scenario, the design of a new item is accomplished by handling one or more
CAD projects through a distributed CAD platform, which allows different kinds of actors
to work in a cooperative and concurrent way.

Precisely, the following kind of events can be traced for each project: Creation ,
Construction (start of design for the item associated with the project), Modify (the
project was saved and a new version of it started off), CancelModify (the last mod-
ification to the project was undone), Musterbau (a prototype was built for an item),
Pruefung (the project was validated), TechAend (a technical revision was done for an
item), Share (the project was shared with other workers), Release (the project was
released), NullSerie (a pilot series was produced).

In particular, we focused on the operations performed, in the first three months of
year 2007, over 5794 projects that were never renamed —i.e. having just one single
occurrence of operation Creation .

These historical were restructured into a process log, referred to as Log CAD here-
inafter, where each log trace corresponds to a distinct project, and records the sequence
of CAD operations performed on the project. Each operation occurrence was also asso-
ciated, in the log, with two attributes, concerning the user that performed it: the working

2 TOCAI.it (Tecnologie Orientate alla Conoscenza per Aggregazioni di Imprese in Internet), research
project funded by Italian Ministry of University and Scientific Research.

group he/she belonged to (Group), and the role he/she was playing within the design
process (Role).

5.3 Summary of Experiment Results

Tables 5.3 and 5.3 summarize the outcomes of a selection of experiments performed on
the log data described above. In particular, the former table reports the number of clusters
found by algorithm A-ESD, and the quality scores computed for the MSSM eventually
returned as output. Table 5.3 shows instead some important figures of the DADT models
obtained with algorithm A-ESP, just based on the clusters and structural models found
by A-ESD. In particular, for each such classification model, its size and accuracy are
reported, as well as its conformance to the input log, measured according to the Con f
measure defined in Section 5.1.

Table 1: Summary of results algorithm A-ESD.

Log Clusters Fitness BehAppr StrAppr
Log A 2 0.8725 0.9024 1.0
Log B 5 0.8558 0.9140 1.0

Log CAD 4 0.6842 0.6584 1.0

Table 2: Summary of results of algorithm A-ESP.

Test Clusters Data-aware classification model
Dataset Attributes ω Accuracy Tree Size Conf

Log A
case 1 2 96.01% 69 1.0
all 1 2 98.03% 147 1.0
all 0.6 2 97.49% 101 1.0

Log B
case 1 5 91.64% 105 1.0
all 1 5 94.98% 135 0.89
all 0.6 5 95.01% 135 0.98

Log CAD task 1 4 71.62% 19 0.49
task 0.6 4 72.47% 45 0.72

Different settings were considered for the application of algorithm A-ESP, which differ
for the value of parameter ω (while keeping fixed σ = 0.15, α = 0.6), and for the kind
of non-structural information considered: only case attributes (Attributes = case), only
task attributes (Attributes = task), or all of them (Attribute = all). In this regard, we
observe that in the case of Log CAD, all the attributes available —namely, the group and
role of users performing each single CAD operation— refer to task elements, and there
are no case attributes.

In particular, as concerns the setting of parameter ω, we here only focus on two differ-
ent options:

1. ω = 1, which practically makes our approach coincide with the J48 algorithm —
indeed, in this case all precedence constraints in the structural models are completely
ignored when inducing the decision tree model—, and

2. ω = 0.6, where conversely a DADT model is built by taking into account such infor-
mation, based on the algorithmic scheme shown in Figure 3.

The value 0.6 was chosen in a pragmatical way, based on the observation that it en-
sured a good compromise between classification accuracy and structural conformance.
However, similar results were obtained when using different values of ω, in the real
range (0.3,0.7).

In general, the results shown in tables 5.3 and 5.3 confirm that the proposed approach
allowed to achieve good effectiveness results in all the considered analysis scenarios,
as concerns the modelling of both structural and non-structural aspects of of the logged
events. It is also interesting to observe that this precision does not come with a verbose
(and possibly overfitting) representation. Indeed, for all the tests, the number of clusters
and the size of the tree are quite restrained, while the workflow models collectively attain
a maximal score with the StrAppr metric.

Table 3: Top level attributes in the DADT models.

Test Top Level Attributes
Dataset Attributes ω
Log A case+task 0.6 PrevHarbor, ShipType OUT, NavLine IN, ContType
Log B case+task 0.6 ShipSize IN, ShipType OUT, ContType, PrevHarbor

Log CAD task 0.6 Creation::Group, Creation::Role, Construction::Group, Share::Group

As a complement to these results, Table 3 reports 4 top-ranked attributes for each
dataset, i.e. the 4 attributes that most frequently appeared in the the top levels of the
decision trees discovered from each dataset.

