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Abstract 
Modelling behavioral aspects of business processes is a hard and costly task, which usually 
requires heavy intervention of business experts. This explain the increasing attention given to 
process mining techniques, which automatically extract behavioral process models from log 
data. In the case of complex processes, however, the models identified by classical process 
mining techniques are hardly useful to analyze business operations at higher abstraction 
levels. In fact, the need of process abstraction emerged in several application scenarios, and 
abstraction methods are already supported in some business-management platforms, which 
allow users to manually define abstract views for the process at hand. Therefore, it comes 
with no surprise that process mining research has recently considered the issue of mining 
processes at different abstraction levels, mainly in the form of a taxonomy of process models, 
as to overcome the drawbacks of traditional approaches. This paper offers a survey on these 
recently proposed mechanisms, including: (i) workflow modelling and discovery techniques, 
(ii) clustering techniques enabling the discovery of different behavioral process classes, and 
(iii) activity abstraction techniques for associating a generalized process model with each 
higher level taxonomy node.  

 

Introduction 
Workflow models are an effective way to specify the behavior of complex processes in terms 
of elementary process activities and routing constructs (e.g. parallelism, loops, splits). 
Unfortunately, modelling the behavioral aspects of a business process is a time-consuming 
task, requiring heavy intervention by business experts. This motivates the interest for process 
mining techniques (see Reference 41 for a survey on this topic), which allow to automatically 
extract a workflow model based on the execution logs available for a given process. 
Traditional process mining approaches are designed to support process enactments, and 
thus define workflow models that completely specify all the operational details for the process. 
In practice, however, business users want to analyze business operations at higher 
abstraction levels. In fact, the need of process abstraction emerged in several applications, 
and it is supported by some business-management platforms (e.g, iBOM8, ARIS25), which 
allow the user to manually define abstract views for the process.  

A first step towards the automatic construction of process model taxonomies via induction 
methods was done in Reference 14, where different behavioral classes of process instances 
are discovered with a clustering method, and are eventually equipped with separate workflow 
models. Indeed, such a result can be used as a basis for restructuring the representation of 
the process behavior into a taxonomy of process models, by way of suitable abstraction 
techniques13. Other approaches have also subsequently been proposed, so that a number of 
methods and algorithms currently exist, which are support process mining from the 
perspective of deriving abstract views for the processes at hand.  



This work is precisely intended to provide a survey on different kinds of techniques and 
methods that can support the (automatic) design of process model taxonomies effectively. 
The following sections are organized as follows. In the first section, a few preliminaries on 
process models and process mining are discussed. The second section introduces the 
concept of process model taxonomy, and refers to diverse notions of specialization proposed 
in the literature for behavioral process models. The usage of clustering techniques is 
investigated in the third section, as a basic means for recognizing different behavioral 
classes. Eventually, the fourth section illustrates some abstraction mechanisms that allow to 
transform a process model into a more general one, which can be exploited to derive an 
abstract model for each higher level taxonomy nodes.  

 

Workflow-based Representation and Mining of Process Behavior 
Workflow models (more precisely control-flow models) are quite a popular and intuitive way of 
representing process behavior, where legal ways of executing process activities are encoded 
in terms of precedence constraints and more elaborate routing constructs (such as 
concurrence, loops, synchronization and choice). In this section, we introduce some basic 
concepts on workflow models, with the help of a simplified modelling language. Then, we 
discuss some major mining techniques which can induce such a model automatically from 
execution logs, and can hence effectively support the design of behavioral process models. 

Workflow Models and Logs 
Workflow model represents all possible execution flows along the activities of a given 
process, by means of a set of constraints defining “legal" execution in terms of simple 
relationships of precedence and/or more elaborate constructs such as loops, parallelism, 
synchronization and choice (just to cite a few).  A significant amount of research has been 
done in the context of specification mechanisms for process modelling (e.g., Event Driven 
Process Chains40, Petri Nets39, and others12,35). In particular, Petri nets were largely used in 
workflow management applications for they can various routing constructs, yet enjoying 
precise execution semantics.  

