
 1

Consiglio Nazionale delle Ricerche
Istituto di Calcolo e Reti ad Alte Prestazioni

Process Discovery with
Precedence Constraints

Gianluigi Greco 2, Antonella Guzzo 3, Luigi Pontieri1

 RT-ICAR-CS-11-04 Ottobre 2011

Consiglio Nazionale delle Ricerche, Istituto di Calcolo e Reti ad Alte Prestazioni
(ICAR)
– Sede di Cosenza, Via P. Bucci 41C, 87036 Rende, Italy, URL: www.icar.cnr.it
– Sezione di Napoli, Via P. Castellino 111, 80131 Napoli, URL: www.na.icar.cnr.it
– Sezione di Palermo, Viale delle Scienze, 90128 Palermo, URL: www.pa.icar.cnr.it

Process Discovery with Precedence Constraints

Gianluigi Greco1, Antonella Guzzo2, and Luigi Pontieri3

Dept. of Mathematics1 and DEIS2, University of Calabria, 87036, Rende, Italy
ICAR-CNR3, 87036, Rende,Italy

ggreco@mat.unical.it, guzzo@deis.unical.it, pontieri@icar.cnrt.it

Abstract. The automatic discovery of a process model out of a histori-
cal log traces can be of great value for both analysis and design tasks, and
is a major goal of Process Mining approaches. A key step in discovering
such a model consists in detecting a graph of causal/precedence depen-
dencies over process activities – which can be possibly used to eventually
derive more expressive control-flow (e.g., Petri-net based) models. To this
end, most of current approaches exploit greedy heuristics and discard a-
priori some dependencies assuming that the given log is complete (i.e.,
it covers the possible behavior of the process) – so risking to be ineffec-
tive when working with high-concurrency processes and with noisy and
temporally-biased logs. Despite the usage of a-priori knowledge could im-
prove the effectiveness, efficiency and robustness (w.r.t. incomplete/noisy
data) of dependency mining algorithms, it has been given little attention
so far. This paper fills the gap by proposing a constraint-based process
discovery framework, where background knowledge can be encoded via
precedence constraints, while the search of dependencies can be encoded
as either a constraints satisfaction or a constraints satisfaction optimiza-
tion problem. The computational complexity of such problems is studied
deeply, and their tractability frontier is traced w.r.t. the different classes
of constraints involved. The whole approach has been implemented in
a prototype system, leveraging on a solid constraint programming plat-
form, and tested on both synthesized and real log data.

1 Introduction

1.1 Mining Causal Dependencies

Process mining has recently emerged as a powerful approach to support the
analysis and the design of complex business processes [40]. By analyzing a set
of traces registering the sequence of tasks performed along several enactments
of a transactional system, the goal of process mining1 techniques is to (semi-
)automatically derive a model explaining all the episodes recorded in it. The

1 To be more precise, such a task should be named process discovery, while leaving
the expression process mining for referring to the more general problem of analyzing
the behavior of a process by taking advantage of historical log data. However, with
an abuse of notation, the two expression will be used interchangeably in the paper.

“mined” model can then be used to design a detailed process schema capable of
supporting forthcoming enactments, or to shed light on its actual behavior.

No matter of the specific process-oriented features being supported (such
as synchronization and branching constructs, duplicate tasks, and or invisible
tasks), the basic ability of any process mining algorithm is to single out the
causal dependencies that are likely to hold among the activities occurring in the
log. Indeed, process mining algorithms can be abstractly seen as sequentially
carrying out two different sub-tasks: First, they analyze the log and apply some
form of reasoning to learn such causal dependencies, often presented in form of
log-based ordering relations [42, 40]. Then, they exploit the knowledge thereby
acquired within mining algorithms that take into account advanced facets of
process enactments [9, 26, 35, 34, 39, 22], and return process models formalized
in expressive modeling languages (such as Petri nets [43] or event driven process
chains EPCs [38, 23]).

In this paper, we focus on the former of the two tasks above, by elaborat-
ing techniques to mine causal dependencies from process logs. Accordingly, the
output of such techniques are not (full) process models, but dependency graphs,
that is, directed graphs whose nodes one-to-one correspond with the activities
and such that an edge from an activity a to an activity b means that, in some
enactment, we expect (based on the logs) that an actual flow of information
can occur from a to b. For example, the graphs G1 and G2 in Figure 1 are two
possible dependency graphs that one can associate with the traces abcde and
acbde. Instead, the graph G0 does not properly reflect the flow associated with
the trace acbde, where b is actually executed after c.