As mentioned above, by contrasting the results obtained with ω = 0.6 to those ob-
tained with ω = 1, we can have a sort of comparison between the induction technique
introduced in 3.2 (and sketched in Figure 3) with classical decision-tree induction algo-
rithms, such as C4.5 and its variant J48 [8, 18]. In this regard, we first notice that such
analysis degenerates in the case of log A, where the non-structural information relevant to
discriminating the two structural clusters is conveyed by case attributes, with just one of
task attribute (namely the distance covered in the first MOV operation) playing a marginal
role. As a consequence, even when task precedences are ignored in the induction of the
classification model (ω = 1), a maximal conformance value is obtained for this model.

Conversely, perturbing the attribute selection criterion with our heuristic based on task
precedences produces a slight decrease in the accuracy of the model, mainly due to the
fact that additional constraints limit the selection of most predictive features.

Such an effect does not arises on the logs B and CAD, where, as expected, our tech-
nique allows to improve the conformance of the classification model. Interestingly, in
these cases, the capability of the decision tree to predict the behavior of log traces is
improved when using the precedence-based heuristic in the selection of split attributes
(ω = 0.6). Such a beneficial effect was completely unexpected, and seems to suggest
that in some case considering the logics of the business process can guarantee better re-
sults than inducing the classification model via the classical greedy approach, based on
entropy reduction.

5.4 Detailed results: some of discovered models

We next focus on the findings of some tests performed on each of the three dataset
presented so far.

Log A. As specified above, each trace of Log A encodes the sequence of basic operations
(i.e., MOV , DRB , DRG , LOAD , DIS , SHF , OUT) applied to each single container. In addition
to container attributes, a series of data attributes were associated with each occurrence
of these operations, including the human that carried out the operation (Originator), the
two positions the container was moved between (FromPosition and ToPosition, resp.),
the completion time (Timestamp) and the duration of the operation (ElapsedTime), the
distance covered (Distance) and the kind of vehicle used in the operation (Vehicle). As
an example, we next discuss the results obtained when applying our approach to the log
described above with

As an example, we next discuss the results obtained when applying our approach to the
log described above with ω = 0.6, considering all data attributes for DADT induction.

In this case, algorithm A-ESD discovered two distinct normal usage scenarios, and
53 outlier traces. Subsequent analyses by domain experts confirmed that most of out-
lier individuals (i.e. container histories) actually correspond to anomalous cases and to
malfunctions in the tracking system. Further details are omitted for privacy restrictions.

Structural aspects of the scenarios are described by the workflow schemas shown in
Figure 9, which essentially differ for the presence of operations performed with multi-
trailer vehicles: the schema of Figure 9.(a)) does not feature any of these operations,
which are instead contained in the other schema. Notably, the former schema captures the
vast majority of handling cases (4736 containers of the original 5389 ones). This reflects
a major aim of yard allocation strategies: to keep each container as near as possible to its
positions of disembarkation/embark, by performing short transfers via straddle-carriers.

Interestingly, high quality scores were obtained by these structural models over all of
the conformance measures: Fitness = 0.8791, BehAppr = 0.9089, StrAppr = 1.0.

(a) Cluster 0 (b) Cluster 1

Fig. 9: Results on log A (ω = 0.6 and σ = 0.1): the two workflow schemas found.

Moreover, an astonishing 97.49% accuracy score was achieved by the data-aware clas-
sification model discovered for the log, so confirming that these two markedly different
execution scenarios strongly depend on process features that go beyond the mere se-
quencing of yard operations. Among these features, the following container properties
stood out: the provenance port of a container (PrevHarbor), the kind of ship that that
is going to take it away (ShipType OUT), the navigation line delivering the container to
the hub (NavLine IN) and the kind of container (ContType) (e.g., fridge container). As
to the attributes of tasks (i.e., operations), we notice that only those associated with the
MOV operation are actually used by the classification model.

For space and privacy reasons, we do not show the decision tree model found in the
test. However, in order to provide some hint of the practical usefulness of such a model,
in Figure 10 we report two of its branches, which were deemed quite useful for explain-
ing and discriminating the discovered usage scenarios. Both branches are represented
as if-then rules, r1 and r2, while the notation MOV::Distance is adopted to denote the
attribute Distance associated with the task MOV. Notably, r1 is a very selective rule clas-

r1:

if PrevHarbor = ANR

and ShipType OUT 6= RR

and ShipType OUT 6= CF

and ContType = DC

and MOV::Distance ≤ 204

then Cluster 0

r2:

if PrevHarbor = ANR

and ShipType OUT 6= RR

and ShipType OUT 6= CF

and ContType = DC

and 204 < MOV::Distance ≤ 354

then Cluster 1

Fig. 10: Results on log A: an excerpt of the decision tree.

sifying just 11 traces of the overall 5336 as belonging to Cluster 0 with an accuracy
of 81.82%. Conversely, rule r2 assigns 52 traces of the input log to Cluster 1 and gets
94.23% accuracy.

