

Consiglio Nazionale delle Ricerche
Istituto di Calcolo e Reti ad Alte Prestazioni

Mining Usage Scenarios in
Business Processes:

Outlier-Aware Discovery
and Run-Time Prediction

Francesco Folino1, Gianluigi Greco 2,
Antonella Guzzo 3, Luigi Pontieri1

RT-ICAR-CS-10-10 Novembre 2010

Consiglio Nazionale delle Ricerche, Istituto di Calcolo e Reti ad Alte Prestazioni (ICAR)
– Sede di Cosenza, Via P. Bucci 41C, 87036 Rende, Italy, URL: www.icar.cnr.it
– Sezione di Napoli, Via P. Castellino 111, 80131 Napoli, URL: www.na.icar.cnr.it
– Sezione di Palermo, Viale delle Scienze, 90128 Palermo, URL: www.pa.icar.cnr.it

	

	

	

	

	

	

	

	

Consiglio Nazionale delle Ricerche
Istituto di Calcolo e Reti ad Alte Prestazioni

	

	

	

	

	

	

	

	

	

	

	

Mining Usage Scenarios in
Business Processes:

Outlier-Aware Discovery
and Run-Time Prediction

	

	

	

	

Francesco Folino1, Gianluigi Greco 2,
Antonella Guzzo 3, Luigi Pontieri1

	

	

	

	

	

	

	

	

Rapporto Tecnico N.:
RT-ICAR-CS-10-10

Data:
Novembre 2010

	

	

	

1 Istituto di Calcolo e Reti ad Alte Prestazioni, ICAR-CNR, Sede di Cosenza, Via P.
Bucci 41C, 87036 Rende(CS)
2 Università degli Studi della Calabria, Dipartimento di Matematica, Via P. Bucci
30B, Rende (CS)
3 Università degli Studi della Calabria, Dipartimento di Elettronica, Informatica e
Sistemistica, Via P. Bucci 41C, Rende (CS)

	

I rapporti tecnici dell’ICAR-CNR sono pubblicati dall’Istituto di Calcolo e Reti ad Alte
Prestazioni del Consiglio Nazionale delle Ricerche. Tali rapporti, approntati sotto l’esclusiva
responsabilità scientifica degli autori, descrivono attività di ricerca del personale e dei
collaboratori dell’ICAR, in alcuni casi in un formato preliminare prima della pubblicazione
definitiva in altra sede.

Mining Usage Scenarios in Business Processes:
Outlier-Aware Discovery and Run-Time Prediction

Abstract

A prominent goal of process mining is to build automatically a model explaining all the
episodes recorded in the log of some transactional system. Whenever the process to be
mined is complex and highly-flexible, however, equipping all the traces with just one
model might lead to mixing different usage scenarios, thereby resulting in a spaghetti-
like process description. This is, in fact, often circumvented by preliminarily applying
clustering methods on the process log in order to identify all its hidden variants. In
this paper, two relevant problems that arise in the context of applying such methods are
addressed, which have received little attention so far: (i) making the clustering aware
of outlier traces, and (ii) finding predictive models for clustering results.

The first issue impacts on the effectiveness of clustering algorithms, which can in-
deed be led to confuse real process variants with exceptional behavior or malfunctions.
The second issue instead concerns the opportunity of predicting the behavioral class
of future process instances, by taking advantage of context-dependent “non-structural”
data (e.g., activity executors, parameter values). The paper formalizes and analyzes
these two issues and illustrates various mining algorithms to face them. All the algo-
rithms have been implemented and integrated into a system prototype, which has been
thoroughly validated over two real-life application scenarios.

Keywords: Business Processes, Process Mining, Clustering, Decision Trees

1. Introduction

In the context of enterprise automation, process mining has recently emerged as
a powerful approach to support the analysis and the design of complex business pro-
cesses [1]. In a typical process mining scenario, a set of traces registering the se-
quence of tasks performed along several enactments of a transactional system—such as
a Workflow Management (WFM), an Enterprise Resource Planning (ERP), a Customer
Relationship Management (CRM), a Business to Business (B2B), or a Supply Chain
Management (SCM) system—is given to hand, and the goal is to (semi-)automatically
derive a model explaining all the episodes recorded in it. Eventually, the “mined”
model can be used to design a detailed process schema capable of supporting forth-
coming enactments, or to shed light on its actual behavior.

Traditional process mining approaches focus on capturing the “structure” of the
process by discovering models that mainly express inter-task dependencies via prece-
dence/causality links and other routing constructs specifying, for instance, the activa-

http://ees.elsevier.com/datak/viewRCResults.aspx?pdf=1&docID=1916&rev=2&fileID=40113&msid={A0AAE43E-9070-4090-86C5-01F734A5A0E0}

s1 : abdfnmlgeh (2) s9 : acdfmlgeh (1)
s2 : abdfelmngh (2) s10 : acdih (10)
s3 : abdeflmngh (3) s11 : abdih (8)
s4 : abdfmnlgeh (1) s12 : afih (1)
s5 : abdeflnmgh (2) s13 : ah (1)
s6 : acdfmlgeh (2) s14 : aeg (2)
s7 : acdfelmgh (2) s15 : adfemh (1)
s8 : acdeflmgh (3) s16 : acdfmenlgh (2)

Figure 1: A schema (left) and a log (right).

tion/synchronization of concurrent branches, exclusive choices, and loops over all the
registered traces. As an example, given the event log (over tasks a,b, ...h) consisting of
the traces shown on the right side of Figure 1 along with their associated frequency 1, a
traditional process mining algorithm would derive an explicative model such as the one
shown on the left, which represents a simplified process schema with no routing con-
structs, and where precedence relationships are depicted as directed arrows between
tasks2. While this kind of approach naturally fits those cases where processes are very
well-structured, it would hardly be effective in real-life processes that tend to be less
structured and more flexible. Indeed, in such cases, equipping all the traces with one
single model would lead to mixing different usage scenarios, thereby resulting in a
spaghetti-like model, which is rather useless in practice.

To deal with the inherent flexibility of real-life processes, recent process mining
research [2–4] has affirmed the opportunity to recognize automatically different usage
scenarios by clustering the input traces based on their behavioral/structural similarity.
In particular, great effort has been spent on defining suitable metrics for measuring the
similarity between log traces, which is a pre-requisite for clustering algorithms.

However, some technical and conceptual questions involved in the problem of clus-
tering process traces have not been investigated so far, despite their relevance for prac-
tical applications. In this paper, we shall focus on two questions arising there:

(1) Outlier Detection. In the case where no exceptional circumstances occured in the
enactments, clustering approaches for process mining have been proven to be
effective in discovering accurate sets of process models. However, logs often
reflect temporary malfunctions and anomalies in evolutions, whose understand-
ing may help recognize critical points in the process potentially yielding invalid
or inappropriate behavior. Indeed, if such exceptional individuals (referred to as
outliers in the literature) are not properly identified, then clustering algorithms
will likely mix the actual variants with specific behaviors that do not represent
any usage scenario, but which rather reflect some malfunctioning in the system.

1E.g., the log contains 2 instances of s1.
2E.g., m must be executed after f, while it can be executed concurrently with both l and n. Notice that,

in addition to precedence links between task nodes, a number of subgraphs (labelled with p1, . . . , p5), are
depicted over the flow graph. Roughly speaking, this is the kind of core structural patterns exploited in our
approach to discover both clusters and outliers in the given log traces, as discussed in detail in Section 3.

2

(2) Predictive Models. A tacit assumption in the approaches to clustering log traces
is that the “structure” of each trace reflects some specific behavior of the enact-
ment, so that each cluster can be associated with a scenario that is characterized
by some homogeneous features (ranging from the executors of the tasks, to the
performance metrics, and to the data managed and queried by the transactional
system). If such additional non-structural information is available at run-time, a
natural question then comes into play about whether it can be used to predict the
cluster where the current enactment will likely belong to. In other words, one
may ask for revealing the hidden associations between the cluster structure and
the underlying non-structural data. Knowing these associations, in fact, paves the
way for building forecasting tools (in the spirit of [5, 6]) predicting as accurately
as possible the behavioral class of the current enactment.

Despite their relevance for practical applications, the problems of singling out out-
liers from the input traces and of finding predictive models for clustering results have
received little attentions so far. The aim of this paper is to complement current research
on clustering approaches for process mining applications, and to discuss techniques de-
voted to provide support in these two contexts.

In more detail, after reviewing relevant related works in Section 2, the problem of
identifying anomalous traces in the context of process mining applications is faced in
Section 3. To this end, an approach is proposed which characterizes the “normality”
of a given set of traces, by mining structural patterns frequently occurring in the log
and by clustering the traces based on their correlations with those patterns. Outliers
are eventually reckoned as those individuals that hardly belong to any of the computed
clusters or that belong to clusters whose size is definitively smaller than the average
cluster size. In Section 4, the problem of identifying the links between the various
structural classes (i.e., the execution scenarios) discovered via the above clustering al-
gorithm and the non-structural features of the process at hand is addressed. The goal
here is to build a predictive model for the structure of forthcoming process instances.
Technically, this model is conceived as a decision tree, which is constructed with an
ad-hoc induction algorithm guaranteeing that the sooner an attribute tends to be known
along the course of process enactments, the closer it appears to the root. Indeed, this
feature is crucial to classify as soon as possible novel enactments at run-time and,
hence, to use the decision tree as an actual forecasting tool. Finally, the synergical ap-
plication of the two above techniques (for outlier detection and for building a predictive
model, respectively) is illustrated with a simple example in Section 5, and over several
real application scenarios in Section 6.

2. Related Work

Clustering in Process Mining Applications. Moving from the observation that classical
process mining techniques often yield inaccurate “spaghetti-like” models when applied
to a loosely-structured process, a recent research stream has proposed the clustering of
log traces as a way to separately model different execution scenarios of the process it-
self [2–4]. In particular, in order to partition the log traces effectively, ad-hoc clustering
approaches accounting for the peculiar nature of log traces have been devised, which
actually record the execution over the time of possibly concurrent activities.

3

Most of the proposals in the literature focus on identifying an adequate similar-
ity/dissimilarity measure for traces, in order to possibly reuse some existing distance-
based clustering method [16]. For example, in [4] log traces are regarded as strings
over the alphabet of task labels, and are compared via an edit distance measure quan-
tifying their best (pairwise) mutual alignment. In particular, in order to go beyond a
purely syntactical comparison of task labels and to make the clustering less sensitive
to mismatches due to optional or parallel activities, the cost of each edit operation is
chosen according to the context of the involved activities—where the context of a task
is determined by the tri-grams (i.e., triples of consecutive activities) it appears in.

Instead of working directly on the sequential representation of log traces, some
approaches [2, 3] map them in a feature space, where computationally efficient vector-
based algorithm, such as k-means, can be used. For instance, different kinds of features
(e.g., tasks, transitions, data attributes, performances) are considered in [3] for mapping
each trace into a propositional representation, named “profile”, possibly in a combined
way. As specifically concerns structural aspects, two options are available for mapping
a trace into a vector: (i) the task profile, where each task corresponds to a distinct fea-
ture and a sort of “bag-of-task” representation is obtained; and (ii) the transition profile,
where the dimensions coincide with all possible pairs of consecutive tasks (i.e. a sort
of bi-grams over the traces), viewed as a clue for inter-task dependencies. Looking at
the usage of patterns for clustering complex objects and, in particular, sequential data
(see, e.g., [17]), the latter approach may be well extended to accommodate more pow-
erful structural features, such as sets of activities, higher order k-grams (with k>2),
and generic (non-contiguous) subsequences. In fact, a special kind of pattern, based
just on non-contiguous subsequences, is used in [2] to partition the log iteratively via
the k-means algorithm.

Outlier-Detection. Outlier detection (a.k.a. anomaly detection, exception mining, de-
viation detection) is a major data analysis task, aimed at identifying instances of ab-
normal behavior [25]. Depending on the availability of labelled examples for normal
and/or abnormal behavior, the outlier detection problem can be posed in three different
settings: supervised, semi-supervised and unsupervised. Unsupervised approaches are
the most closely related to the techniques discussed in this paper. Basically, they can
be classified into three categories: model-based, NN-based, and clustering-based.

The first category, which embraces early statistics approaches to outlier detection
(e.g., [19]), covers those approaches where some given kind of parametric or non-
parametric distribution model is built that fits the given data, and where objects that do
not conform enough with the model are pointed at as outliers.

NN-based methods (where NN stands for Nearest Neighbor) base instead the de-
tection of outliers on comparing each object with its neighbors, according to either
plain distances measures or to density measures. As an example of the first option,
in [20], an object is classified as outlier if at least a fraction p of the data instances
are more distant than r from it (for some user-defined thresholds p and r). Conversely,
in [21] an outlier is an object whose density is quite lower than the average density of
its neighbors (i.e., data instances falling within a given radius r)—where the density of
an object is still computed based on its distance from its k-th nearest neighbor.