In order to keep the exposition clear and concrete, hereinafter we will refer to a simplified and 
intuitive modelling language for workflow models, where precedence relationships between 
activities are depicted as arrows between nodes of a workflow graph, and where some 
constructs drawn by means of labels beside the tasks (cf. AND, OR, XOR) are used to state 
more elaborate constraints of execution. Roughly speaking, a node whose input is AND acts 
as synchronizer (i.e. it can be executed only after all its predecessors have been completed), 
whereas a node whose input is OR can start as soon as at least one of its predecessors has 
been completed. Furthermore, once  finished, a node with an AND (resp., OR, XOR) in output 
activates all (resp., some of, exactly one of) its outgoing activities. 

Example As an example scenario, let us consider the process of handling customers’ orders 
within a business company. Fig. 1 shows a workflow model for the above process, where 
edges represent precedence relationships, while additional constraints are expressed via 
labels associated with activity nodes. E.g., task l is an AND-join activity, as it must be notified 
that both the client is reliable and the order can be supplied correctly. Conversely, b is a XOR-
split activity, since it can activate just one of its adjacent activities. 



Figure 1   

Workflow model for the sample HandleOrder process 

 

 

Figure 2   

Sample log for the HandleOrder process. 

 
 

It is worth noting that most of the methods discussed in this paper are orthogonal to the 
language adopted to represent process behavior, and do not depend on the simplistic 
notation introduced above. Hence, for generality we may assume that a set of activity 
identifiers, say A, is given and that a modelling language, say M, is used. Then, we shall 
denote by M(A) the set of workflow models that can be built by using the constructs in M over 
the activities in A.  

Each time a workflow model W ϵ M(A) is enacted in a workflow management system, the 
activities in A  are executed according to the constraints of W, till some final configuration is 
reached for which there is no constraint in W forcing the execution of some further activity. 
The events related to each enactment may be stored in some log repository, and used as 
input for process mining techniques, which allow to induce a workflow model W ϵ M(A) even 
in the case the original workflow model W  is not known or it does not exists at all (i.e., the 
process is carried out without any formal and explicit execution model). In fact, most process-
oriented systems store information on process instances, by keeping track of the activities 
executed during each of them. Basically, a process log can be seen as a set of traces, which, 
in the most simplistic scenario, correspond to strings over activity identifiers, representing 
ordered sequences of activities.  A log of few traces is shown in Fig. 2, for the example 
process HandleOrder.  

Workflow Discovery Techniques 
Based on execution logs like the ones introduced before, process mining techniques (see 
Reference 41 for a survey) allow to discover knowledge about the behavior of the processes 
that generated them. We here concentrate process mining techniques (known as control-flow 
mining techniques) that aim at discovering a workflow representation for the behavior 
registered in a given execution log. Most of the differences among the different proposals in 
the literature resides in the modelling features that can be used to represent a workflow model 
and in the specific algorithms used for discovering it. For example, in Reference 2, processes 
are intuitively represented through pure directed graphs, which allow to express precedence 
relationships only, while disregarding richer control flow constructs, such as concurrency, 
synchronization and choice. Many other proposals exploit, instead, more expressive 



languages, which sometimes enjoy deep formal foundation for modelling and analyzing 
workflow processes, as in the case of WF-nets37,41,42 (a special kind of Petri nets). 

The general problem of discovering a WF-net workflow model was specifically analyzed in 
Reference 42, where the concept of structured workflow (SWF) net is introduced to capture a 
class of WF-nets that a process mining algorithm should be able to rediscover. Here an 
algorithm, named α is presented which can rediscover an SWF net out of a log, provided that 
the log is guaranteed to enjoy some well-specified properties. The α algorithm was then 
extended10 with some pre-processing and post-processing strategies making it capable to 
discover short loops. Moreover another extension38 of the algorithm was devised to explicitly 
capture non-free-choice constructs, which are a form of implicit dependencies between the 
process tasks.  

A heuristic approach37 was presented that exploits simple metrics concerning task 
dependency and task frequency, in order to produce a graph-based model, called 
“dependency/frequency graph". Notably, the approach copes with the presence of noisy logs. 

A different approach to mining a process model from event logs was described in Reference 
34, in order to discover a hierarchically structured workflow model. Such a model corresponds 
to an expression tree, where the leafs represent tasks (operands) while any other node is 
associated with a control flow operator. In this context, the mining algorithm mainly consists of 
suitable term rewriting systems. 