Dependency-graph discovery is a challenging problem in the case of concur-
rent processes, as traces flatten all the information related to the execution of
“parallel” activities. Indeed, in the period of time elapsing between the execu-
tion of two activities, with one requiring some output produced by the other, the
system may well register the execution of other activities involved over different
branches of the process. Eventually, the fact that an activity always precedes
another over the given traces does not necessarily witness a causal dependency
between them. For example, from the fact that b precedes d in the two traces
abcde and acbde, we cannot infer that b is a pre-requisite for the execution of d:
In principle, b can be an activity executed over a different branch and without
any causal dependency with d (as it is modeled in the graph G2).

As a matter of fact, several dependency graphs can in general be associated
with a log given as input, and there are two complementary approaches that can
be used to select the most appropriate one among them:

– On the one hand, one may design algorithms under the assumption that logs
are complete, i.e., that they register all the possible traces for the underlying
process. In this case, if an activity always precedes another, then we shall
discard those dependency graphs where such activities are executed over
different branches. For instance, if abcde and acbde are the only possible
traces for the process, then b and d are not parallel activities and the control
flow graph G2 has to be filtered out.

2

– On the other hand, one may avoid any assumption on the logs and think,
instead, of exploiting some additional, semantic, knowledge that, in many
cases, can be acquired by analyzing the given process from a conceptual
viewpoint. For example, by a-priori knowing that b and d are parallel ac-
tivities, we can discard G1 as a possible dependency graph, even though no
trace is given where d actually occurred before b.

Log completeness has received considerable attention in the literature, and
it is a crucial assumption under which a number of dependency mining methods
can be proven to be correct, i.e., to be able of precisely recognizing all underlying
relationships of precedence [42, 40]. In fact, dependency discovery is often carried
out via heuristics approaches, for which the quality of the resulting graphs grows
with the fraction of the traces given at hand over all possible traces for the
process. It follows that the quality can be rather poor in those cases where logs
are far from being complete due to the following reasons.

Temporal bias: First, two parallel activities may appear in the same order over
all log traces, simply because one of them always finishes after the other, due
to a different duration of them or of some of their predecessor activities. For
instance, even if the underlying process conforms with the schema G2, we
may find no trace where d occurs before b, just because c is time consuming,
so that b is always completed before that d starts.

Combinatorial explosion: Second, log completeness might not hold just be-
cause the process has not been enacted for a sufficient number of times.
Indeed, the number of possible traces grows exponentially w.r.t. the number
of activities that can be executed in parallel. For instance, for a process with
n branches each one involving m activities, we have more than n!m possible
traces. Thus, for real life processes (even with just two branches and about
20 activities), the number of combinations immediately leads to more than
one billion of enactments, which in many application domains are unrealistic.

Last but not least, another, somewhat related, issue that has not given atten-
tion in process mining community is the possibility for the user to express declar-
atively preference/optimality criteria for the model searched. To the best of our
knowledge, indeed, such criteria are typically stated in a fixed (non-parametric
and implicit) way in current techniques.

1.2 Contribution

Despite the limitations illustrated above and affecting those algorithms that are
based on the log-completeness assumption, it is surprising to observe that very
few efforts have been spent to study the complementary approach of exploiting
background knowledge in the discovery of causal precedences [14, 7, 16]. In fact,
the use of background knowledge to improve the quality of the results—and even
the scalability of the algorithms—has already been considered in a number of
traditional data mining tasks (on relational data and on sequence data), such as

3

pattern mining [37, 50, 12, 27, 36, 31, 18] and clustering [46, 24, 21, 10]. However,
such techniques have not found yet a counter-part in the process mining setting.

In this paper, we fill the gap by formulating a constraint-based process mining
framework that can take advantage of possibly available background knowledge
in order to circumvent the lack of raw data emerging when log completeness
does not hold. In more detail:

– We propose a formal framework to specify additional properties on the de-
pendency graphs that can be produced as output by process mining algo-
rithms, in terms of precedence constraints on the available activities. Hence,
we define discovery problems comprising a learning task (dependency graph
mining) and a reasoning task (to check whether the resulting graphs satisfy
the precedence constraints defined by the analysts).

– We show that precedence constraints are expressive enough to encode the
core of the mining task. That is, we show that even the learning task can be
declaratively formulated in terms of reasoning about precedence constraints,
thus leading to a common environment where the two tasks are synergically
combined and might be simultaneously carried out. Moreover, when the dis-
covery of a dependency graph is formulated as an optimization problem with
parametric costs, the analyst is allowed to have a say in the criterion used
for choosing a solution among a set of possible ones, and to possibly express
fine-grain preferences on structural properties of the result.