Finally, clustering-based approaches (e.g., [22–24]) assume that normal instances

4

form large (and/or dense) clusters, while anomalies belong either to very small clusters
or to no cluster at all (or, equivalently, to singleton clusters). By the way, the adequate-
ness of clustering algorithms for outlier detection is a somewhat controversial matter,
specially as concerns algorithms, like k-means, which are rather sensitive to both noisy
and anomalous instances, and which may fail to recognize adequately the real groups
of normal objects in the dataset. To overcome this limitation, certain authors developed
ad-hoc extensions of classical methods (e.g., the outlier-adaptive strategy of [23]), in-
stead of simply using generic clustering algorithm more robust to noise and to outliers.

The above strategies have been extended to cope with complex data. We next only
consider the cases of symbolic sequences and of process traces, due to their stronger
connection with our work. Three main families of anomaly detection techniques have
been proposed for symbolic sequences: Kernel-Based, Window-Based, and Marko-
vian techniques. In the first case, an appropriate similarity measure (e.g., edit distance,
longest common subsequence) is defined over the sequences, and existing distance-
oriented anomaly detection techniques (e.g., NN-based or clustering-based) are triv-
ially reused. In Window-Based techniques (e.g., [26]), a fixed size sliding window
is used to logically split each input sequence s in smaller subsequences; the anomaly
of s is then estimated by combining per-window (frequency-based) anomaly scores.
Finally, Markovian approaches train a probabilistic generative model on the given se-
quences, assuming that the probability of any symbol in a sequence is conditioned on
the symbols preceding it in the sequence. By estimating these per-symbol probabilities,
one can compute the probability of the whole sequence, and derive an “outlierness”
score for it (the lower the probability, the higher the score). Different kinds of model
have been used in the literature to this end (e.g., k-order Markov chains [27], vari-
able order Markov chains, usually kept as (probabilistic) suffix trees [28], and Hidden
Markov Models [29]). Since all such approaches focus on the pure sequencing of tasks
and assume that there exists some kind of dependence between elements appearing
contiguously in a sequence, they will hardly work effectively in a process mining set-
ting, where the traces in input may be generated by a non purely-sequential workflow
process, where multiple parallel branches can proceed concurrently. See Section 3.1
and the last section in [40] for further remarks on this subject matter.

Primarily aimed at modelling normal behavior, classical process mining approaches
gave little attention to outliers and to anomalies. In fact, most of these earlier ap-
proaches simply attempt to make the discovered control-flow model robust to the pres-
ence of noisy log records, by pruning unfrequent task dependencies, according to some
user-driven threshold (see, e.g., [1, 13]). A few proposals appeared recently in the pro-
cess mining community for the unsupervised detection of anomalies [30, 31], which
remarked the importance of the task in flexible collaboration environments, particu-
larly vulnerable to fraudulent/undesirable behaviors. The solution proposed in [30]
consists in finding an appropriate workflow model, with the help of traditional control-
flow mining techniques, and in judging a trace as anomalous if it does not conform
with this model. Of course, the main limitation of this approach is that normal behav-
ior is still modelled with the help of classical control-flow mining algorithms, which
are not robust enough to the presence of several different outliers in the training log
(but, at most, to records with random noise). Instead, in [31] the detection of outliers
in a given log L relies on comparing any candidate (i.e. unfrequent) trace t with an

5

AND/OR graph-like model Mt , built in a dynamic way. Differently from [30], the
model is induced from the subset L−{t} (or from a random sample of it). The out-
lierness of t is then estimated either by verifying whether t is an instance of Mt , or
by taking account for the structural changes required to make M t represent t as well
(the higher the cost, the more likely the trace is an outlier). A major drawback of this
method is however that it requires to perform workflow induction for each candidate
trace, thereby leading to prohibitive computational costs.

Supervised Classification via Decision Trees. Supervised classification aims at induc-
ing a model for predicting which class (from a given set of a-priori classes) an object
belongs to, based on other features of the object itself. This problem (a.k.a. discrimi-
nant analysis in classical statistics) has been targeted of intensive research for decades,
giving rise to a great variety of alternative approaches (see, e.g., [32]).

Decision Trees are popular logic-based formalisms for representing classification
models [16, 38]. A decision tree is a rooted directed tree, where each leaf is mapped to a
class, while any internal node is associated with a test (decision) splitting the instances
space based on the values of one or more attributes—in the latter case, the model is
called oblique [33, 34]. Any (possibly novel) object can then be classified by following
a suitable path from the root to one leaf, based on the outcome of the associated tests.

Inducing a decision tree from a given training set is an optimization problem where
the goal is usually to minimize the generalization error, i.e., the error committed when
classifying a test set. Other options are also possible such as to minimize the number
of nodes or the average depth of the tree. However, finding a minimal decision tree is
NP-hard (in any of these variants), and as such it claims for efficient search heuristics.
In practice, decision trees are built by growing them iteratively according to top-down
strategies. Essentially, a top-down induction algorithm initially builds a tree consisting
of just one node, which contains the whole training set. Then, in a recursive way, a
split test is chosen greedily for the current node, and applied to partition its associated
instances. Different criteria have been proposed for guiding the splitting choice, which
mainly rely on impurity measures (e.g., Information Gain [36], Gini index [33], and
Gain Ratio [11]). The growth continues until either no more split is possible or some
specific stop condition holds. This induction scheme is adopted, for example, by the
classical algorithms ID3 [12], C4.5 [11], and CART [33] (where the selection of split
tests is made according to Information Gain, Gain Ratio, and Gini index, respectively).

The choice of limiting the expansion of the tree is connected with the risk of over-
fitting [33] the training set, so that the model is unable to classify unseen records cor-
rectly. Pruning methods [33, 36] are an alternative solution. The basic idea is to first
allow a complete growing of the tree; this possibly overfitted model is then trimmed
by cutting portions of it that have low impact on the generalization error (i.e. the error
made on unseen test instances). For example, an error-based pruning method is used in
C4.5 [11], whereas a cost-complexity mechanism is exploited by CART [33].

3. Outlier Detection in Process Mining Applications

3.1. Limitations of Existing Methods and Overview of the Approach

Outlier detection has already found important applications in bioinformatics fraud
detection, and intrusion detection, just to cite a few. The basic observation underlying

6

the various approaches is that abnormality of outliers cannot, in general, be defined in
“absolute” terms, since outliers show up as individuals whose behavior or characteris-
tics “significantly” deviate from the normal one(s) that can be inferred through some
statistical computation on the data to hand. When extending this line of reasoning
towards process mining applications, some novel challenges come into play:

(C1) On the one hand, looking at the statistical properties of the sequencing of the
events might be misleading in some cases. Indeed, real processes usually allow
for a high degree of concurrency in the execution of tasks and, hence, a lot of
process traces are likely to occur that only differ among each other in the ordering
between parallel tasks. As a consequence, the mere application of existing outlier
detection approaches for sequential data (e.g. [27–29]) to process logs may suffer
from a rather high rate of false positives, as a notable fraction of task sequences
might have very low frequency in the log. For example, in Figure 1, each of
the sequences s1, ...,s5 rarely occurs in the log, but should not be classified as
anomalous, as they are different interleaving of a single enactment, which occurs
in 10 out of 43 traces. As an extreme case, consider an additional trace t new

exhibiting the task sequence acdflegh, which conceptually corresponds to the
same execution scenario as the sequences s6, . . . ,s9. When a Markov chain model
is learned from the example log, like in [27, 28], the probability score estimated
for tnew will be very low, since no other trace in the training log features the
subsequence le, and this trace will be incorrectly deemed as an outlier. Further
details on this matter can be found in [40].

(C2) On the other hand, considering the compliance with an ideal (possibly concur-
rent) worklfow schema might lead to false negatives, since some trace might well
be supported by a model, even though it identifies a behavior that deviates from
the one observed in the majority of the traces. For example, in Figure 1, trace
s16 corresponds to cases where all the tasks but b were executed. Even though
this behavior is admitted by the model in the same figure, it is anomalous since
it only occurs in 2 out of 43 traces. In addition, when such an ideal schema is
not known a-priori and classical workflow discovery techniques are used for its
discovery (as proposed in [30]), the presence of several outliers in the training
instances may well lead to a distorted model of normal behaviors, which will
eventually produce both false negatives and false positives.

In addition, facing (C1) and (C2) above is complicated by the fact that the process
model underlying a given set of traces is generally unknown and has to be inferred
from the data. Indeed, the key question is how we can recognize the abnormality of a
trace, without any a-priori knowledge about the model for the given process.

Addressing this question and subsequently (C1) and (C2) is precisely the aim of
this section, where an outlier detection technique tailored for process mining applica-
tions is discussed. In a nutshell, rather than extracting a model accurately describing
all possible execution paths for the process (but, the anomalies as well), the idea is of
capturing the “normal” behavior of the process by simpler (partial) models consisting
of frequent structural patterns. Outliers are then identified in a two-steps approach:

• first, patterns of executions are mined which are likely to characterize the be-
havior of a given log; in fact, our contribution is to specialize earlier frequent

7

pattern mining approaches to the context of process logs, by (i) defining a notion
of pattern effectively characterizing concurrent processes, and by (ii) presenting
an algorithm for their identification;

• second, an outlier detection approach is used which is cluster-based, i.e., it com-
putes a clustering for the logs and finds outliers as those individuals that hardly
belong to any of the computed clusters or that belong to clusters whose size is
definitively smaller than the average.

Note that a key point in the methodology concerns the kinds of patterns adopted for
the clustering task. In fact, the usage of basic structural elements extracted from the
traces (such as activities or pairs of contiguous activities like in [3], or the sequential
patterns introduced in [2]) completely disregards the concurrent semantics of process
logs—where parallel execution branches may be registered in an interleaved way—
and risks not to recognize adequately the groups of traces corresponding to different
execution scenarios. The above two-steps methodology, instead, reduces the risk of
both false positives (traces are compared according to their characterization in terms
of patterns rather than in terms of tasks’ sequencing) and false negatives (traces com-
pliant with the model might be seen as outliers, if their behavior is witnessed just in
a small group of other traces)—cf. (C1) and (C2). Moreover, in order to better deal
with high-dimensionality and with the uncertainty linked to both noise and parallelism,
patterns are not used to map the traces into a vectorial space (as in [2, 3]) where classic
clustering methods can be applied, but rather a sort of coclustering method is adopted
which focuses on the association between traces and patterns.

The above techniques are illustrated in Section 3.2, while some basic algorithmic
issues are discussed in the subsequent Section 3.3.

3.2. Formal Framework for Outlier Detection

Process-aware commercial systems usually store information on process enact-
ments by tracing the events related to the execution of the various tasks. Abstracting
from the specificity of the various systems, as commonly done in the literature, we
view a log L over a set of tasks T as a bag of traces over T , where each trace t in L
is a sequence of the form t[1]t[2]...t[n], with t[i] ∈ T for each 1 ≤ i ≤ n. Next, a log is
assumed to be given and the problem of identifying anomalies in it is investigated.

Behavioral Patterns over Process Logs. The first step for implementing outlier detec-
tion is to characterize the “normal” behavior emerging from a given process log. In the
literature, this is generally done by assessing the causal relationships that hold between
pairs of tasks (e.g., [8]). However, this is not sufficient to our aims, since abnormality
of traces may emerge not only w.r.t. the sequencing of the tasks, but also w.r.t. other
more complex constructs such as branching and synchronization. Hence, towards a
richer view of process behavior, we next focus on the identification of those features
that emerge as complex patterns of executions.

Definition 1 (S-Pattern). A structural pattern (short: S-pattern) over a given set T of
tasks is a graph p = 〈Tp,Ep〉, with Tp = {n,n1, . . .nk} ⊆ T such that either:

(i) Ep = {n}× ({n1, . . .nk})—in this case, p is called a FORK-pattern—, or

8

(ii) Ep = ({n1, . . .nk})×{n}—in this case, p is called a JOIN-pattern.

Moreover, the size of p, denoted by size(p), is the cardinality of E p.

Notice that, as a special case, an S-pattern with unitary size is both a FORK-pattern
and a JOIN-pattern, and simply models a causal precedence between two tasks. This
is, for instance, the case of patterns p3, p4, and p6 in Figure 1. Instead, higher-sized
patterns account for fork and join constructs, specifying parallel execution (cf. p 2) and
synchronization (cf. p5), respectively, in concurrent processes. The crucial question is
now to formalize the way in which patterns emerge for process logs.

Definition 2 (Pattern Support). Let t be a trace and let p = 〈T p,Ep〉 be an S-pattern.
We say that t complies with p, if t includes all the tasks in T p, and the projection of t
over Tp is a topological sorting of p, i.e., there are not two positions i, j inside t such
that i < j and (t[j],t[i]) ∈ Ep. Then, the support of p w.r.t. t is defined as:

supp(p,t) =
{

min(t[i],t[j])∈Ep e−|{t[k]�∈Tp|i<k< j}|, if t complies with p
0, otherwise.