Yet another approach was adopted in References 23,24, where a subset of the ADONIS26 
definition language is used to represent a block-structured workflow model. The peculiarity of 
the approach mainly resides in its capability of recognizing duplicate tasks in the control flow 
graph, i.e., many nodes associated with the same task. The algorithm proposed there, named 
“InWoLvE", solves the process mining problem in two steps: an induction step, where a 
stochastic activity graph (SAG) is extracted out of the input log, and a transformation step, 
where the SAG is transformed into a block-structured workflow-model. 

Recently, some extensions to this approach were proposed in Reference 21, in an interactive 
setting, where the analyst can iteratively refine the results found by evaluating the mined 
models and varying the parameters of the mining technique. Beside discussing a number of 
issues involved in interactive process mining, some techniques are introduced in Reference 
21 to support such a setting, which primarily include a validation procedure for checking the 
(preliminary) mined model, and a structured layout algorithm that is stable against small 
changes of the mined model. 

The problem of discovering a process model from execution logs was also considered in 
Reference 7, as a special case of the Maximal Overlap Sets problem in graph matching. The 
paradigm of planning and scheduling by resource management is used there in order to 
devise an efficient approach tackling the combinatorial complexity of the problem. 

The approach proposed in Reference 11 tries to overcome the difficulty encountered by 
previous techniques when dealing with non-trivial routing constructs and noisy data, by 
resorting to the use of genetic algorithms. Indeed, this kind of algorithm offers a way to 
discover non-trivial constructs, mainly due to the global search they perform over candidate 
process models. 

 

Taxonomies of Behavioral Process Models 
In general, a taxonomy is a rooted tree where each node corresponds to a concept more 
general than those associated with all of its descendants. Taxonomical structures are widely 
recognized as a valuable technique for eliciting, consolidating and sharing relevant knowledge 
in disparate application contexts, which can profitably support a variety of tasks (see, e.g., 
References 1,8,9,29 for some works on this topic).  



In this paper, we focus on the concept of process taxonomy, i.e., a tree of behavioral process 
models where the root provides the most abstract view over process executions, whereas any 
level of internal nodes encodes a refinement of this abstract model. In other words, each leaf 
models a different concrete behavioral class of process instances, whereas each non-leaf 
model (computed through some abstraction mechanisms) provides a unified representation 
for all the behavioral classes associated with its children. Notably, by enabling a semantic 
browsing of process models, such a structure can sensibly reduce the efforts for reusing and 
customizing a model and can make easier the exploitation of process knowledge. 

Clearly, the semantic foundation of a process taxonomy is given by associating some suitable 
notion of specialization/generalization with parent-child relationships. In the remainder of this 
section, we first mention some major specialization/generalization notions introduced in 
diverse application fields for process models. Subsequently, we discuss an alternative 
generalization notion, which hinges on the definition of abstraction relationships between 
process activities, which will be considered in the remaining sections of the paper.  

Process Specialization as Inheritance of Behavior 
Diverse notions of specialization were defined in several application contexts, e.g., OO-
Design/Programming27,36,38, Enterprise Modelling31, and Workflow Modelling7,28. 

The possibility of defining taxonomies for business processes was first considered in 
Reference 31, where a repository of process descriptions is envisaged to support both design 
and sharing of process models. In this kind of reasoning, viewing processes as class 
hierarchies and activities as properties associated with those classes, each subclass inherits 
the values of properties associated with its super-classes. By the way, the framework in 
Reference 31 allows for a non-monotonic inheritance, in the sense that a subclass may delete 
some inherited property, as a sort of exceptions w.r.t. its super-class.  Clearly, such an 
approach founds on a “static" representation of the processes which completely disregard the 
evolution of process instances over time. 

The question becomes particularly intriguing if one turns to look at the behavioral features 
expressed by a process model, representing a finite set of legal executions. Several 
frameworks for precisely defining a specialization/generalization of a process model, 
according to some suitable behavioral semantics, have been proposed for different modelling 
formalisms, such as, e.g., Object Behavior Diagrams38, UML diagrams36, process-algebra 
specifications and Petri-nets7, DataFlow diagrams28. Many of them generally state that all the 
execution instances of a model must also be instances of any model generalizing it.  