A finer grain analysis, conducted with the help of Table 4 (where individual preci-
sion/recall measures for the two clusters are shown), confirms that the model guarantees
a high rate of correct predictions for either cluster.

Table 4: Results on log A (ω = 0.6 and σ = 0.1): details on the discovered clusters.

Cluster Size P R F (β = 1)
0 4736 98,24% 98,94% 98,59%
1 600 91,17% 86,00% 88,51%

Log B. We recall that this log was created to arrange original data into a “position-
centric” fashion, in order to capture the paths typically followed by the containers around
the yard. Precisely, each trace in Log B encodes the sequence of yard sectors occupied
by a single container during its stay. Each log event is also associated with several non-
structural data attributes, which include the human who moved the container (Origi-
nator), the distance covered (Distance), the time spent to move the container (Elapsed-
Time), the kind of vehicle used (Vehicle), and the working turn during which it happened
(Turn).

We next focus on the results obtained in one of the experiments we carried out against
this process log, where the parameter ω was set again to 0.6, and all data attributes were
taken into account for inducing the DADT model.

The structural clustering performed by algorithm A-ESD allowed to recognize 5 trace
clusters, corresponding to prevalent behaviors, and 63 outlier traces. We remark that,
in principle, due to the high number of sectors and moving patterns that come to play
in such analysis perspective, any flat representation of container flows, just consisting
of a single workflow schema, risks being either inaccurate or difficult to interpret. Con-
versely, by separating different behavioral classes our approach ensures a modular repre-
sentation, which can better support explorative analyses. In fact, the five clusters found

(a) Cluster 1 (b) Cluster 3

Fig. 11: Results on log B: two workflow schemas.

in this test have been equipped with clear and compact workflow schemas, which ex-
hibited high levels of conformance with the log: Fitness = 0.8687, BehApp = 0.9254,
StrAppr = 1.0. As instance, two of these schemas are shown in detail in Figure 11, which
differ both in the usage of sectors and in some of the paths followed by the containers
across these sectors.

Interestingly, a satisfactory accuracy 95.01% is achieved again by the DADT model.
As a matter of fact, by comparing these results with those obtained in the previous test,
we notice that a slightly lower precision and a larger size of the decision tree (cf. Ta-
ble 5.3), mainly due to the higher level of complexity that distinguish the position-centric
analysis from the operation-centric one. Incidentally, Table 5 reveals that such worsening
is mainly to blame on the inability of DADT to appropriately recognize well the Cluster
1, which is, in fact, slightly confused with the Cluster 3.

Table 5: Results on log B (ω = 0.6 and σ = 0.1): details on the discovered clusters.

Cluster Size P R F (β = 1)
0 3660 96,84% 98,55% 97,69%
1 187 94,57% 64,89% 76,97%
2 344 95,00% 93,14% 94,06%
3 1068 88,99% 92,15% 90,54%
4 67 94,29% 97,06% 95,65%

We finally notice that almost the same attributes as in the former test have been em-
ployed to discriminate the clusters (even though in a different order), except for the usage

of ShipSize IN (i.e., the size category of the ship that delivered the container) in place
of NavLine IN .

(a) Cluster 0 (b) Cluster
3

Fig. 12: Results on log CAD: two workflow schemas.

Log CAD. In the remainder of this subsection, we focus on one experiment conducted
over this log, where the proposed approach was used with ω = 0.6 and by considering
all data attributes.

Table 6: Results on log CAD (ω = 0.6 and σ = 0.1): details on the discovered clusters.

Cluster Size P R F (β = 1)
0 3774 78,13% 87,85% 82,71%
1 825 56,99% 19,83% 29,42%
2 1138 56,08% 59,58% 57,78%
3 13 100% 69,23% 81,82%

Four different clusters and associated workflow models were discovered in this exper-
iment, which capture the behavior registered in the log in an adequate enough manner
— the global conformance scores of the structural model are, indeed, Fitness = 0.6933,
BehApp = 0.6687, StrAppr = 1.0. By the way, 50 traces were perceived as outliers,
which actually corresponds to unusual developments of CAD projects.