– We analyze the computational complexity of the proposed setting, by taking
into account various qualitative properties regarding the kinds of constraint
being allowed, and by tracing the tractability frontier for w.r.t. them.

– We show that all the problems of interest when reasoning about precedence
constraints can actually be encoded in terms of “standard” constraints sat-
isfaction problems. This paves the way to reuse existing constraint program-
ming platforms, and transparently exploit their sophisticated solution algo-
rithms allowing them to scale over large datasets, as their recent application
in data mining contexts have already demonstrated [12, 27].

– We implement all the techniques discussed in the paper and integrate them
in a prototype system. Based on the above mappings, the task of reasoning
about precedence constraints is delegated to a well-known constraint solver
system available in the literature.

– Finally, we conducted experimental activity in order to validate the effec-
tiveness of the proposed approach, and its scalability over large data sets.

Organization. The rest of the paper is organized as follows.

2 Preliminaries: Process Logs and Dependency Graphs

Process-aware systems usually store information on process enactments by trac-
ing events related to the execution of the various activities. Abstracting from the
specificity of the systems, we recall next a representation of process logs which
is commonly adopted in the process mining literature (see, e.g., [42, 17]).

4

Fig. 1. Dependency graphs in the running example.

Logs of Acyclic Processes. Let A be an alphabet of symbols, univocally
identifying the activities of some underlying process. A process instance I overA
is a directed acyclic graph (V,E) with V ⊆ A and where a distinguished activity
a⊥ ∈ V exists from which every other activity can be reached—intuitively, a⊥
is the starting activity for the enactment of I. A trace t is a string over A,
and hence has the form t[1]t[2]...t[n], with t[i] ∈ A being an activity for each
i ∈ {1, ..., n}. If t is a topological sort of the process instance I, then t is called a
trace of I, denoted by I ⊢ t; in this case, t does not contain multiple occurrences
of the same activity, i.e., t[i] 6= t[j], for each i 6= j. A log L is a multi-set of
traces. For a log L, A(L) is the set of all the activities occurring over the traces
in L. W.l.o.g., we hereinafter assume that t[1] = a⊥, for each trace t ∈ L.

In process mining applications, a log L is given and the goal is to automati-
cally derive a process model supporting the enactment of its traces. Several algo-
rithms have been proposed to this end (see [40] and the references therein). No
matter of the modeling language they adopt, one of their crucial abilities is to
discover causal precedences among activities in A(L). Such precedences can be
smoothly encoded via directed graphs as follows (cf. [1]).

Definition 1 (Support) Let L be a log, where no trace contains multiple oc-
currences of the same activity. Then, a graph G = (V,E) supports L, denoted by
G ⊢ L, if for each trace t ∈ L, there is a subgraph I of G such that I is a process
instance over A(L) and I ⊢ t. 2

Example 1. Consider the trace t0 = abcde over the set of activities A({t0}) =
{a, b, c, d, e}. Then, it is easily checked that the graphs G0, G1, and G2 graphically
reported in Figure 1 are such that G0 ⊢ {t0}, G1 ⊢ {t0}, and G2 ⊢ {t0}. �

Arbitrary Logs. A string t containing multiple occurrences of the same activity
cannot be a trace of any process instance I, as I is acyclic. Thus, if the underlying
process involves loops, we need a mechanism to virtually unfold them.

For each trace t, let t̄ denote the trace obtained from t by substituting,
with the fresh (virtual) activity a〈i〉, the i-th occurrence in t of any activity a.

5

Moreover, for a log L, let L̄ = {t̄ | t ∈ L}. Then, we say that a graph G = (V,E) is
the folding of a graph Ḡ = (V̄ , Ē) with V̄ = A(L̄) if V = {a | a〈i〉 ∈ V̄ } = A(L)
and E = {(a, b) | (a〈i〉, b〈j〉) ∈ Ē}.

Definition 2 Let L be a log. Then, a dependency graph (CFG) G for L is the
folding of a graph Ḡ such that Ḡ ⊢ L̄. 2

Note that acyclic dependency graphs for L exist if, and only if, L contains no
trace with repetitions of activities. Moreover, G is an acyclic dependency graph
for L if, and only if, G ⊢ L.