This measure is naturally extended to any trace bag L and pattern set P as follows:
supp(p,L)= 1

|L| ×∑t∈L supp(p,t) and supp(P, t)= 1
|P| ×∑p∈P supp(p, t). �

In other words, a pattern p is not supported in a trace t if some relation of prece-
dence encoded in the edges of p is violated by t. Otherwise, the support of p decreases,
according to a negative exponential law, at the growing of the minimum number of
spurious tasks (i.e., {t[k] �∈ Tp | i < k < j}) that occur between any pair of tasks in the
endpoints of the edges in p. Essentially, the usage of a negative exponential weight-
ing function allows for a more aggressive penalization of the support score when an
increasing number of such spurious tasks appears in the log traces. In fact, the superi-
ority of such a choice to other (e.g., linear) weighting schemes was confirmed by some
tests on synthesized logs.

Example 1. Consider again the example in Figure 1. It is clear that all traces corre-
sponding to any of the sequences s10, ...,s15 do not comply with p1. For the remaining
traces, the application of the support function defined above gives the following results:

supp(p1,s1) = supp(p1,s6) = supp(p1,s7) = supp(p1,s8) = supp(p1,s9) = e−0 = 1
supp(p1,s2) = supp(p1,s3) = supp(p1,s4) = supp(p1,s5) = e−1 = 0.368
supp(p1,s16) = e−2 = 0.135

Thus, given the frequencies in Figure 1, the support of p 1 w.r.t. the whole log is 0.307.
By similar calculations we can also see that p5 gets full support (i.e 1) by s1, ...,s5 and
a support of 0.368 by s16, for a total of 0.249 over the whole log. �

While at a first sight the above notions may appear similar to classical definitions
from frequent pattern mining research, some crucial and substantial differences come
instead into play. Indeed, the careful reader may have noticed that our notion of sup-
port is not anti-monotonic regarding graph containment. This happens because adding
an edge of the form (x,y) to a given pattern may well lead to increasing its support,

9

since one further task (either x or y) may be no longer viewed as a spurious one. Con-
sequently, in order to find all patterns with support greater than a given threshold σ
(hereinafter called σ-frequent patterns), we cannot simply reuse classical level-wise
approaches (like the popular Apriori algorithm), which efficiently prune portions of
the lattice3 of all the possible S-patterns— by exploiting the anti-monotonicity prop-
erty (a.k.a. downward closure) of classical frequency-oriented support measures (i.e.,
for any frequent pattern all of its sub-pattern must be frequent as well). In addition,
differently from many pattern mining approaches, the frequency of a pattern p is not
necessarily an indication of its relevance in the regard of modelling process behavior.
Instead, the relevance of a pattern is captured in the following definition.

Definition 3 (Interesting Patterns). Let L be a log, σ,γ be two real numbers. Given
two S-patterns p and p′, we say that p′ γ-subsumes p1, denoted by p 	γ p′, if p is a
subgraph of p′ and supp(p,L)− supp(p′,L) ≤ γ× supp(p′,L). Moreover, an S-pattern
p is (σ,γ)-maximal w.r.t. L if (a) p is σ-frequent on L and (b) there is no other S-pattern
p′ s.t. size(p′) = size(p)+1, p′ is σ-frequent on L, and p 	γ p′. �

In other words, we are not interested in a frequent pattern p if it its frequency is not
significantly different from that of some other pattern p ′ that includes it; conversely, if
p is much more frequent than p ′, one can assume that the subpattern p has its own value
in characterizing the behavior of the process. Notice that, when testing the maximality
of pattern p, this is only compared with patterns having just one more edge, in order
to curb computational costs. However, owing to the peculiarity of the support function
adopted here, there might be some bigger pattern (having multiple edges more than
p) that violates condition (b). Anyway, the above notion of maximality is expected to
suffice to filter out a large portion of uninteresting patterns.

Example 2. Let us consider the patterns p5 and p1 in Figure 1, σ=0.1 and γ=0.2.
Then, even though p1 is contained in p5 (and both of them are frequent), the former is
still maximal as (supp(p1,L)− supp(p5,L))/supp(p5,L) = (0.307−0.249)/0.249=
0.233 > γ. Therefore, this sub-pattern still encodes interesting knowledge as it captures
a far more frequent way of executing the tasks m and g than the one expressed by its
super-pattern p5. Conversely, no subgraph of p2 is (σ,γ)-maximal, being the support
of all these patterns lower than that of p2. �

Clusters-Based Outliers. Once that “normality” has been roughly captured by means
of frequent patterns, one can look for those individuals whose behavior deviates from
the normal one. To this end, the second step of the outlier detection approach is based
on a coclustering (see, e.g., [9]) method for simultaneously clustering both patterns
and traces, on the basis of their mutual correlation, as it is expressed by the measure
supp. Intuitively, pattern clusters are to be associated with trace clusters, so that out-
liers emerge as those individuals that are not associated with any pattern cluster or that
belong to clusters whose size is definitively smaller than the average cluster size. Ab-
stracting from the specificity of the mining algorithm (see Section 3.3), the output of
this method is formalized below.

3A lattice is a partially ordered set of elements, whose union and intersection are the least upper bound
and the greatest lower bound, respectively, for all elements.

10

Definition 4 (Coclusters and Outliers). An α-coclustering for a log L and a set P of
S-patterns is a tuple C=〈P ,L ,M 〉 where:

• P={p1, ..., pk} is a set of non-empty P’s subsets (named pattern clusters) s.t.⋃k
j=1 p j=P;

• L={l1, ..., lh} is a set of non-empty disjoint L’s subsets (named trace clusters)
such that

⋃h
i=1 li = {t ∈ L | ∃pi ∈ P s.t. supp(pi, t) ≥ α};

• M : P �→ L is an bijective function that associates each pattern cluster p j to a

trace cluster l i and vice-versa, i.e., l i = M (p j) and p j = M −1(li).

Given α,β ∈ [0..1], a trace t ∈ L is an (α,β)-outlier w.r.t. an α-coclustering C =
〈P ,L ,M 〉 if either (a) t �∈ ⋃h

i=1 li, or (b) t ∈ l i and |l i| < β× 1
|L | ∑l∈L |l|. �

Outliers have been defined above according to a number of clusters discovered for
both traces and patterns based on their mutual correlations, which represent different
behavioral classes. More specifically, two different kinds of outlier emerge; indeed,
condition (a) deems as outlier any trace that is not assigned to any cluster (according to
the minimum support α), while condition (b) estimates as outliers all the traces falling
into small clusters (smaller than a fraction β of the average clusters’ size).

Example 3. Let us consider again the example log and patterns shown in Figure 1. By
evaluating the support measure in Definition 2, one may notice that the traces corre-
sponding to s1, ...,s5 highly support patterns p2, p4 and p5, while s6,s7,s8,s9 do the
same with both patterns p1 and p3. Moreover, s10 highly supports both p3 and p6,
whereas s11 is strongly associated with both p4 and p6. Finally, sequence s16 is associ-
ated with all of the patterns in Figure 1 but p4 and p6. By using some suitable cocluster-
ing method on the correlations between these patterns and log traces, one should hence
be able to identify five trace clusters: one corresponding to the sequences s 1, ...,s5; one
for s6, ...,s9, one for s10; one further for the trace s11, and the last for s16. All the other
traces would be hence perceived as outliers, for they are not correlated enough with
any of these frequent behavioral patterns. A special case concerns the last sequence
s16, which will likely originate a separate cluster just consisting of the two traces that
correspond to s16. Yet, this cluster reflects a somewhat rare behavioral scheme (evi-
denced by only 2 of 43 traces), and should not be considered when modelling the main
behavioral classes of the process. This can be accomplished by setting the threshold β,
controlling the minimal cluster size, in a way that this small cluster is regarded as a set
of outliers (as in many clustering-based outlier detection approaches). �

3.3. OASC: an Algorithm for Detecting Outliers in a Process Log

In this section, we discuss an algorithm, named OASC, for singling out a set of
outliers, based on the computation scheme and the framework described so far.

The algorithm, shown in Figure 2, takes in input a log L, a natural number
pattSize and four real thresholds σ,γ, α and β. The algorithm first uses the function
FindPatterns to compute a set P of (σ,γ)-maximal S-patterns, while restricting the
search to patterns with no more than pattSize arcs. Then, an α-coclustering for L and P

11

Input: A log L, an upper bound pattSize ∈ N
+ for pattern size, and four real numbers σ,γ,α and β

Output: A set of (α,β)-outlier, and set of trace clusters;
Method: Perform the following steps:

1 P := FindPatterns (L,pattSize,σ);
2 〈P ,L = {l1, ..., lh},M 〉 := FindCoClusters(L,P,α);
3 U := /0; avgSize := 1

|L | ∑ l j∈L |l j |;
4 for each trace t in L do
5 if t �∈ ⋃h

i=1 li, or |li| < β× 1
h ∑l j∈L |l j |, where t ∈ li then U :=U ∪{t};

6 return U , and L∗ = {li | li ∈ L ∧ |li| ≥ β× 1
h ∑l j∈L |l j |};

Function FindPatterns(L: log; pattSize: natural number; σ,γ : real numbers): set of S-patterns;
P1 Compute the set L1 = {p is an S-pattern | supp′(p,L) ≥ σ and size(p) = 1 } in a scan of L;
P2 k := 2; R := /0
P3 repeat
P4 Candk := generateCandidates(Lk−1,L1);
P5 Compute supp(p,L) and supp′(p,L) for each p ∈Candk through a scan of L;
P6 Lk := {p ∈ Candk | supp′(p,L) ≥ σ}; // filter out “unfrequent” patterns
P7 R := R∪{p ∈ Lk−1 |� ∃p′ ∈ Lk s.t. p 	γ p′ }; // select (σ,γ)-maximal patterns (cf. Def. 3)
P8 k := k +1;
P9 until Lk = /0 or k +1 = pattSize ;
P10 return R;

Function FindCoClusters(L: log; P: S-patterns; α: real number): α-coclustering;

C1 for each pair of patterns pi , pj in P do M(i, j) :=
| {t ′∈L|supp(pi,t

′)≥α∧supp(p j ,t
′)≥α} |

| {t ′∈L|supp(pi,t
′)≥α∨supp(p j ,t

′)≥α} |
C2 Compute a partition Pmcl of P by applying the MCL clustering algorithm to M;
C3 L := /0; P := /0; M := /0;
C4 for each trace t in L
C5 pt :=

⋃
p∈Pmcl

{p | supp(p,t) ≥ α};
C6 if P contains pt // cluster pt already exists and is thus associated with some trace cluster
C7 Let lt = M (pt) be the cluster currently associated with pt , and lt

new = lt ∪{t} ;
C8 L := L −{lt}∪{ltnew}; M (pt) := lt

new;
C9 else
C10 L := L ∪{ {t} }; P := P ∪ {pt}; M (pt) := {t};
C11 end if
C12 end for
C13 return 〈P ,L ,M 〉;

Figure 2: Algorithm OASC.

is extracted with the function FindCoClusters (Step 2). The subsequent steps are just
meant to build a set U of traces that are (α,β)-outliers w.r.t. this coclustering, by check-
ing the conditions in Definition 4 on every trace. Eventually, the (α,β)-outliers are
returned together with the set of trace clusters (from which such outliers are removed).
Clearly enough, the main computation efforts hinge on the functions FindPatterns
and FindCoClusters, which are thus thoroughly discussed next.

Function FindPatterns. The main task in the discovery of (σ,γ)-maximal
S-patterns is the mining of σ-frequent S-patterns, as the former S-patterns directly de-
rive from the latter ones. Unfortunately, a straightforward level-wise approach cannot
be used to this end, since the support supp is not anti-monotonic w.r.t. pattern contain-
ment. To face this problem, FindPatterns firstly exploits a relaxed notion of support
(denoted supp′) which optimistically decreases the counting of spurious tasks by a
“bonus” that depends on the size of the pattern at hand: the lower the size the higher
the bonus. More precisely, within Definition 2, for each arc (t[i], t[j]) in p, we replace
the term |{t[k] �∈ Tp | i < k < j}| with min{ |{t[k] �∈ Tp | i < k < j}|, pattSize− size(p)}. The
reason for this is that, in the best case, each of the pattSize− size(p) arcs that might be
added to p, along the level-wise computation of patterns, will just fall between i and j.

Notice that function supp′ is both anti-monotonic and “safe”, in that it does not

12

underestimate the actual support of candidate patterns. Therefore, based on it, we have
implemented a level-wise approach explained next. After building (in Step P1) the
basic set L1 of frequent S-patterns with size 1 (i.e., frequent task pairs), an iterative
scheme is used to compute incrementally any other set Lk, for increasing values of
the pattern size k (Steps P4–P8), until either no more patterns can be generated or
k reaches the upper bound given as input. In more detail, for each k > 1, we first
generate the set Candk of k-sized candidate patterns, by suitably extending the patterns
in Lk−1 with the ones in L1, by means of function generateCandidates (Step P4). The
set Lk is then filled only with the candidate patterns in Candk that really achieve an
adequate support in the log (Steps P5-P6). By construction of supp ′, we are then
guaranteed that Lk includes (at least) all σ-frequent S-patterns with size k. Eventually,
by applying Definition 3 to the patterns in Lk−1 and Lk, we can single out all (σ,γ)-
maximal S-patterns with size k− 1, and add them to the set R, the ultimate outcome
of FindPatterns. In fact, in Step P7 the exact function supp is actually used for
checking (σ,γ)-maximality.