A different meaning of inheritance is adopted in Reference 5, where two basic notions are 
defined w.r.t. workflow models represented as WF-nets (a special class of Petri Nets).  In 
particular, Reference 5 states that the external behaviors exhibited by a model and by any of 
its specializations must not be distinguished whenever: (a) only common activities are 
performed (protocol inheritance, a sort of  “invocation consistency"36), or (b) one abstracts 
from activities which are not in the original model (projection inheritance, a sort of 
“observation consistency"36). 

Process Generalization via Activity Abstraction 
An alternative way of expressing the generalization relationship between two process models 
consists in regarding the more general model as the result of some abstraction transformation 
applied to the more specific one, which essentially amounts to replace a group of activities (or 
an entire subprocess) with a single higher-level activity. This issue links to the topic of 
process abstraction6,15,20,30,32 where the aim is to make more compact the representation of a 
process by providing the user with a more abstract and readable view. 

In order to make the discourse more concrete, we next present, as an example, the simple 
and yet general framework introduced in Reference 13 to represent both partonomical and 
taxonomical relationships over process activities, in the form of an abstraction dictionary. 



An abstraction dictionary is a tuple D=〈A,IsA,partOf〉, where A still denotes a set of activities, 
while IsA and PartOf  are binary relations over A. Intuitively, given two activities a and b, 
(b,a)∈IsA indicates that b is a specialization of a, whereas (b,a)∈PartOf indicates that b is a 
component of a. These basic properties are extended next in a transitive fashion.  Given two 
activities a and x, a implies x if there is a path from a to x in the graphs induced by IsA and 
PartOf. In such a case we also say that a is a complex activity; otherwise, a is a basic activity. 
In a sense, complex activities constitute high-level concepts defined by aggregating or 
generalizing basics activities actually occurring in real process executions. This notion is the 
basic block for building a taxonomical process models where the knowledge about process 
behavior is structured into different abstraction levels.  

An intuitive notion of process model generalization can be finally stated as follows: Given two 
workflow models W1 and W2, we say that W2 specializes W1 (W1 generalizes W2) w.r.t. an 
abstraction dictionary D, if for each activity a2 of W2 (i) either a2 appears in W1 or there is an 
activity a1 in W1 s.t. a1 implies a2, and (ii) there is no activity b1 in W1 s.t. a2 implies b1. Finally, 
given an abstraction dictionary D and a tree of workflow models G, G is a model taxonomy 
w.r.t. D if Wp generalizes W, for any pair of models W and Wp s.t. W is a child of Wp in G.  

The definition of generalization stated above allows for obtaining a taxonomy of process 
models, even though it does not found on precise notions of execution semantics and 
behavioral inheritance for these models. Anyway, as it is parametric w.r.t. the kind of activity 
abstraction relationships, it is general enough to accommodate quite sophisticated forms of 
workflow generalization, provided that abstract activities and their mapping to concrete ones 
are defined accordingly.  For example, one could well think of defining partonomical 
relationships according to some suitable activity aggregation scheme, such as the SPQR-
tree37, which encodes a hierarchical decomposition of a process model into process 
“fragments” (i.e. components) corresponding to well-defined control flow structures. In fact, by 
explicitly taking into account of control-flow constraints in the definition of process fragments, 
such an approach would allow for order-preserving process abstraction, whenever all 
concrete activities of a fragment are replaced with a single (abstract) activity. 

 

Mining Different Behavioral Classes via Log Clustering 
Clustering techniques can help recognizing different behavioral classes of process instances 
automatically, by exploiting the information captured in log data. In this section we first 
overview a series of clustering approaches recently defined for the specific case of workflow 
traces. We then illustrate their usage within a recursive partitioning scheme, in order to induce 
a hierarchy of execution classes (and associated behavioral models), as a core structure for 
eventually deriving a taxonomy representing the behavior in the log at different abstraction 
levels. 

Basic Trace Clustering Methods 
The idea of clustering log traces has been reckoned in the community of Process Mining as 
an key technique for the analysis of complex real-life processes exhibiting unstructured and 
flexible behaviours, which can hardly represented in a compact and effective manner through 
a single workflow model. In such a case, indeed, trace clustering allows for identifying 
homogeneous sets of traces that can be adequately represented with an easily interpretable 
process model. 