Example 2. The graphs G0, G1, and G2 are dependency graphs for {t0}. Instead,
they are not dependency graphs for {t1}, with t1 being the trace abcdcde. Indeed,
these graphs are acyclic while c and d occur twice in t1. Note now that the
trace t̄1 is the string a〈1〉b〈1〉c〈1〉d〈1〉c〈2〉d〈2〉e〈1〉, which is a topological sort of
the acyclic graph Ḡ = (V̄ , Ē) with V̄ = A({t̄1}) and where Ē = {(a〈1〉, b〈1〉),
(a〈1〉, c〈1〉), (d〈1〉, c〈2〉), (c〈2〉, d〈2〉), (b〈1〉, d〈2〉), (d〈2〉, e〈1〉)}. Thus, Ḡ ⊢ {t̄1}.
Eventually, note that the graph G3 depicted in Figure 1 is the folding of Ḡ. It
follows that G3 is a dependency graph for {t1}. �

3 Precedence Constraints

In this section, we formalize syntax and semantics of precedence constraints, dis-
cuss their application to the problem of mining dependency graphs, and analyze
the computational complexity of the resulting framework.

3.1 Syntax and Semantics

Let A be a set of activities. A precedence constraint over A is an assertion aimed
at expressing a relationship of precedence among some of the activities in A. To
define the syntax, we distinguish positive and negative constraints. A positive
constraint π is either an expression of the form S → a (called edge constraint),
or an expression of the form S a (called path constraint), where S ⊆ A, with
|S| ≥ 1, is a non-empty set of activities and a ∈ A \ S is an activity. For a
positive constraint π, ¬π is a negative precedence constraint.

Precedence constraints are interpreted over directed graphs as follows. Let
G = (V,E) be a directed graph such that V ⊆ A and E ⊆ A×A. Then,

(1) G satisfies an edge constraint S → a, if there is an activity a0 ∈ S such that
(a0, a) ∈ E;

(2) G satisfies a path constraint S a, if there is a sequence of activities
a0, a1, ..., an = a, with n > 0, such that a0 ∈ S and (ai, ai+1) ∈ E, for
each 0 ≤ i < n;

(3) G satisfies a negated constraint ¬π, if G does not satisfy π.

6

The graph G satisfies a set Π of precedence constraints and is called a model
of Π , denoted by G |= Π , if G satisfies each constraint in Π .

A foundational task in process mining, which is at the basis of a number of
more elaborate mining techniques, consists of automatically building a depen-
dency graph G for some log L given as input [1, 40]. In this context, precedence
constraints can be naturally exploited to formalize additional requirements that
dependency graphs discovered from L have to satisfy. This gives rise to the
following two problems, where we explicitly distinguish the variant where the
desired dependency graph is required to be acyclic.

DG-Mining: Given a log L and a set Π of precedence constraints over A(L),
compute any dependency graph G for L such that G |= Π .

Acyclic-DG-Mining: Given a log L and a setΠ of precedence constraints over
A(L), compute any acyclic dependency graph G for L such that G |= Π .

Note that for Π = ∅, the problems above reduce to the standard ones con-
sidered in the literature [?].

Example 3. Consider the set Π0 = { ¬({b} c),¬({b} d)} of precedence
constraints, stating that b and d are “parallel” activities. Then, consider the
trace t0 = abcde of Example 1 and the graphs in Figure 1. Note that G2 is a
model of Π0, while G0 and G1 are not as they violate the constraint ¬({b} → d).
Thus, G2 is a solution to DG-Mining (on input {t0} and Π0). In fact, it is also
solution to Acyclic-DG-Mining. �

3.2 Dependency Graph Mining

The problems defined above comprise a learning task (dependency graph min-
ing) and a reasoning task (to check whether a graph satisfies precedence con-
straints). In fact, we next show that even the learning task can be declaratively
formulated in terms of reasoning about precedence constraints, thus defining a
common framework where the two tasks are synergically combined and might
be simultaneously carried out. The basic idea is to characterize the notion of
support (in Definition 1) in terms of precedence constraints.

Definition 3 (From traces to specifications) Let L be a log, and for each
trace t[1]...t[n] ∈ L, let π(t) = { {t[1], ..., t[i− 1]} → t[i] | 1 < i ≤ n }. Then, the
set π(L) of the precedence constraints associated with L is

⋃

t∈L π(t). 2

Intuitively, we just state that each activity in the trace t can be directly
reached be at least one of its predecessors in t. This suffices to precisely charac-
terize the notion of dependency graph, as illustrated below. We start with the
case of processes with no loops.