Function FindCoClusters. The function FindCoClusters illustrates a method
for coclustering a log and its associated set of S-patterns. Provided with a log L, a
set P of S-patterns and a threshold α, FindCoClusters computes an α-coclustering
〈P ,L ,M 〉 for L and P, where P (resp., L) is a set of pattern (resp., trace) clusters,
while M is a mapping from P to L .

At the start, a preliminary partition Pmcl of P is built by applying a clustering proce-
dure to a similarity matrix S for P, where the similarity between two patterns p i and p j

in P provides a sort of estimation for the likelihood that p i and p j occur in the same log
trace. More specifically, these similarity values are computed (Step C1) by regarding
supp as a contingency table over P and L (i.e., (p, t) measures the correlation between
the pattern p and the trace t), and by filtering out low correlation values according to
the threshold α. Clearly, different classical clustering algorithms could be used to ex-
tract Pmcl out of the matrix M (Step C2). In fact, we used an enhanced implementation
of the Markov Cluster Algorithm [10], which has been proved to achieves good results
on several large datasets and selects autonomously the number of clusters.

In the second phase (Steps C3-C13), the preliminary clustering Pmcl of the patterns
is refined, and yet used as a basis for simultaneously clustering the traces of L: new,
“high order” pattern clusters are built by merging together basic pattern clusters that
relate to the same traces. More precisely, each trace t in the log induces a pattern cluster
pt , which is the union of all the (basic) clusters in Pmcl that are correlated enough to t,
still based on the function supp and the threshold α. It may happen that the cluster p t is
already in P , for it was induced by some other traces; in this case we retrieve, by using
the mapping M , the cluster l t containing these traces (Step C7), and extend it with the
insertion of t (Step C8). Otherwise, we save a new trace cluster, just consisting of t,
in L , and update M to store the association between this new cluster and pt , which is
stored as well in P as a novel pattern cluster (Step C10).

Complexity issues. Assume that a log of N traces over T tasks is given as input. Let
Pcan be the maximum number of patterns found at any iteration of the loop in func-
tion FindPatterns, and let Pmax be the number of patterns used for the clustering in
FindCoClusters. Then, the complexity of OASC is essentially given by the expression

13

O(N × (T + Pcan × S2)+ T ×Pcan + Pmax ×K2), where S is the maximal size of pat-
terns (i.e., pattSize = S) and K is a parameter of algorithm MCL [10] (cf. Step C2)—a
detailed complexity analysis is reported in [40]. Note that Pcan might in principle be
exponential in T . However, in real cases where process tasks obey precise routing
rules and unfrequent patterns are pruned via the support threshold σ, the number of
candidate patterns is unlikely to blow up. Moreover, notice that OASC requires a limited
number of scans over the input log, and does not need to keep it into the main memory.
Indeed, the log can just be scanned S times (S < 10 worked fine in our experiments) to
find patterns of size S, plus two further times to build matrix M and assign the traces to
clusters (Steps C4-C12). This property guarantees potential scaling over huge datasets.

4. Discovery of Context-based Predictive Models

After a set L∗ of trace clusters has been computed, the natural question comes into
play about whether one can find a model predicting the membership into the various
clusters based on the (non-structural) data available for the process instances at hand.
By conceiving the predictive model as a decision tree and by regarding the clusters
as different classes of traces, this problem amounts at inducing a decision tree from
the given log, provided that each trace in the log has been marked with the label of
the cluster it was assigned to (in the clustering phase). In particular, while inducing
the decision tree, it is desirable that the decisions in the model are primarily based
on attributes that are likely to be known in the earlier steps of a process enactment,
in order to possibly make prediction even on uncompleted process instances. This
feature is very peculiar to process mining applications, and calls for developing ad-hoc
induction algorithms that are aware of the precedence relations over the activities (as
it is inferred from the log). This issue, which has been not addressed in the earlier
literature (see Section 2), will be faced in the rest of the section.

4.1. Formal Framework for the Induction of Predictive Models
In principle, process logs may contain a wide range of information on process exe-

cutions. The notion of log traces used so far is then extended next to represent context
data associated with the execution of tasks. To this end, we assume the existence of a
set of process attributes A = {a1, . . . ,an}, and we assume that each attribute is associ-
ated with one single task, referred to as task(ai) in the following. In particular, case
attributes can be associated with the starting (or final) task of the process. Moreover,
for ease of notation, for any attribute a and its corresponding task τ (i.e., τ = task(a)),
we will sometimes refer to a as τ.a, in order to represent its association with τ com-
pactly and intuitively. Each attribute a ∈ A is also equipped with a domain of values,
denoted by dom(a). At run-time, the enactment of the process will cause the execution
of a sequence of tasks, where for each task τ being executed, the set of all its activities
will be mapped to some values taken from the respective domains.

Definition 5 (Data-Aware Logs). Let T be a set of tasks and let A be a set of process
attributes. A data-aware log over T and A is a tuple 〈L,data〉 where L is a log over
T , and where data is a function mapping each trace t ∈ L to a set of pairs data(t) =
{(a1,v1), . . . ,(aq,vq)} such that vi ∈ dom(ai) for each i ∈ {1, ...,q}, and {a1, ...,aq} =
{a ∈ A | task(a) = t[j], for some task t[j] ∈ T }.

14

Next, we assume that the set L ∗ of trace clusters at hand has been built from a
data-aware process log L. Thus, based on the knowledge of the data associated with
the execution of the various traces, it is our aim to build a decision tree that can be used
to predict membership into the clusters for forthcoming enactments.

Definition 6 (DADT Model). Let L ∗ be a set of trace clusters (for a data-aware log)
over a set T of tasks and a set A of associated attributes. Then, a data-aware decision
tree (shortly, DADT) for L ∗ is a triple D = 〈H,attr,split,pred〉 where:

• H = (N,E) is a rooted tree, where N and E denote the set of nodes and the set of
(parent-to-child) edges, respectively;

• attr is a function mapping each non-leaf node v in N to an attribute in A;

• split is a function associating each edge from v to w (where w is a child of v)
with a propositional formula on attr(v);

• pred : N ×L∗ → R is a function expressing the probability of any cluster in L ∗
conditioned on each node in N 4.

Since we are interested in predicting the happening of behavioral classes based on
context data, a desirable property of a DADT concerns its ability to take care of the
task precedences holding over these classes. To formalize this concept, we need some
additional technical definitions first. We say that a trace t is active in a node v ∈ N of
a DADT D = 〈H,attr,split,pred〉, if t satisfies all the split tests defined in the
path from the root of H to v. For a threshold σ ′ ∈ [0..1], we say that a cluster l ∈ L ∗ is
σ′-active in a node v ∈ N if |{t ∈ l | t is active in v}|/|l| > σ′. The restriction of L ∗ to
the clusters that are σ′-active in v is denoted by L ∗(σ′,v). Moreover, given two tasks τ
and τ′, we say that τ σ′-precedes τ′ in l, denoted by τ ≺l

σ′ τ′, if at least a fraction σ′ of
l’s traces contain τ before τ′, and less than a fraction σ′ of l’s traces contain τ after τ′.

Definition 7 (DADT Temporal Compliance). Let D = 〈H,attr,split,pred〉 be a
DADT for the data-aware log L ∗, and let σ′ be a threshold in [0..1]. We say that D is
σ′-compliant w.r.t. L ∗ if for each pair of nodes v and v ′ of H such that v′ is an ancestor
of v, it holds that on each σ′-active cluster l ∈ L∗(σ′,v), either:

(a) task(attr(v)) ≺l
σ′ task(attr(v′)) does not hold, or

(b) there is an ancestor v′′ of v′ s.t. task(attr(v′′)) = task(attr(v)).

Condition (a) states that we cannot split a node v of the DADT by using an attribute
of a task t, if an ancestor of v is associated with an attribute of a task that is usually
executed after t (w.r.t. the behavioral clusters in L ∗(σ′,v)). This constraint is however
relaxed by the condition (b), which allows to reuse the attributes of a task associated
with v′′ in whichever node of the tree rooted in v ′′. These constraints guarantee that
σ′-compliant DADTs are suitable models to support on-the-fly prediction.

4Thus, function pred can be used to predict the structural cluster associated with each node v of the tree,
as the one having the maximal conditional probability w.r.t. v.

15

Figure 3: A 0-compliant DADT found by algorithm LearnDADT (ω = 0.35).

Figure 4: A decision tree found without considering temporal aspects (i.e., ω = 1).

Example 4. Two DADT models for the log in Figure 1 are shown in Figures 3 and 4,
where the mapping from nodes to data attributes and to predicted clusters (i.e. func-
tions attr and pred, respectively) and the association of edges with split formulae (i.e.,
function split) are all indicated informally via intuitive node/edge annotations. As-
suming σ′ = 0 for simplicity, it is easy to see that the model in Figure 3 is σ ′-compliant,
whereas the other is not. This latter fact can be verified by noting that conditions (a)
and (b) in Definition 7 do not hold on the root of the tree and its left child. �

4.2. LearnDADT: an Algorithm for Inducing a DADT Model

Several decision-tree induction approaches are already available in the literature
that might be used, in principle, to built a compliant DADT. However, However, by
straightforwardly integrating the compliance constraint into them, one risks obtaining
a DADT tree of poor accuracy. Consider, as an example, the extreme case where an
attribute of the final task, say e, is chosen for performing the first split of the training
set, and consequently associated with the root of the decision tree—assuming that all
process instances finished with task e and that a top-down, recursive, partition scheme
is adopted for inducing the tree. In this case, Definition 7 would allow further parti-
tioning of the training set based only on attributes of e, since attributes of other tasks
(which precede e in all log traces) cannot appear in any descendants of the root.

To face the problem above, we modify the greedy split-selection criterion used by
classical decision-tree learning algorithms, and we introduce a bias towards attributes
of tasks that were executed in earlier phases of past process enactments. This is mainly

16

Input: A set L∗ of trace clusters over tasks T and attributes A, a set A′ ⊆ A of attributes, two real numbers σ′ and ω
and an integer number minCard ≥ 1;

Output: A σ′-compliant DADT for L∗;
Method: Perform the following steps:

1 let L = ∪li∈L∗Ci;
2 create a DADT D s.t. D.H = 〈{r}, /0〉; // functions D.attr, D.split and D.pred will be defined later
3 growDT(D,r,L,L∗);
4 pruneDT(D,L∗);
5 return D;

Procedure growDT(D: a DADT, v: a D’s node, S: a set of traces; L ∗: a set of trace clusters);
B1 if |S| ≥ minCard
B2 let Lσ′ = {li ∈ L∗ s.t. |li ∩S| ≥ σ′ · |S|};
B3 compute score(a) = ω ·g(a,S)+(1−ω) · ep(a,S,L ′

σ), ∀a ∈ A′;
B4 let s∗=maxa∈A{score(a)}, a∗=argmaxa∈A{score(a)}, and π∗ be the split formula evaluated for a∗;
B5 if ω < 1 and checkCompliance(a∗,D ,v,L ′

σ)
B6 D.split(v) := π∗; D.attr(v) := a∗;
B7 let S1, . . . ,Sk be the partition of S obtained by applying the test π∗ to S;
B8 add k new nodes v1, . . . ,vk in D.H as children of v;
B9 for j=1..k growDT(D,v j ,S j ,L∗);
B10 end if
B11 end if
B12 for each li ∈ L∗ do D.pred(v, li) := |li ∩S|/|S|;

Figure 5: Algorithm LearnDADT.

accomplished by considering an ad-hoc attribute-scoring function for selecting split
tests, which ranks process attributes based on their capability to discriminate the clus-
ters yet supporting on-the-fly prediction.

An algorithm for inducing a σ ′-compliant DADT according to the above strategy
is shown in Figure 5. The algorithm starts building a preliminary DADT that just
consists of one node (named r in the figure), gathering all log traces (the set L contains
indeed the traces of all clusters in input). Then (line 2) a decision tree is built in a
top-down way, via a recursive partitioning procedure, named growDT, which will be
discussed in detail later. Once such a (possibly large and overfitted) decision tree is
built, a pruning procedure (similar to the “subtree replacement” method of algorithm
J48 [39]), is exploited to ensure accurate prediction even on new process instances.
The pruned DADT model is returned as the ultimate outcome of the algorithm.
Procedure GrowDT. Let us now provide more details on the recursive procedure
growDT, which encodes the core induction method for eventually yield a DADT model.
The procedure takes as input a data-aware decision tree D, the leaf node v and its as-
sociated set S of traces, which are to be considered for splitting, and the original set L ∗
of (structural) trace clusters. After checking (in Step B1) whether v contains a signifi-
cant number (according to the cardinality threshold minCard) of training instances, the
procedure searches for a (locally) optimal way of partitioning these instances (Steps
B3-B4). The split test for the node v is chosen greedily, by selecting the attribute that
receives the highest value by a split quality metrics score. For each attribute a, this split
score is computed as a linear combination (with weight ω ∈ [0..1]) of two components:

• A predictiveness measure, denoted by g(a,S) and computed through the classical
Gain Ratio measure [12], mainly accounting for the reduction of information
entropy that descends from splitting S based on the values of a.