A prevalent approach to clustering traces consists in transforming traces into vectors where 
each dimension corresponds to an activity14,16,17. Different methods were proposed to project 
log traces into such a feature space, most of which focus on the frequency of activities in the 
log traces. Clearly such a bag-of-activities representation, suffers, as a major drawback, from 
the loss of temporal information, in that it does not takes account of the ordering of activities. 
One way for alleviating this problem is to regard each trace as a sequence of activities and to 
extract a number of k-grams (i.e. subsequences of length k) from it, as features for the 
clustering16.  



This vector space model was combined with new context-aware features19, by expanding the 
core idea of considering activity subsequences conserved across multiple traces. Unlike the 
k-gram approach, subsequences of variable length are detected which frequently occur in the 
log, and are assumed to correspond to some hidden functionalities of the process. Using 
these conserved subsequences as features, the clustering is expected to put together traces 
that are similar from a functional viewpoint. 

A special kind of sequential features, named discriminant rules, was introduced in Reference 
14 in order to capture unexpected behavioral patterns, which are not modelled properly by a 
given workflow model, and can hence help refine it by way of more precise and specific 
models.  Precisely, a discriminant rule is a rule of the from [a1 …ah ] -/-> a s.t.:  (i) [a1 …ah ] 
and [aha ] are both “highly” frequent (i.e., the frequency is above a given threshold σ), and (ii) 
[a1 …ah a ] is “lowly” frequent (its frequency is below another threshold γ). In fact, discriminant 
rules can be straightforwardly derived from frequent sequential patterns, which in their turn 
can be discovered efficiently via a level-wise search strategy3,4,22. As an instance, the 
discriminant rule [fil]-/->m for the example process HandleOrder, captures the fact that a 
fidelity discount is never applied when a (new) client is registered – this constraint is not 
captured the worfklow model in Fig. 1.  

The vector space model was still exploited in Reference 16, where the idea was proposed of 
clustering traces by considering profiles, that is a set of related items describing the trace 
from some specific perspective (i.e., activities, transitions, data, performance, etc). Each item 
is associated with a measure assigning a numeric value to any trace. Therefore, by 
transforming each log trace into a vector containing all these measures, any distance-based 
clustering method can be exploited to partition the log.  

A different approach to trace clustering dismisses the vector space model in favour of 
syntactic techniques which operates on the whole sequence “as-is" by way of string distance 
metrics. For instance, a context-aware approach based on the generic edit distance33 was 
proposed in Reference 18. The edit distance between two sequences is defined as the cost of 
the optimal combination of edit operation (insertion, deletion or substitution) that allows to 
transform one sequence into another. The cost of edit operations can be adapted to the 
peculiarities (primarily, concurrence nature) of workflow processes. This is done in Reference 
18 by introducing an algorithm that automatically derive edit operation costs from log traces.  

Discovering a Hierarchy of Process Classes 
Hierarchical clustering schemes (agglomerative or divisive) have been extensively used in 
several application contexts in order to construct taxonomies automatically8,29. Traditionally, 
these schemes rely on suitable distance measures and/or linkage strategies, and produce a 
tree-like partitioning structure (“dendrogram”), which can serve as a basis to derive a 
hierarchy of classes. 

As an alternative way, we next describe a top-down clustering method14 specifically proposed 
for the case of process logs, and sketched in the algorithm HierarchyDiscovery in Fig. 3. This 
algorithm decomposes hierarchically the process model into a number of sub-processes, by 
iteratively splitting a cluster whose associated model is expected to mix different usage 
scenarios. The result is a tree-like model whose nodes correspond to set of executions and 
where, for each node, its children correspond to the splits originated by that executions.  

Initially a single workflow model W0 is extracted that is a first attempt to model the whole log. 
Iteratively, one of the models not refined yet (i.e., corresponding to a leaf of the tree) is 
refined: the set of traces that are associated with it are split into clusters by using function 
Partition-FB, which could implement one of the different trace clustering approaches 
discussed in the previous subsection. A new workflow model is then mined for each of these 
clusters, by using some workflow discovery technique like the one discussed above. At the 
end of the process, a hierarchy of workflow model is obtained, where the leaf nodes constitute 
a disjunctive model capturing the execution logs in a more accurate than W0.  