A DADT classification model was also discovered, consisting of 45 nodes, which
achieves 72.47% prediction accuracy, based on the information about the role and group
of the users that performed some of the CAD operations —primarily, Creation , Construction
and Share . Despite a lower precision score is achieved than in the previous application
scenario, this result is quite surprising, as there was no a-priori expectation that users’
roles and groups could be correlated with different CAD scenarios, and could really help
discriminate among them.

Figure 12 shows the workflow models discovered for two (of four) clusters found. In
particular, it is easy to see that Cluster 3 correspond to a somewhat anomalous execution
case —which actually regards only 13 traces— where a project is built but it is never
validated. Interestingly, the DADT classification model discovered in the experiment, is
able to precisely predict even this outsider behavior (see Table 6).

In Figure 13, we show four rules extracted from DADT model, all of which are quite
interesting and accurate. Specifically, r3 is a simple and yet very precise two-level rule
which only captures 6 traces of Cluster 1, with 100% accuracy. This result even more
interesting if we consider the disappointing performances the tree has in predicting this
cluster (cf. Table 6). 592 traces of the input log are assigned instead to Cluster 0 by rule
r4, which also achieves maximal precision (100% accuracy). Rule r5 gets some lower
precision result —it classifies 339 traces with 66.05% of accuracy— but it is still helpful,
in that it evidences the compliance of the tree w.r.t. to schemas shown in Figure 12.
Finally, rule r5, which correctly assigns 11 log traces to Cluster 0, demonstrates that
satisfactory results (an accuracy of 92.46%) can be achieved despite of the constraints
imposed by precedence relationships of the workflow schemas.

5.5 Estimating on-the-fly prediction power

A further kind of experiment was performed to assess the advantage of using our deci-
sion tree induction technique within an “on-the-fly” prediction setting, such as the one

r3:

if Creation::Role = User

and Creation::Group = EKM

then Cluster 1

r4:

if Creation::Role = User

and Creation::Group = EKS J

then Cluster 0

r5:

if Creation::Role = User

and Creation::Group = EK H

and Construction::Group = EK H

then Cluster 2

r6:

if Creation::Role 6= User

and Creation::Group = CAD M

and Share::Group 6= EKD J

then Cluster 0

Fig. 13: Results on log CAD (ω = 0.6 and σ = 0.1): an excerpt of the decision tree.

1 2 3 4 5 6 7 8 9 10
0.947

0.9475

0.948

0.9485

0.949

0.9495

0.95

0.9505

Trace Length

A
c
c
u

r
a
c
y

 = 0.6

 = 1

(a) Log B

1 2 3 4 5 6 7 8
0.685

0.69

0.695

0.7

0.705

0.71

0.715

0.72

0.725

0.73

Trace Length

A
c
c
u

r
a
c
y

 = 0.6

 = 1

(b) Log CAD

Fig. 14: “On-the-fly” prediction on real data: classification accuracy vs. trace fragments’ length.

discussed in Section 1, where the behavioral cluster of a forthcoming process instance
should be estimated possibly before it has been completed. In order simulate such a kind
of analysis, we measured the accuracy of the classification model over datasets, each of
which contains a k-prefix of each log traces, for k ranging from 1 to the maximal trace
length.

For two of the real-life logs, namely LogA and LogB, Figure 14 depicts the accuracy of
the classification model, in correspondence of each of these log subsets (i.e., for different
trace lengths). Two plots are shown for each log: one for the decision tree discovered by
using the algorithm in Figure 3 with ω = 0.6, and one for the decision tree found with
J48 —this practically corresponds to set ω = 1 in our prototype system.

Clearly, in all cases, the classification models make better predictions over longer
traces. However, it is encouraging to notice that, in both application scenarios, our tech-
nique always guarantees higher accuracy results than the classical decision-tree induc-
tion method.

References

1. A. Apostolico, M. E. Bock, S. Lonardi, and X. Xu. Efficient detection of unusual words. Journal of
Computational Biology, 7(1/2):71–94, 2000.

2. S. Basta, F. Folino, A. Gualtieri, M. A. Mastratisi, and L. Pontieri. A knowledge-based framework
for supporting and analysing loosely structured collaborative processes. In ADBIS (local proceedings),
pages 140–153, 2008.

3. R. P. Jagadeesh Chandra Bose and Wil M. P. van der Aalst. Context aware trace clustering: Towards
improving process mining results. In Proc of the SIAM International Conference on Data Mining
(SDM 2009), pages 401–412, 2009.