• An ad-hoc score ep that takes account for the dynamical aspects of the process,

17

by introducing a bias towards attributes that are associated with tasks that occur
earlier in the traces corresponding to clusters correlated with v significantly.

More precisely, denoting by L ′
σ the set of L’s clusters that are significantly repre-

sented in S according to minimal frequency threshold σ ′ (cf. Line B2), the latter score
is computed as follows:

ep(a,S,L ′
σ) =

1
|S| ∑

l∈L ′
σ

|l| · |succ(task(a), l)|
|tasks(l)|

where tasks(l) stands for the set of tasks appearing in the traces of cluster l, while
succ(task(a), l) is the set of tasks in task(l) that follow task(a) under the ordering

relationship ≺l
σ′ , i.e., succ(task(a), l) = {t ′ ∈ tasks(l) | t ≺l

σ′ t ′}.
We pinpoint that when making score coincides with the Gain Ratio measure (i.e.,

when ω = 1), it may happen that the check performed by checkCompliance arrests
the growth of the tree, without allowing the clusters in v to be separated neatly enough.
It is just such an undesirable effect that we want to prevent by correcting a classical
(purity-based) selection criterion through the ep score.

Once a (locally) optimal attribute a∗ has been chosen for splitting the traces in
S, the checkCompliance function is invoked to verify that the constraints in Defini-
tion 7 are satisfied (Step B5). Indeed, the application of this function to the parameters
a∗, D, v, and L ′

σ will return false iff (i) there is an ancestor v ′ of v in D such that
task(v′) precedes a∗ in some cluster of C′

σ, and (ii) there is no ancestor v′′ of v′ in D s.t.
task(v′′) = a∗. Notice that such a test can be speeded up by maintaining some compact
representation of relevant task precedences (w.r.t. threshold σ ′) for each of the behav-
ioral clusters in the set L given as input to the algorithm. To this aim, one could think
of resorting to some kind of workflow model (possibly discovered through classical
process mining techniques, such as those presented in [1]). Since the compliance test
is done only when ω < 1, the behavior of algorithm LearnDADT is made to coincide
with that of traditional decision tree learning algorithms in the case where ω = 1.

In the case the check performed by checkCompliance is passed successfully, the
current (leaf) node v is mapped to both the selected split formula π ∗ and the associated
attribute a∗, by suitably updating the functions split and attr of the DADT D (line
B6). The decision tree is then expanded by adding as many children of v as the groups
S1 . . .Sk of traces produced by applying the partition formula π ∗ to S (lines B7-B8).

Then, the procedure growDT is recursively applied to each new node v i, and its
corresponding set of traces Si. Finally, the probability of any cluster l i conditioned on
node v is estimated as the relative frequency of l i in S (line B12).

Complexity issues. The computation cost of algorithm LearnDADT is O(N× (H×F +
T 2)), where H is the height of the tree created by procedure growDT, and N, T and F
are the numbers of traces, tasks and attributes, respectively, in the input log—further
details can be found in [40]. As in standard decision tree induction approaches (see,
e.g., [39]), the tree grown is rarely complete and H � log(N) holds. Thus, LearnDADT
often takes linear time in N. Nonetheless, in order to deal efficiently with large logs,
we are investigating the usage of external-memory (possibly parallel) DT-induction
approaches (see [38] for detailed references), some of which (e.g. RainForest) can
naturally combine with our C4.5-like scheme.

18

5. Putting It All Together: A Toy Application Example

Consider the log in Figure 6, which is a refined representation of the one in Figure 1
where each trace is associated with non-structural data encoded as attribute-value pairs.
The log concerns the processing of liability claims in an insurance company [6]. The
behavior of the underlying process is as follows. After registering data about the claim
(a, Register claim), either a full check (c, Check all) or a shorter one, only involving
policy data (b, Check policy only), is performed. Once the claim has been evaluated
(task d, Evaluate claim), either an approval letter (task e, Send approval letter) or a
rejection letter (task i, Send rejection letter) is sent to the customer. In the former
case, a number of tasks are performed to eventually issue a payment for the claim: f
(Submit Payment), l (Validate Payment), m (Update Reserves), n (Send Notification),
g (Register Payment). Finally, the claim is archived and closed (task h, Archive claim).

trace ID task sequence data
t1 s1 : abdfnmlgeh {(a.Amount,1000),(a.PolicyType,premium),(d.Status,approved)}
t2 s1 : abdfnmlgeh {(a.Amount,1050),(a.PolicyType,premium),(d.Status,approved)}
t3 s2 : abdfelmngh {(a.Amount,5000),(a.PolicyType,premium),(d.Status,approved)}
t4 s2 : abdfelmngh {(a.Amount,500),(a.PolicyType,premium),(d.Status,approved)}
t5 s3 : abdeflmngh {(a.Amount,495),(a.PolicyType,premium),(d.Status,approved)}
t6 s3 : abdeflmngh {(a.Amount,500),(a.PolicyType,normal),(d.Status,approved)}
t7 s3 : abdeflmngh {(a.Amount,480),(a.PolicyType,normal),(d.Status,approved)}
t8 s4 : abdfmnlgeh {(a.Amount,6000),(a.PolicyType,premium),(d.Status,approved)}
t9 s5 : abdeflnmgh {(a.Amount,6200),(a.PolicyType,premium),(d.Status,approved)}
t10 s5 : abdeflnmgh {(a.Amount,5800),(a.PolicyType,premium),(d.Status,approved)}
t11 s6 : acdfmlgeh {(a.Amount,500),(a.PolicyType,normal),(d.Status,rejected)}
t12 s6 : acdfmlgeh {(a.Amount,490),(a.PolicyType,normal),(d.Status,rejected)}
t13 s7 : acdfelmgh {(a.Amount,600),(a.PolicyType,premium),(d.Status,rejected)}
t14 s7 : acdfelmgh {(a.Amount,610),(a.PolicyType,premium),(d.Status,rejected)}
t15 s8 : acdeflmgh {(a.Amount,615),(a.PolicyType,premium),(d.Status,rejected)}
t16 s8 : acdeflmgh {(a.Amount,605),(a.PolicyType,premium),(d.Status,rejected)}
t17 s8 : acdeflmgh {(a.Amount,620),(a.PolicyType,premium),(d.Status,rejected)}
t18 s9 : acdfmlgeh {(a.Amount,400),(a.PolicyType,premium),(d.Status,rejected)}
t19 s10 : acdih {(a.Amount,501),(a.PolicyType,normal),(d.Status,approved)}
t20 s10 : acdih {(a.Amount,555),(a.PolicyType,normal),(d.Status,approved)}
t21 s10 : acdih {(a.Amount,560),(a.PolicyType,normal),(d.Status,approved)}
t22 s10 : acdih {(a.Amount,565),(a.PolicyType,normal),(d.Status,approved)}
t23 s10 : acdih {(a.Amount,570),(a.PolicyType,normal),(d.Status,approved)}
t24 s10 : acdih {(a.Amount,575),(a.PolicyType,normal),(d.Status,approved)}
t25 s10 : acdih {(a.Amount,580),(a.PolicyType,normal),(d.Status,approved)}
t26 s10 : acdih {(a.Amount,585),(a.PolicyType,normal),(d.Status,approved)}
t27 s10 : acdih {(a.Amount,590),(a.PolicyType,normal),(d.Status,approved)}
t28 s10 : acdih {(a.Amount,595),(a.PolicyType,normal),(d.Status,approved)}
t29 s11 : abdih {(a.Amount,550),(a.PolicyType,normal),(d.Status,rejected)}
t30 s11 : abdih {(a.Amount,545),(a.PolicyType,normal),(d.Status,rejected)}
t31 s11 : abdih {(a.Amount,540),(a.PolicyType,normal),(d.Status,rejected)}
t32 s11 : abdih {(a.Amount,535),(a.PolicyType,normal),(d.Status,rejected)}
t33 s11 : abdih {(a.Amount,530),(a.PolicyType,normal),(d.Status,rejected)}
t34 s11 : abdih {(a.Amount,525),(a.PolicyType,normal),(d.Status,rejected)}
t35 s11 : abdih {(a.Amount,520),(a.PolicyType,normal),(d.Status,rejected)}
t36 s11 : abdih {(a.Amount,501),(a.PolicyType,normal),(d.Status,rejected)}
t37 s12 : afih {(a.Amount,641),(a.PolicyType,normal)}
t38 s13 : ah {(a.Amount,520),(a.PolicyType,normal)}
t39 s14 : aeg {(a.Amount,580),(a.PolicyType,normal)}
t40 s14 : aeg {(a.Amount,700),(a.PolicyType,normal)}
t41 s15 : adfemh {(a.Amount,1000),(a.PolicyType,normal),(d.Status,rejected)}
t42 s16 : acdfmenlgh {(a.Amount,0),(a.PolicyType,normal),(d.Status,rejected)}
t43 s16 : acdfmenlgh {(a.Amount,0),(a.PolicyType,normal),(d.Status,rejected)}

Figure 6: Example log for a claim handling process.

19

Notice that only the activities a and d have data items associated with them: the
amount of money involved (Amount), the customer (CustomerID) and the type of pol-
icy (PolicyType) are all stored during claim registration (task a), while an annotation
(Status) about claim acceptance/rejection is held after evaluating the claim (d). In par-
ticular, Amount is a numerical attribute, while PolicyType and Status are nominals tak-
ing values from {“normal”,“premium”}, and {“approved”,“re jected”}, respectively.

Discovery of Behavioral Clusters and Outliers. Let us first examine the behavior of
algorithm OASC against the example log of Figure 1, with σ = 0.1, γ = 0.2, α = 0.4,
and β = 0.3. The algorithm discovers 4 different structural clusters: one with the
traces t1, ...t10 (corresponding to the sequences s1, ...,s5 of Figure 1), one with the
traces t11, ...,t18 (corresponding to s6 and s9), one with the traces t19, ...,t28 (all cor-
responding to sequence s10), and one with the traces t29, ...,t36 (corresponding to s11).
The remaining log traces are recognized as anomalous process instances, which is in
line with the observations made in Example 3 concerning desirable outcomes of such a
clustering process. For instance, although s16 trivially induces a cluster with two traces,
these are perceived as outliers since the cluster is too small (w.r.t. to the average cluster
size and β). Note that we have also experimented the application of other clustering
approaches [3, 4] to the same example log, taking advantage of their respective im-
plementations provided in ProM [14]—actually, we used several clustering procedures
(including k-means/medoid, and agglomerative clustering schemes with different link-
age options) for both [4] and [3], and several similarity/distance measures for the latter.
However, in none of these trials we were able to find the same partition of the log as
the one found by algorithm OASC (whatever was the number of clusters asked as input,
the cut applied to the resulting dendrogram).

The four clusters obtained via algorithm OASC have been subsequently processed
by using the HeuristicMiner plugin [13] available in the process mining framework
ProM [14], in order to associate a workflow with each of them modelling the behav-
ior of the associated traces. Figure 7 shows the resulting workflow models 5, actually
representing four major execution scenarios for the process itself, which mainly differ
in the kind of policy check performed — task b (Check policy only) vs. task c (Check
all) — and in the final decision on the claim — task e (Send Approval Letter) vs. task
i (Send Rejection Letter). Discovering these usage scenarios improves the precision of
classical process mining approaches, by preventing the risk of having a single work-
flow that mixes up heterogeneous behaviors and models situations that do not happen
in reality. This is, in fact, the case of the overall schema5 shown in Figure 8, which was
obtained by directly applying the HeuristicMiner plug-in to the whole log of Figure 6.
Beside modelling some additional spurious task links (due to the presence of outlier
traces t37, ...,t41), this workflow schema incorrectly allows for simultaneously execut-
ing the tasks e (Send accept letter) and i (Send rejection letter), although they occur
together only in two (anomalous) log traces. Moreover, it does not capture the fact that
task n (Send Notification) never occurred in the cases where a complete check of the
claim was accomplished, by way of task c (Check all)6.

5By each workflow node the respective task ID is reported in a magnified form, for readability reasons.
6It is worth noting that these behavioral rules, effectively captured via our clustering-oriented approach,

20

Figure 7: Usage scenarios for the example in Section 5.