 



 

Figure 3   

Algorithm HierarchyDiscovery. 

 
 

 

Figure 4   

Hierarchy found by HierarchyDiscovery on the running example (details for leaf models only). 

 
 

Example (contd.) In order to provide some insight on how the algorithm works, we report a 
few notes on its behavior over 100,000 traces randomly generated from the workflow in Fig. 
1, under the additional constraint that task m cannot occur in any trace containing f (a fidelity 
discount in never applied to a new customer), and task o cannot appear in any trace 
containing d and p (fast dispatching cannot be performed whenever external supplies are 
asked for), simulating different usage scenarios that cannot be captured with a simple 
workflow model. The output of HierarchyDiscovery, for maxSplit=5 and γ=0.85, is the 
hierarchy shown in Fig. 4.(a), where each node logically corresponds to both a cluster of 
traces and a workflow model induced from that cluster. In particular, node v0 corresponds to 
the whole log and to the preliminary workflow model induced from it. Since this model is not 
as sound as required by the user, the log is partitioned into two clusters (k=2). The cluster at 
v2 is not further refined (due to its high soundness), whereas that at v1 is split again.  The 
models associated with the leaves of the tree are shown in Fig. 4.(b-c-d). In fact, models W0 
and W1 (associated with v0 and v1, respectively) are only preliminary attempts to model the 
log traces, which are indeed modelled in a sounder way by the leaf models. Nevertheless, the 
whole hierarchy is an important result as well, and is a basis for deriving a model taxonomy, 
as discussed next. 

INPUT: a log L, 2 numbers maxSplit and K, a threshold γ 

OUTPUT: a model hierarchy H, and an associated disjunctive model DW 

Method: Perform the following steps: 

A) Initialize the hierarchy with one workflow model for the whole log 

W0 = mineWFSchema(L) // mine a model W0 from all traces in L  

Cluster(W0)=L // associate W0 with the whole log L 

DW={W0} // initialize DW with W0      

B) WHILE size(DW)≤ maxSplit and soundness(DW)< γ 

Extract the least sound model W* from DW  

     Partition-FB(Traces(W*))  

For each cluster Cj (j=1..k) extracted from Traces(W*),  

Wj= mineWFSchema(L) //mine a (refined) model for the cluster 

put Wj in DW, and extend H by adding Wj as a child of W* 



Restructuring Workflow Hierarchies into Taxonomies 
Given a hierarchy of workflow models (possibly extracted with algorithm HierarchyDiscovery), 
a crucial task is to restructure them into a taxonomy of models that describe the process 
instances at different levels of details. The key point is to equip each non-leaf node with an 
abstract model that generalizes those associated with all of its children. To this aim, some 
activity abstraction methods must be introduced to replace groups of activities with higher-
level ones.  

Figure 5   

Algorithm BuildTaxonomy 

 
 

A Bottom-Up Restructuring Scheme based on Activity Abstraction 
An interesting approach to restructuring hierarchies into taxonomies was discussed in 
Reference 13. The crucial steps are illustrated in Fig. 5, via an algorithm, named 
BuildTaxonomy13. The algorithm takes in input a model hierarchy H and transforms it into a 
taxonomy, according to an abstraction dictionary D computed by the same algorithm. In a 
bottom-up fashion, the algorithm replace each non-leaf workflow model v in the hierarchy with 
a novel model that generalizes all the children of v. Such a generalization task is carried out 
by providing the procedure generalizeModels with the models associated with the children of 
v, along with the abstraction dictionary D, empty initially.  As a result, a new generalized 
model is computed and assigned to v, while updating D in order to suitably relate the activities 
abstracted with the complex ones they were replaced with in the resulting generalized model. 
As a final step, the algorithm restructures the dictionary D by removing all “superfluous” 
activities that were created during the generalization. More specifically, any complex activity a 
appearing in no model of H is removed, as it can be abstracted into another, higher-level, 
complex activity b, provided that this latter actually implies all activities implied by a. 