4. M. Burgess. Probabilistic anomaly detection in distributed computer networks. Sci. Comput. Program.,
60(1):1–26, 2006.

5. I. S. Dhillon, S. Mallela, and D. S. Modha. Information-theoretic co-clustering. pages 89–98, 2003.
6. A. J. Enright, S. Van Dongen, and C. A. Ouzounis. An efficient algorithm for large-scale detection of

protein families. Nucleic Acids Res, 30(7):1575–1584, 2002.
7. T. E. Fawcett and F. Provost. Fraud detection. pages 726–731. Oxford University Press, 2002.
8. E. Frank, M. A. Hall, G. Holmes, R. Kirkby, and B. Pfahringer. Weka - a machine learning workbench

for data mining. In The Data Mining and Knowledge Discovery Handbook, pages 1305–1314. 2005.
9. L. Ghionna, G. Greco, A. Guzzo, and L. Pontieri. Outlier detection techniques for process mining

applications. In Proc. of the 17th Intl Symposium on Foundations of Intelligent Systems (ISMIS 2008),
pages 150–159, 2008.

10. G. Greco, A. Guzzo, and L. Pontieri. Mining taxonomies of process models. Data & Knowledge
Engineering, 67(1):74–102, 2008.

11. G. Greco, A. Guzzo, L. Pontieri, and D. Saccà. Discovering expressive process models by clustering
log traces. IEEE Transactions on Knowledge and Data Engineering, 18(8):1010–1027, 2006.

12. D. Grigori, F. Casati, U. Dayal, and M. Shan. Improving business process quality through exception
understanding, prediction, and prevention. In Proc. of 27th International Conference on Very Large
Data Bases (VLDB’01), pages 159–168, 2001.

13. S. Jiang, X. Song, H. Wang, J. J. Han, and Q. H. Li. A clustering-based method for unsupervised
intrusion detections. 27(7):802–810, 2006.

14. L. Maruster, A. J. M. M. Weijters, W. M. P. van der Aalst, and A. van den Bosch. A rule-based approach
for process discovery: Dealing with noise and imbalance in process logs. Data Mining and Knowledge
Discovery, (1):67–87, 2006.

15. T. Mitchell. Machine Learning. McGraw-Hill, 1997.
16. J. R. Quinlan. Discovering rules by induction from large collections of examples. In D. Michie, editor,

Expert systems in the micro electronic age. Edinburgh Univ. Press, 1979.
17. J. R. Quinlan. Induction of decision trees. Machine Learning, 1(1):81–106, 1986.
18. J.R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.
19. A. Rozinat and W. M. P. van der Aalst. Decision mining in ProM. In Proc. of 4th Intl. Conf. on Business

Process Management (BPM’06), pages 420–425, 2006.
20. A. Rozinat and W. M. P. van der Aalst. Conformance checking of processes based on monitoring real

behavior. Information Systems, 33(1):64–95, 2008.
21. T. Hoffmann S. Dustdar and W. M. P. van der Aalst. Mining of ad-hoc business processes with teamlog.
22. Minseok Song, Christian W. Günther, and Wil M. P. van der Aalst. Trace clustering in process mining.

In Business Process Management Workshops, pages 109–120, 2008.
23. S. Subramaniam, V. Kalogeraki, D. Gunopulos, F. Casati, M. Castellanos, U. Dayal, and M. Sayal.

Improving process models by discovering decision points. Information Systems, 32(7):1037–1055,
2007.

24. W. M. P. van der Aalst, B. F. van Dongen, J. Herbst, L. Maruster, G. Schimm, and A. J. M. M. Weijters.
Workflow mining: A survey of issues and approaches. Data Knowledge Engineering, 47(2):237–267,
2003.

25. B. F. van Dongen, A. K. A. de Medeiros, H. M. W. Verbeek, A. J. M. M. Weijters, and W. M. P. van der
Aalst. The ProM framework: A new era in process mining tool support. In Proc. of 26th International
Conference on Applications and Theory of Petri Nets (ICATPN ’05), pages 444–454, 2005.

26. B. F. van Dongen and W. M. P. van der Aalst. A meta model for process mining data. In Proc. of
EMOI-INTEROP, pages 309–320, 2005.

27. Gabriel M. Veiga and Diogo R. Ferreira. Understanding spaghetti models with sequence clustering for
ProM. In Business Process Intelligence (BPI 2009): Workshop Proceedings, 2009.

28. A. J. M. M. Weijters and W. M. P. van der Aalst. Rediscovering workflow models from event-based
data using little thumb. Integrated Computer-Aided Engineering, 10(2):151–162, 2003.