Discovery of Predictive Models. Let us now apply algorithm LearnDADT to the clus-
ters found by algorithm OASC, as to find a predictive model expressing the correlation
of these behavioral classes with non structural process attributes. To this end, we re-
tained all data attributes but CustomerID (which is indeed useless for learning general
behavior). Moreover, we fixed minCard = 0 and σ ′ = 0.05, while considering two
different values for ω, namely ω = 0.35 and ω = 1. The models returned in the two
cases are sketched in Figure 3 and Figure 4, respectively. Note that ω = 1 practically
corresponds to applying the classical decision-tree induction algorithm C4.5 [11]. In
fact, differently from the tree that is inferred in this basic case, the topology of the
model in Figure 3 fits well the task precedences expressed by the schemas of Figure 7.
Incidentally, this result has been achieved without incurring any loss in the accuracy of
the model (w.r.t. the input log)—which is maximal for both trees in Figures 3 and 4.

Note that any node of the tree in Figure 3 is associated with a probability func-
tion relating the node itself with each cluster. Actually, beside each non-leaf node
v, we only report the most probable clusters for v and the number of log traces

correspond to very complicated workflow patterns (involving non-local task dependencies and hidden tasks)
that are beyond the scope of most process mining approaches [13].

21

Figure 8: A schema mixing the various scenarios on the example in Section 5.

that felt in v during the learning process. Clearly enough, such information can
be exploited to predict cluster membership for ongoing process instances. For ex-
ample, one can exploit the tree in Figure 3 to forecast that the uncompleted trace
[<Register Claim,{(Amount,50),(PolicyType,premium)}>] will fall in Cluster 0. Conversely, the
trace [<Register Claim,{(Amount,300),(PolicyType,normal)}>,<Check policy only,{}>] is estimated to
eventually fall in either Cluster 0 or Cluster 1. In fact, in addition to its predictive
capabilities, a model like the one in Figure 3 has an evident descriptive value, and can
help to interpret the execution scenarios discovered for the given process in term of
non-structural aspects of the process itself.

6. Experiments

The approach proposed in the paper has been implemented and integrated into a
Java prototype system, which is meant to support the analysis of process logs rep-
resented in the MXML format used in the ProM process mining framework [14]. In
particular, the system can be exploited to detect structurally homogeneous trace classes
and anomalous traces in a given input log, as well as to discover a decision tree model
for predicting class membership based on context data. This section discusses the ap-
plication of the system on two different real-life scenarios, with the aim of providing
evidence for the practical usefulness of our proposal.

The rest of this section is organized as follows; in Section 6.1, a series of metrics
enabling for a quantitative evaluation of experimental findings are introduced; concrete
datasets used in the experimentation are illustrated in Section 6.2. Section 6.3 offers
a summarized view over the experiments, while further results are discussed in [40].

22

the capability of the method to support “on-the-fly” prediction over uncompleted pro-
cess instance is evaluated in Section 6.4, while Section 6.5 finally illustrates results of
experimental activities meant to analyze the effectiveness of the approach in detecting
a-priori known clusters and outliers, and to study the impact of input parameters.

6.1. Evaluation Setting
In the evaluation of experimental results we focused on the (i) quality of discovered

workflow models, as concerns specifically their ability to precisely model the structure
of process instances, by possibly capturing different execution scenarios; and on the
(ii) quality of discovered DADT decision trees, as concerns their capability to predict
the structural class of process instances based on non-structural information, and to fit
temporal aspects of the process. The metrics adopted to this end are illustrated next.

Quality of Structural Models. The conformance of a workflow model W w.r.t. a log
L can be measured via two complementary metrics (defined in [15]), ranging over the
real interval [0..1]: the fitness (denoted by Ft), which essentially evaluates the ability
of W to parse all the traces L, by indicating how much the events in L comply with W ;
and the advanced behavioral appropriateness (denoted by BA), which estimates the
level of flexibility of W (i.e., alternative/parallel behavior) used to produce L. These
measures are defined for workflow schemas and do not apply directly to log clusters.
Thus, each cluster identified via OASC is equipped with a workflow schema, by using the
HeuristicMiner plugin [13] provided by the process mining framework ProM [14]—
this choice, which is actually orthogonal to our approach, mainly descends from the
fact that this plugin is robust to noise and efficient enough. Then, Ft (resp., BA) is
computed by summing up the fitness (resp., advanced behavioral appropriateness) of
each induced workflow schema, where the weight of each schema is the fraction of the
original log traces constituting the cluster it was mined from.

Prediction Quality. To evaluate the precision of DADT models, we use the classical
Accuracy measure expressing the percentage of correct predictions that would be made
over all possible traces of the process (estimated with 10-fold cross-validation [16]).
This measure is also computed on incomplete log traces, in order to assess the capabil-
ity of DADT models to carry out “on-the-fly” predictions (see Section 6.4). Moreover,
as a further measure, a score is introduced indicating how much the model complies
with precedence relationships among tasks. In order to make the evaluation indepen-
dent of discovered models, we only compute it against the log, by measuring, for each
leaf node l and for each trace t assigned to l, how much the ordering of tasks within t
agrees with the sequence of split tests that lead from the root to l. More formally:

Definition 8 (DADT Conformance). Let L be a log over task set T and attribute set
A, and D = 〈H,attr,split,pred〉 be a DADT model. For any leaf ν of D .H, let (i)
aν

1 . . .aν
k be the attributes associated with all non-leaf nodes nν

1 . . .nν
k in the path from

D.H’s root to ν—i.e., aν
i = D .attr(nν

i), for i = 1..k—, and (ii) path(ν) = pν
1, . . . , pν

k
be the sequence of tasks corresponding to aν

1 . . .aν
k—i.e., pν

i = task(aν
i) for i = 1..k.

Then, the conformance of D w.r.t. L, denoted by Conf (D,L) is defined as follows:

Conf (D,L) =
1
N ∑

ν ∈ leaves(D.H)
∑

t∈traces(ν)

(
1− mismatches(t, path(ν))

maxMismatches(t, path(ν))

)

23

where leaves(H) and traces(ν) simply denote the leaf nodes of the tree H and the log
traces assigned to its leaf node ν, respectively; mismatches(t,path(ν)) is the number of
times the task precedences in t are inverted in path(ν), and maxMismatches(t,path(ν))
is the maximum number of such inversions that may occur between two sequences
containing the same tasks as t and path(ν), respectively7. Moreover, for any DADT
model D = 〈D,attr,split, p〉, we will also denote Conf (D,L) = Conf (D .D,L).

Essentially, this score is meant to evaluate how much a DADT model agrees with
the actual ordering of tasks in the log traces, and gives a rough estimate of its ability to
make accurate predictions over an ongoing process instance.

Example 5. Consider the decision trees in Figures 3 and 4, and the example log in
Figure 6. Let νa

1 and νb
1 indicate the leftmost leaf in the tree of Figure 4 and of Figure 3,

respectively. Let us also denote by t1 the first trace in the log of Figure 6, which clearly
corresponds to the task sequence abdflenmgh. Note that t1 is assigned to νa

1 (resp., νb
1)

in the tree in Figure 3 (resp., 4), which corresponds to the task sequence path(ν a
1) =

ad (resp., path(νb
1) = da). Therefore, it holds that mismatches(t1,path(νa

1)) = 1 and
mismatches(t1,path(νb

1)) = 0. In fact, the same happens for the whole log, given that
in all paths in Figure 4 leading to leaves task d precedes task a, while this ordering is
violated in all the traces. Therefore, the overall conformance measure Conf is 0 for the
tree in Figure 4, and 1 for that in Figure 3. �

Note that the measure Con f (D,L) defined above is a pessimistic estimate for the
capability of a DADT D to comply with the workflow models that could be discovered
for the log L, by using some suitable process mining technique. For instance, if d and b
are parallel activities, the log L is likely to contain both some trace t db where d precedes
b and some trace tbd where conversely b occurs before d. Then, for any DADT D that
uses both tasks, the Con f (D,L) will incorrectly count a mismatch on either t db or tbd .

6.2. Datasets

Experimental activities were carried out on datasets from two different real-life
application scenarios, which are described next.

Data From a Logistic System (Logs A and B). The first application scenario concerns
the operational system used in an Italian maritime container terminal. The life cycle
of any container is as follows: the container is unloaded from the ship and temporarily
placed near to the dock, until it is carried to some suitable yard slot for being stocked.
Symmetrically, at boarding time, the container is first placed in a yard area close to the
dock, and then loaded on the cargo. Different kinds of vehicles can be used to move
a container, including, e.g., cranes, straddle-carriers (a vehicle capable of picking and
carrying a container, by possibly lifting it up), and multi-trailers (a train-like vehicle
that can transport multiple containers). Each container undergoes several logistic oper-
ations determining its displacement across the “yard”—i.e., the main area used in the

7maxMismatches(t,path(ν)) = min{|t|, |path(ν)|} × (min{|t|, |path(ν)|} − 1)/2, where |t| (resp.,
|path(ν)|) denotes the number of distinct tasks appearing in t (resp., path(ν)).

24

harbor for storage purposes, logically partitioned into bi-dimensional slots. Slots are
units of storage space used for containers, and are organized into disjoint sectors.

In our experimentation, we focused on a subset of 5389 containers, namely the
ones that completed their entire life cycle in the hub along the first two months of year
2007, and which were exchanged with four given ports around the Mediterranean sea.
In order to translate these data into a process-oriented form, we regarded the transit
of any container through the hub as a single enactment case of a (unknown) logistic
process, and derived the following logs, based on two different analysis perspectives:
(i) Log A (“operation-centric”), storing the sequence of logistic operations applied to
the containers; and (ii) Log B (“position-centric”), registering the flow of containers
across the yard. In addition, various data attributes were considered for each container,
including its origin and final destination ports, its previous and next calls, diverse char-
acteristics of the ship that unloaded it, its physical features (e.g., size, weight), and a
series of categorical attributes concerning its contents (e.g., the presence of dangerous
or perishable goods). These data were encoded as attributes of the starting task.

Data From a Collaboration Process (Log CAD). The second application scenario,
studied in the research project TOCAI.it8, concerns the collaborative process performed
in a manufacturing enterprise in order to carry out the design, prototypical production,
and test of new items (i.e., both final artifacts and components). In this scenario, the
design of a new item is accomplished by handling one or more CAD projects through a
distributed CAD platform, which allows different kinds of actors to work in a coopera-
tive and concurrent way. The following kinds of events can be traced for each project:
Creation, Construction (start of design for the item associated with the project),
Modify (the project was saved and a new version of it started off), CancelModify (the
last modification to the project was undone), Prototyping (a prototype was built for
an item), Test (the project was validated), TechRevision (a technical revision was
done for an item), Share (the project was shared with other workers), Release (the
project was released), PilotSeries (a pilot series was produced).

In particular, we focused on the operations performed in the first three months of
year 2007, over 5794 projects. These historical data were restructured into a process
log, referred to as Log CAD hereinafter, where each log trace corresponds to a distinct
project, and records the sequence of CAD operations performed on the project. Each
operation occurrence was also associated with two attributes, concerning the user that
performed it: the work group he/she belonged to (Group), and the role he/she was
playing in the design process (Role).

6.3. Experimental Results: Quality of Discovered Models

Table 1, Table 2 and Table 3 summarize the outcomes of a selection of experiments
performed on the log data described above. In particular, Table 1 reports the number of
clusters found by OASC, and the quality scores associated with them for the threshold
values σ=σ′=0.05, γ=4, α=0.4, and β=0.1. In these tests, the recognition of various
kinds of outliers allowed to achieve high quality workflow models for the behavioral

8TOCAI.it (Tecnologie Orientate alla Conoscenza per Aggregazioni di Imprese in Internet), research
project funded by Italian Ministry of University and Scientific Research.

25

Log Clusters Outliers Ft BA
Log A 2 53 0.8725 0.9024
Log B 5 63 0.8558 0.9140

Log CAD 4 50 0.6842 0.6584

Table 1: Results of algorithm OASC.

Method Log A Log B Log CAD
#Cl Ft BA #Cl Ft BA #Cl Ft BA

OASC 2 0.8725 0.9024 5 0.8558 0.9140 4 0.6842 0.6584
OASC—no outliers 2 0.8320 0.8821 10 0.7947 0.8247 4 0.6421 0.6341
Feature-based [3] 2 0.8716 0.8842 5 0.7332 0.8121 4 0.6031 0.6341
Edit-based [4] 1 0.8301 0.7631 5 0.8423 0.9076 4 0.6828 0.6307

Table 2: Comparative analysis for OASC.

Test Clusters Data-aware classification model
Dataset Attributes ω Accuracy Tree Size Conf

Log A
case 1 2 96.01% 69 1.0
all 1 2 98.03% 147 1.0
all 0.6 2 97.49% 101 1.0

Log B
case 1 5 91.64% 105 1.0
all 1 5 94.98% 135 0.89
all 0.6 5 95.01% 135 0.98

Log CAD
task 1 4 71.62% 19 0.49
task 0.6 4 72.47% 45 0.72

Table 3: Results of LearnDADT.

clusters discovered against each dataset, as one can notice by looking in Table 2 at
the outcomes of experiments carried out without the removal of outliers (i.e., we set
α = β = 0, while keeping fixed the other thresholds). In particular, we did not find
clusters whose size is definitively smaller than the average in Log A and Log CAD; yet,
we found various outliers over these two logs, whose removal was beneficial on the
quality of the resulting models. Instead, on Log B, we recognized a higher number of
behavioral classes, owing to the presence of small groups of (atypical) log traces.