The basic idea used in Reference 13 to generalize the models associated with the children of 
any node v consists in merging them all into an overall workflow model, and in replacing 
groups of “specific” activities (i.e., activities not appearing in all child models), with new 
“virtual” activities that represent them at a higher level of abstraction. In this way, only the 
features shared by all the children of v are represented exactly, while other activities are 
abstracted into new high-level (i.e., complex) activities.  To this purpose, some suitable 
activity abstraction procedure must be defined that allows to aggregate groups of “specific” 
activities to be replaced with a (possibly new) complex activity abstracting them all via IS-A or 
PART-OF relationships. 

A heuristic method13 for performing such abstraction iteratively selects a pair (x,y) of “specific” 
activities to be abstracted together into a single higher-level activity. Such a pair is chosen in 
a greedy fashion, by trying to minimize the number of spurious flow links that their merging 
introduces between the remaining activities and considering their mutual similarity w.r.t. the 

INPUT:  a model hierarchy H  

OUTPUT: the (modified) model hierarchy H, and an abstraction dictionary 

D, s.t. H  is a model taxonomy w.r.t. D 

Method: Perform the following steps 

Initialize the dictionary D as empty 

Create a set S of models containing only the leaves of H  

WHILE there is a model v in H, s.t. v∉S and its children are in S 

  v:=generalizeSchema(children(v),D) // replace v with a model  

                 // generalizing v’s children  

put v in S 

NormalizeDictionary(D,H)   // remove “superfluous” complex activities  



contents of the abstraction dictionary D.  This is done by resorting to a series of affinity 
measures assessing how much two any “specific” activities are suitable to be merged 
according the abstraction relationships already stored in D: (i) a “topological” affinity measure 
simE(x,y), measuring how similar the neighbourhoods of x and y are w.r.t. the flow graph; and 
(ii) two “semantical” affinity measures, simD

P(x,y) and simD
G(x,y), expressing how similar x 

and y are w.r.t. the relationships of IS-A and PART-OF, respectively, stored in D.  

All these measures are combined into an overall ranking function score defined as follows: 
score (x,y)=0, if (x,y) is not a merge-safe pair of activities; and score(x,y)= max { simE (x,y), 
simD

P(x,y), simG
P (x,y) }, otherwise. Here a pair (x,y) of activities is said merge-safe (w.r.t. a 

given an set E of precedence relationships), if one of the following conditions holds: (i)  there 
exist no path in E  connecting x and y; (ii) x and y are directly linked by some edges in E and 
after removing these edges no other path exists between them. 

 

Figure 6   

Generalized workflow models in the taxonomy found for the example HandleOrder process. 

 
 

Example (contd.) Consider again the hierarchy shown in Fig. 4. Algorithm BuildTaxonomy 
starts generalizing the leaf models W3 and W4 associated with v3 and v4, respectively. The 
result of this generalization is the model W1

* shown in Fig. 6.(a), which is obtained by first 
merging all the activities and flow links contained in either W3 or W4, and by then performing a 
series of abstractions steps over all non-shared activities, namely o, d and p. When deriving 
the model W1, only the activities d and p are abstracted, by aggregating them both into the 
new complex activity x1; consequently, d and p are replaced with x1, while the pairs (d, x1) and 
(p, x1) are inserted in the PartOf  relationship. The model W1 is then merged with the model 
W2, and a new generalized model, shown in Fig. 6.(b) and named W0

*, is derived for the root. 
In fact, when abstracting activities coming from W2, d and p are aggregated again together, 
into a new complex activity x2; however, in a subsequent step x2 is incorporated into x1, as 
these two complex activities have the same set of sub-activities and the same control flow 
links. Furthermore, the activities e and f are aggregated into the complex activity x3, while m 
and o are aggregated into x4. Consequently, the pairs (e, x3), (f, x3), (m, x4) and (o, x4) are 
added to the PartOf relation. 

Further Abstraction Techniques 
A large body of work was done concerning the transformation of workflow models via 
abstraction techniques, in order to simplify the representation of process behavior, by typically 
resorting to the aggregation of process activities8,30,32.  In particular, in Reference 30, an 
abstract view of a workflow model is obtained automatically by replacing multiple real 
activities with “virtual" ones, based on ad-hoc aggregation rules, which guarantee that all 
original ordering relationships among the activities are preserved.  