Table 2 allows also for contrasting the proposed approach to two other methods
for clustering log traces, combining a k-medoid scheme with two different measures:
the edit distance [4] and the Jaccard index computed over the vectorial representation
of traces proposed in [3] (precisely, a balanced combination of the “task profile” and
“transition profile”). In order to apply these methods on each log, we used their re-
spective implementations provided in ProM [14], and configured them to search for
the same number of clusters as those found by OASC. In all cases, algorithm Heuristic-
sMiner [13] was exploited for inducing the workflow model of every cluster.

Table 3 shows instead some features of the DADT models obtained via LearnDADT
on the clusters found by OASC. In particular, for each induced classification model, its
size and accuracy are reported, as well as its conformance to the input log, measured
according to the Con f measure defined in Section 6.1. Different settings were con-
sidered for the application of LearnDADT, which differ for the value of parameter ω
(while keeping fixed σ′ = 0.05), and for the kind of non-structural information consid-
ered: only case attributes (Attributes = case), only task attributes (Attributes = task),
or all of them (Attribute = all). In this regard, we observe that in the case of Log
CAD, all available attributes refer to task elements, and there are no case attributes. In
particular, we focus on two different options for setting the parameter ω:

26

1. ω = 1, which practically makes our approach coincide with algorithm J48—
indeed, in this case all precedence constraints in the structural models are com-
pletely ignored when inducing the decision tree model—, and

2. ω = 0.6, where conversely a DADT model is built by taking into account such
information, based on the algorithmic scheme shown in Figure 5. This value
was pragmatically chosen based on the observation that it ensured a good com-
promise between classification accuracy and structural conformance. However,
similar results were obtained for 0.3 ≤ ω ≤ 0.7.

Note that results in Table 3 confirm that the proposed approach allows to achieve
good effectiveness in all considered analysis scenarios, and that precision does not
come with a verbose (and possibly overfitting) representation. Indeed, for all the tests,
the number of clusters and the size of the tree are quite restrained. Moreover, by con-
trasting the results obtained with ω = 0.6 to those obtained with ω = 1, we can have
a sort of comparison between the induction technique introduced of Figure 5 and clas-
sical decision-tree induction algorithms, such as C4.5 and its variant J48 [11, 39]. In
this respect, we first notice that such analysis degenerates in the case of Log A, where
the non-structural information relevant to discriminating the two structural clusters is
conveyed by case attributes, with just one of task attribute (namely the distance covered
in the first MOV operation) playing a marginal role. As a consequence, even when task
precedences are ignored in the induction of the classification model (ω = 1), a maximal
conformance value is obtained for this model. Instead, perturbing the attribute selec-
tion criterion with our heuristic based on task precedences produces a slight decrease
in the accuracy of the model, mainly owing to the fact that additional constraints limit
the selection of most predictive features. Such an effect does not arises on Log B and
Log CAD, where our technique allows to improve the conformance of the classifica-
tion model. Interestingly, in these cases, the capability of the decision tree to predict
the behavior of log traces is improved when using the precedence-based heuristic in
the selection of split attributes (ω = 0.6). Such a beneficial effect was completely un-
expected, and seems to suggest that in some cases considering the logic of business
processes can guarantee better results than inducing the classification model via the
classical greedy approach, based on entropy reduction.

6.4. Experimental Results: Runtime-Prediction Power

A further kind of experiment was performed to assess the advantage of using our
decision tree induction technique within an “on-the-fly” prediction setting, such as
the one discussed in Section 1, where the behavioral cluster of a forthcoming process
instance should be estimated possibly before it has been completed.

In order to conduct the analysis, we measured the accuracy of the classification
model over several logs obtained from the three datasets, by including the k-prefix of
each log traces, for k ranging from 1 to the maximal trace length. For Log B and Log
CAD, Figure 9 depicts the accuracy of the classification model, in correspondence of
each of these log subsets (i.e., for different trace lengths). Two plots are shown for
each log: one for the decision tree discovered by using the algorithm in Figure 5 with
ω = 0.6, and one for the decision tree found with J48—this practically corresponds
to set ω = 1 in our prototype system. In all cases, classification models make better

27

1 2 3 4 5 6 7 8 9 10
0.947

0.9475

0.948

0.9485

0.949

0.9495

0.95

0.9505

Trace Length

A
c
c
u
ra
c
y

ω = 0.6
ω = 1

1 2 3 4 5 6 7 8
0.685

0.69

0.695

0.7

0.705

0.71

0.715

0.72

0.725

0.73

TraceLength

A
c
c
u
ra
c
y

ω = 0.6
ω = 1

Figure 9: “On-the-fly” prediction on logs B (left) and CAD (right): accuracy vs. trace fragments’ length.

predictions over longer traces, and it is encouraging to notice that our technique always
guarantees more accurate results than the classical induction method.

6.5. Further Effectiveness and Sensitivity Analysis

In this section, we discuss the results of further experimental activities conducted
to assess the efficacy of OASC and LearnDADT.

6.5.1. Studying the Efficacy and Sensitivity of OASC on Synthesized Data
Additional Quality Metrics. In order to evaluate the ability of OASC to recognize a
given set of a-priori classes, we consider the standard micro-averaged precision mea-
sure [9], consisting in averaging over all the mined clusters the frequency of the ma-
jority class in each cluster, i.e., the maximal percentage of elements assigned to that
mined cluster and coming from one input “true” cluster. This cluster-purity metric
allows for comparing real classes and discovered clusters even when they diverge in
their number of groups, as might well occur with our approach, where the number
of clusters is selected automatically. Moreover, by interpreting outlier detection as a
classification problem with two given classes, i.e. outliers vs. normal individuals, we
will measure outlier-detection precision by computing the rates FN of False Negatives
(i.e. outliers deemed as normal) and FP of False Positives (i.e. normal traces deemed
as outliers), or classical measures of Precision (i.e. P = TP/(TP+ FP)), Recall (i.e.
R = TP/(TP+FN)) and balanced F-measure (i.e. F1 = (2×P×R)/(P+R)))—with
TP denoting the number of true positives, i.e. correctly identified outliers.

Labelled Synthesized Data. Further tests on OASC have been conducted on syncretized
data. A random generator has been implemented which produces a trace log according
to four main data distribution parameters: NA, NT , NC, pout

C , pout . More specifically,
the log will contain NT traces over an alphabet of NA tasks, with the traces grouped
in NC clusters, and pout

C ×NT of them falling into clusters whose size is smaller than
the average. Additional pout ×NT traces will be also generated that do not comply
with any cluster at all – hence, the total percentage of outliers in the dataset is p out

C +
pout . Basically, the generation process proceeds as follows. First, a set P of disjoint
subschemas is built, each of which contains a number of activities randomly taken

28

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

pout

M
ic

ro
−a

ve
ra

ge
d

pr
ec

is
io

n

pout
C

 = 0.05

pout
C

 = 0.1

pout
C

 = 0.15

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

pout

F
P

/F
N

 r
a
te

s

pout
c

 = 0.05

pout
c

 = 0.1

pout
c

 = 0.15

pout
c

 = 0.05

pout
c

 = 0.1

pout
c

 = 0.15

FP / #outliers

FN / #outliers

Figure 10: Sensitivity to data distribution: clustering precision (left) and outlier detection precision (right).

from a gaussian distribution with mean SP. All these schemas are then combined into
a single one WP (with all the NA tasks), where each sub-schema is allowed to be run
independently of the others. Then, NC subsets of P are randomly selected and enacted
(according to pout

C) in WP, thereby generating the various clusters of traces over a total of
(1− pout)×NT traces. Finally, pout ×NT traces are generated by simulating enactments
that do not comply with WP.

Experimental Results: Precision against Data Distributions. In a first series of exper-
iments, we generated several logs with different percentages of outliers, by varying
both pout (from 0.02 to 0.32) and pout

C (from 0.05 to 0.15), and keeping fixed NA=180,
NT =16000, NC=4, and SP=6. Figure 10 illustrates the results obtained against these
data by applying algorithm OASC with γ=4, α=0.4 and β=0.5, and pattSize=8. When
increasing the fraction of outliers in the dataset, both the precision of clusters and the
ability of detecting outliers get worse. However, OASC is capable of achieving satisfac-
tory performances, in particular if the overall percentage of outliers does not exceed
9%. In fact, under this condition the algorithm fails to detect only a very little fraction
of outliers, yet producing a higher number of false positives (specially for higher values
of pout

C). However, since the FP counts shown in the figure are normalized w.r.t. to the
total number of outliers in the dataset (and not w.r.t. to the total number of instances),
only a little fraction of normal objects are purged out erroneously, and the original
groups of normal clusters can be detected adequately.

Note that the low FN rates obtained by OASC is a remarkable achievement in com-
parison with previous anomaly detection approaches in the field of process mining. As
an example, we simulated the procedure described in [30] with the help of ProM [14],
by eventually extracting one single workflow model for each log, and then adopting
the compliance with it as anomalousness criterion. The results in this case are notably
worse than those in Figure 10, since with all data distributions most of the outlier traces
are not recognized at all, thus leading to quite higher FN rates.

Experimental Results: Sensitivity to Parameters. In a second set of experiments, we
measured the sensitivity of OASC to its input parameters. To this end, we generated a
log by setting pout=0.05 and pout

C =0.05, and the same values as above for all other data
parameters. In the following we discuss results of experiments performed with β=0.1

29

0.0025 0.005 0.01 0.02 0.04 0.08 0.16 0.32
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ

M
ic

ro
−

av
er

ag
ed

 p
re

ci
si

on

γ = 1
γ = 2
γ = 4

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

M
ic

ro
−

a
v
e
ra

g
e
d
 p

re
c
is

io
n

γ = 1
γ = 2
γ = 4

Figure 11: Clustering accuracy vs. σ and γ (left), and vs. α and γ (right)—while fixing α=0.4 and σ=0.1, resp.

and pattSize=8, by focusing on σ, γ and α—which appeared to require more care in
finding an appropriate setting.

Figure 11 reports the micro-average precision scores computed for the clusterings
discovered when using different values of σ, α, and γ. The first two parameters consid-
erably impact the purity of the clusters. Probably, extreme values of σ yield too many
(confusing) or too few patterns, which do not allow to separate the original classes into
different clusters. Similarly, with extreme values of α, beside having a negative effect
on the quality of pattern clusters, one increases the risk of confusing normal instances
with outliers, or viceversa. Satisfactory results are obtained with σ around 0.1 and with
α between 0.25 and 0.35. Moreover, using γ = 4 seems to produce additional benefits,
mainly as concerns the stability of results.

Figure 12 sheds light on the ability to discriminate outliers from normal traces, for
different configurations of the algorithm. As expected, recall scores tend to improve
when increasing either σ or α, whereas an opposite behavior is exhibited by precision
results. In fact, as discussed before, in both cases higher amounts of objects are likely
to be assigned to no cluster (or to a small-sized outlier one). As to F-measure, a good
trade-off seems to be found for α and σ near to 0.4 and to 0.1, respectively.

0.0025 0.005 0.01 0.02 0.04 0.08 0.16 0.32
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ

Precision
Recall
F−measure

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

Precision
Recall
F−measure

Figure 12: Outlier detection accuracy vs σ, and α—while fixing α=0.4 and σ=0.1, resp., and γ=4.

30

0 0.2 0.4 0.6 0.8 1
0.4

0.5

0.6

0.7

0.8

0.9

1

ω

A
c
c
u

ra
c
y

Log A

Log B

Log CAD

0 0.2 0.4 0.6 0.8 1
0.4

0.5

0.6

0.7

0.8

0.9

1

ω

C
o
n
f

Log A

Log B

Log CAD

Figure 13: Sensitivity to ω (σ′=0.1): prediction accuracy (left) and conformance to task precedences (right).

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0.4

0.5

0.6

0.7

0.8

0.9

1

σ'

A
c
c
u
ra

c
y

Log A

Log B

Log CAD

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0.4

0.5

0.6

0.7

0.8

0.9

1

σ'

C
o

n
f

Log A

Log B

Log CAD

Figure 14: Sensitivity to σ′ (ω=0.6): prediction accuracy (left) and conformance to task precedences (right)

6.5.2. Sensitivity Tests on LearnDADT
In order to better comprehend the behavior of algorithm LearnDADT, we tried it

with different settings directly on the three real datasets described in Section 6.2.
Again, two different quality metrics of the DADT models were taken under consid-
eration: prediction accuracy—w.r.t. the clusters previously discovered by OASC (cf.
Section 6)—, and conformance to task precedences computed through measure Con f
(Section 6.1). We next focus only on the dependence of these measures on parameters
ω and σ′, and consider the results of tests performed with minCard=0—actually, we
noticed that this parameter (blocking the expansion of nodes with too few instances),
has little influence on the performances of the model, and that post-pruning techniques
are enough to prevent overfitting.

The impact of ω on the metrics is illustrated in Figure 13. As expected, in cor-
respondence of higher values of ω we can observe higher accuracy and lower con-
formance, and vice-versa. This is true for all the datasets, with the exception of the
first, where the conformance measure is always maximal, independently of LearnDADT
parameters—maybe due to the very simple flow models that characterize this case. In
the other cases, it seems that a good trade-off is achieved around ω = 0.6. Lower val-
ues, indeed, cause sensible accuracy loss. Figure 14 lets us conclude that a similar
effect is produced by σ′, apart from the fact that the best trade-off between accuracy

31

and conformance happen for σ ′ ∈ [0.1..0.15].
As a final remark note that further sensitivity tests were conducted on synthesized

logs, with different distributions of non-structural attributes. However, since the out-
comes of these tests, as far as concerns the effect of internal parameters, are substan-
tially similar to those obtained on real logs, we omit their description here.

7. Discussion and Conclusions

In this paper, we complemented current research on clustering approaches for pro-
cess mining applications, by focusing on two problems that have received little atten-
tion in earlier literature: singling out outliers from input traces, and finding predictive
models for clustering results. We proposed an outlier-aware clustering method, where
the similarity criterion roughly focus on the idea of correlating the traces via a special
kind of frequent (concurrency-aware) structural patterns, which are preliminary discov-
ered as an evidence of “normal” behavior. Moreover, we discussed an algorithm for
decision tree learning, which is aimed at capturing the relationships between structural
execution classes (possibly found by clustering) and non-structural process features.
In order to predict as soon as possible the behavioral class of a novel enactment, the
algorithm has been devised in a way that the sooner an attribute tends to be known
along the course of process enactments, the closer it appears to the root. Encouraging
results on two complex real-life application scenarios confirmed the capability of the
proposed approach to discover expressive and comprehensible process models, as well
as to support run-time forecasting accurately.

Comparison with related works. A first distinguishing feature of our work is its aim
to induce a multi-perspective process model, capturing both typical execution scenar-
ios and exceptional instances, as well as the links between these scenarios and non-
structural context data. Indeed, our clustering approach is meant to identify both out-
liers and groups of normal instances, while previous proposals in the field of process
mining addressed just one of these kinds of tasks, possibly using the other in an instru-
mental manner. In fact, in other trace clustering approaches [2–4] no attention is given
to the presence of outliers, while previous efforts for mining anomalous traces [30, 31]
adopt a model-based strategy, disregarding to separate multiple execution scenarios.

Technically, our approach combines the mining of advanced structural patterns with
a coclustering scheme focused on the associations between such patters and the given
log traces. This makes our approach neatly different from those that simply treat the log
traces as symbolic sequences (e.g. [4]). Even though structural patterns were already
used for clustering purposes in previous works [2, 3], our approach is different both for
the kind of patterns adopted, and for its fuzzy notion of support (taking into account
the interleaving of parallel branches). Moreover, differently from these works, we do
not use such patterns for producing a vectorial representation of the traces, prior to the
application of classic clustering methods. Rather, we look at the associations between
traces and patterns themselves in a way similar to coclustering methods [9], famous for
their good performances against sparse high-dimensional data. In fact, in the case of
a complex process with a high number of activities (and possibly of relevant structural
patterns), any vector-based approach like [2, 3] has a considerable risk to incur in

32

the notorious “curse of dimensionality” problem. These aspects also differentiate our
work from other approaches to the detection of outliers among log traces or sequences,
which either disregard the presence of different behavioral clusters [30, 31], or rely
on proximity notions or on generative models (e.g., [27–29]) not taking care of the
peculiar nature of process instances (e.g., intra-parallelism).

Finally, as to the induction of predictive models, we reused a classical top-down
greedy scheme for the induction of a decision tree, by integrating into it the constraints
needed to support on-the-fly prediction. The reasons for this choice are the readability
of discovered models, the availability of noise-resistant and efficient induction algo-
rithms, and the possibility to easily adapt the learning scheme to the prediction of work-
flow executions’ structure, by simply correcting the attribute selection criteria with the
introduction of a workflow-oriented score. Actually, our approach is independent of
the particular induction algorithm and associated purity metrics adopted in this paper
(C4.5 and the Gain Ratio, respectively). In fact, our choice mainly served the goal
of demonstrating that a pretty simple refinement of a classical induction algorithm is
enough to effectively make on-the-fly prediction on the structure of a process instance.

Future work. A number of challenging issues still remain open, and are left as the sub-
ject of future research work. Firstly, we are planning to enforce the practical relevance
of the discovered behavioral classes by equipping our clustering approach with the ca-
pability to take into account key process performance indicators (such as task duration,
task costs, and other application-dependent QoS metrics), as well as to reuse available
background knowledge on well-specified alternative usage scenarios.

Another avenue of research might be that of integrating the self-tuning techniques
in [7] with our outlier detection method, as to reduce as much as possible human in-
tervention in setting the appropriate thresholds in the mining process. More generally,
based on our empirical sensitivity analysis, we notice that certain key parameters (e.g.,
σ, α) influence effectiveness results according to quasi-monotonic or quasi-convex
curves. This behavior leaves space to the design of efficient self-tuning heuristics for a
semi-automatic setting of the parameters.

Finally, in order to exploit fully the predictive power of discovered decision trees, it
would be of interest to investigate the integration of such models with run-time support
mechanisms (involving, e.g., task scheduling and resource allocation) of some real
process management platforms.

Bibliography

[1] W. M. P. van der Aalst, B. F. van Dongen, J. Herbst, L. Maruster, G. Schimm, A. J. M. M.
Weijters, Workflow mining: A survey of issues and approaches, Data Knowledge Engi-
neering 47 (2) (2003) 237–267.

[2] G. Greco, A. Guzzo, L. Pontieri, D. Saccà, Discovering Expressive Process Models by
Clustering Log Traces, IEEE Transactions on Knowledge and Data Engineering 18 (8)
(2006) 1010–1027.

[3] M. Song, C. W. Günther, W. van der Aalst, Trace Clustering in Process Mining, in: Busi-
ness Process Management Workshops, 109–120, 2008.

33

[4] R. P. J. C. Bose, W. M. P. van der Aalst, Context Aware Trace Clustering: Towards Im-
proving Process Mining Results, in: Proc of the SIAM International Conference on Data
Mining (SDM 2009), 401–412, 2009.

[5] S. Subramaniam, V. Kalogeraki, D. Gunopulos, F. Casati, M. Castellanos, U. Dayal,
M. Sayal, Improving process models by discovering decision points, Information Systems
32 (7) (2007) 1037–1055.

[6] A. Rozinat, W. M. P. van der Aalst, Decision Mining in ProM, in: Proc. of 4th Intl. Conf.
on Business Process Management (BPM’06), 420–425, 2006.

[7] H.R.M. Nezhad, R. Saint-Paul, B. Benatallah, F. Casati, Deriving Protocol Models from
Imperfect Service Conversation Logs, IEEE Transaction on Knowledge and Data Enge-
neering 20 (12) (2008) 1683–1698.

[8] L. Maruster, A. J. M. M. Weijters, W. M. P. van der Aalst, A. van den Bosch, A rule-based
approach for process discovery: Dealing with noise and imbalance in process logs, Data
Mining and Knowledge Discovery (1) (2006) 67–87.

[9] I. S. Dhillon, S. Mallela, D. S. Modha, Information-theoretic co-clustering, 89–98, 2003.

[10] A. J. Enright, S. Van Dongen, and C. A. Ouzounis. An efficient algorithm for large-scale
detection of protein families. Nucleic Acids Res, 30(7):1575–1584, April 2002.

[11] J. Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann, 1993.

[12] J. R. Quinlan, Induction of Decision Trees, Machine Learning 1 (1) (1986) 81–106.

[13] A. J. M. M. Weijters, W. M. P. van der Aalst, Rediscovering Workflow Models from Event-
Based Data using Little Thumb, Integrated Computer-Aided Engineering 10 (2) (2003)
151–162.

[14] B. F. van Dongen, A. K. A. de Medeiros, H. M. W. Verbeek, A. J. M. M. Weijters, W. M. P.
van der Aalst, The ProM Framework: A New Era in Process Mining Tool Support, in:
Proc. of 26th Intl Conf on Applications and Theory of Petri Nets, 444–454, 2005.

[15] A. Rozinat, W. M. P. van der Aalst, Conformance Checking of Processes Based on Moni-
toring Real Behavior, Information Systems 33 (1) (2008) 64–95.

[16] P.-N. Tan, M. Steinbach, V. Kumar, Introduction to Data Mining, (First Edition), Addison-
Wesley Longman Publishing Co., Inc., 2005.

[17] J. Yang, W. Wang, CLUSEQ: efficient and effective sequence clustering, in: Proc. of 19th
IEEE Int. Conf. on Data Engineering (ICDE’03), 101–112, 2003.

[18] V. Barnett, T. Lewis, Outliers in Statistical Data, John Wiley, 1994.

[19] D. Hawkins, Identifications of Outliers, Chapman and Hall, 1980.

[20] E. M. Knorr, R. T. Ng, V. Tucakov, Distance-Based Outliers: Algorithms and Applications,
VLDB Journal 8 (3-4) (2000) 237–253.

[21] M. M. Breunig, H.-P. Kriegel, R. T. Ng, J. Sander, LOF: Identifying Density-Based Local
Outliers, in: Proc. of 2000 ACM SIGMOD International Conference on Management of
Data(SIGMOD’00), 93–104, 2000.

34

[22] I. Gath, A. Geva, Fuzzy Clustering for the Estimation of the Parameters of the Components
of Mixtures of Normal Distribution, Pattern Recognition Letters 9 (1989) 77–86.

[23] M. Jiang, S. Tseng, C. Su, Two-phase Clustering Process for Outlier Detection, Pattern
Recognition Letters 22 (2001) 691–700.

[24] D. Yu, G. Sheikholeslami, A. Zhang, FindOut: Finding Outliers in Very Large Datasets,
Knowledge and Information Systems 4 (4) (2002) 387–412.

[25] V. Chandola, A. Banerjee, V. Kumar, Anomaly Detection : A Survey, ACM Computing
Surveys 41 (3) (2009) Article 15.

[26] S. A. Hofmeyr, S. Forrest, A. Somayaji, Intrusion detection using sequences of system
calls, Journal of Computer Security 6 (3) (1998) 151–180.

[27] C. C. Michael, A. Ghosh, Two state-based approaches to program-based anomaly detec-
tion, in: Proc. of 16th Annual Computer Security Applications Conference (ACSAC’00),
21, 2000.

[28] P. Sun, S. Chawla, B. Arunasalam, Mining for Outliers in Sequential Databases, in: Proc.
of 6th SIAM Int. Conf. on Data Mining, 94–104, 2006.

[29] C. Warrender, S. Forrest, B. Pearlmutter, Detecting Intrusions Using System Calls: Alter-
native Data Models, in: In IEEE Symposium on Security and Privacy, 133–145, 1999.

[30] F. de Lima Bezerra, J. Wainer, W. M. P. van der Aalst, Anomaly Detection Using Pro-
cess Mining, in: Enterprise, Business-Process and Information Systems Modeling (BP-
MDS’09), 149–161, 2009.

[31] F. de Lima Bezerra, J. Wainer, Anomaly detection algorithms in business process logs, in:
Proc. of 10th Int. Conf. on Enterprise Information Systems (ICEIS’08), 11–18, 2008.

[32] T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning, Springer, 2003.

[33] L. Breiman, J. Friedman, R. Olshen, C. Stone, Classification and Regression Trees,
Wadsworth and Brooks, 1984.

[34] D. Heath, S. Kasif, S. Salzberg, Induction of Oblique Decision Trees, Journal of Artificial
Intelligence Research 2 (2) (1993) 1–32.

[35] Q. Wang, C. Suen, Large tree classifier with heuristic search and global training, IEEE
Trans. Pattern Anal. Mach. Intell. 9 (1) (1987) 91–102.

[36] J. R. Quinlan, Simplifying decision trees, Int. J. Man-Machine Studies 27 (3) (1987) 221–
234.

[37] M. Mehta, J. Rissanen, R. Agrawal, MDL-Based Decision Tree Pruning, in: Proc. of 1st
Int. Conf. on Knowledge Discovery and Data Mining (KDD’95), 216–221, 1995.

[38] L. Rokach, O. Maimon, Top-Down Induction of Decision Trees Classifiers – A Survey,
IEEE Trans. on Systems, Man and Cybernetics 35 (4) (2005) 476–487.

[39] I. H. Witten, E. Frank, Data Mining: Practical Machine Learning Tools and Techniques
(2nd Ed.), Morgan Kaufmann, 2005.

[40] –, Online appendix, available at http://si.deis.unical.it/guzzo/wfmining/appendix.pdf

35