In Reference 32, an abstraction approach is proposed that relies on a partonomical 
decomposition, named SPQR-tree, of the given workflow model. In such a tree, each leaf 
node coincide with a single (atomic) process task, while any other node correspond to a 
“fragment” of the workflow model, featuring multiple process tasks related though different 
kinds of well specified composition pattern (which include sequence and split/join structures). 
The approach relies on a manual control by the user, who is in charge of specifying which 



process task (or collection of tasks) in the original workflow model is to be abstracted. Based 
on a series of abstraction rules (specifically defined for each kind of composition pattern) the 
approach automatically replaces each task t indicated by the user with the finest grain 
workflow fragment encompassing t (i.e. the closest ancestor of t in the SPQR-tree). Clearly, 
the process can be iterated in order to produce higher level abstraction representation of the 
workflow.  

Quite a different (log-driven) approach is adopted in some recent works15,20 appeared in 
Process Mining community, where the main aim is to identify groups of behaviourally 
correlated activities directly from log traces, without considering any workflow model. The 
motivation is that often log systems track low-level events rather than semantically relevant 
process activities, and the raw application of process mining algorithms to such logs typically 
results in “spaghetti-like" models that are hard to comprehend.  In particular, a sequence-
based abstraction approach was proposed in Reference 15, where low-level events are 
grouped into clusters, which are regarded as an evidence for higher-level process activities. 
The core idea consists in identifying coherent subsequences of events within a trace and then 
using them to transform the trace into a sequence of event clusters. These clusters may be 
viewed as a categorization of events in types of events or event classes. Multiple abstraction 
levels are discovered for grouping events into classes by way of a hierarchical agglomerative 
clustering method, based on  the proximity of event classes within log traces. Log traces are 
then transformed into sequence of abstract activities by choosing a cut of the resulting 
hierarchy  of event clusters, and by replacing each event with its ancestor lying on that cut.  

Another pattern-based activity abstraction approach20 basically uses repetition patterns (e.g., 
tandem repeats) and sequence patterns from string-processing and bioinformatic literature, in 
order to capture loops and groups of correlated activities. The approach works in two phases: 
first, it extracts repetition patterns by looking at log traces individually, and then discovers 
common groups of activities by logically regarding the whole log as a sequence. More 
complex constructs such as choice and intra-loop parallelism are resolved by applying the 
pre-processing method on log traces iteratively. Efficient (suffix-tree based) structures are 
used to curb computation time. Moreover, to make the approach robust to the presence of 
both parallelism and choice constructs, a single abstract activity is created for patterns whose 
associated activity sets either contain each other or share many elements. Similarly to the 
previous approach, all of the discovered groups of activities are finally considered as high-
level process activities, which can be used to transform the log traces, prior to the application 
of process mining algorithms. 

 

Conclusion 
We have discussed a series of basic modelling, mining and abstraction techniques that help 
organizing knowledge on a given process into a taxonomical structure, representing its 
behavior at various abstraction levels. In particular, some details have been presented for 
recent approaches that leverage on divisive clustering to automatically discover a hierarchy of 
behavioral classes. A taxonomy of models can be then derived by applying activity 
abstraction methods over all non-leaf nodes, which allow to eventually equip them with high-
level models.  

A number of challenging issues are still open and deserve being investigated. For example, 
the recognition of abstract activities can benefit from available background knowledge on the 
activities’ semantics, possibly extracted from a given thesaurus or a process ontology. 
Moreover, discovered process taxonomy can be exploited profitably to analyze relevant 
measures, such as usage statistics and performance metrics, along the different usage 
scenarios of the process at hand. Specifically, by using a taxonomy as an aggregation 
hierarchy for multi-dimensional OLAP analysis, it is possible to enable the user to interactively 
evaluate such measures over different groups of process instances. Notably, such an 
extension would be a valuable feature within interactive process mining settings, like the one 
considered in Reference Reference 21, which can effectively support the user in evaluating 
the discovered process models, as well as in tuning the parameters in subsequent mining 



sessions. Finally, the discovered taxonomies can serve as a basis for further knowledge 
discovery tasks, such as the mining of generalized association rules between, e.g., the users 
or the resources involved in the workflow process under analysis. 
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