Proposition 4 Let L be a log where no trace contains multiple occurrences of
the same activity. Let G be a graph (resp., acyclic graph) over A(L), and Π be
a set of precedence constraints over A(L). Then, the followings are equivalent:

7

(1) G is a solution to DG-Mining (resp., Acyclic-DG-Mining) on input L
and Π.

(2) G |= π(L) ∪Π.

Proof. Recall first that G is a solution toDG-Mining andAcyclic-DG-Mining

if G ⊢ L, as the notion of folding is immaterial for logs where no trace contains
multiple occurrences of the same activity (see Definition 2).

(1)⇒(2). Assume now that (1) holds, i.e., G ⊢ L and G |= Π . In particular,
for each trace t[1]...t[n] ∈ L, there is a subgraph I of G such that I = (V,E) is a
process instance over A(L) and I ⊢ t. Let i ∈ {2, ..., n}, and notice that there is
a path from t[1] in t[i], by definition of process instance. It follows that there is
an edge of the form (t[j], t[i]) ∈ E. If j < i, then we conclude that the constraint
π(t) is satisfied by G. Otherwise, it must be the case that j > i. However, this is
impossible as t is a topological sort of I. Hence, G |= π(t), for each trace t ∈ L.
Thus, G is also a model for π(L), and hence G |= π(L) ∪Π .

(2)⇒(1). To complete the proof, assume now that (2) holds. We have to
show that G ⊢ L holds. Let G be the graph (V,E). Let t[1]...t[n] be a trace in L,
and let Gt = (Vt, Et) be the graph such that Vt = A({t}) and Et = {(t[i], t[j]) ∈
E | i < j}. Of course, Gt is acyclic, and t is actually a topological sort of Gt by
construction. We now claim that each activity in t[i] ∈ Vt \ {t[1]} can be reached
from t[1]. This is shown by induction on the index i > 1. In the case case where
i = 2, (t[1], t[2]) must belong to Gt in order to satisfy the constraint {t[1]} → t[2]
in π(t). Then, assume that activities t[2], ..., t[i − 1] can be reached from t[1].
Then, because of the constraint {t[1], ..., t[i − 1]} → t[i] in π(t), we again have
that t[i] can be reached from t[1] as well. It follows that Gt is a process instance
over A(L) such that Gt ⊢ t, for each trace t ∈ L. That is, G ⊢ L. 2

Example 4. Let Π0 be the set of constraints defined in Example 3, and let
π(abcde) be the set of constraints associated with the trace abcde in Example 1.
Combining the two sets of constraints in the novel set Π ′

0 = π(abcde) ∪Π0, we
have that G2 is a model of Π ′

0. Thus, by Corollary 4, G2 is a dependency graph
for {abcde} and satisfy Π0. �

In the case of arbitrary logs, the mapping is established via the concept of
folding as a simple extension of the above result.

Corollary 5 Let L be a log, G be a graph over A(L), and Π be a set of precedence
constraints over A(L). Then, the followings are equivalent:

(1) G is a solution to DG-Mining on input L and Π.
(2) G |= Π and G is the folding of a graph Ḡ such that Ḡ |= π(L̄).

Proof. In the light of Definition 2, we need to show that: G is a folding of Ḡ such
that Ḡ ⊢ L̄ and G |= L ⇔ G is a folding of Ḡ such that Ḡ |= π(L̄) and G |= Π .
Then, the result immediately follows by applying Proposition 4 on the log L̄. 2

8

3.3 Complexity Analysis and Qualitative Restrictions

We now turn to study the computational complexity of the the problems DG-

Mining and Acyclic-DG-Mining, which is a necessary step for developing
effective algorithms for their solution. In the analysis, we take into account var-
ious qualitative properties regarding the kinds of constraint being allowed, by
tracing the tractability frontier for w.r.t. them.

Let S be a subset of the following set of symbols {→, , 6→, 6 }. Moreover, let
C[S] denote all the possible sets of constraints that can be built over an underling
set A of activities such that if →6∈ S (resp., 6∈ S, 6→6∈ S, 6 6∈ S), then no edge
(resp., path, negated edge, negated path) constraint is in C[S]). Eventually, let us
denote by DG-Mining[S] and Acyclic-DG-Mining[S] the restrictions of the
two problems over any set of precedence constraints Π such that Π ⊆ C[S].

Then, our results can be summarized as it is stated next (see also Figure 2)—
for the sake of readability, the proof is deferred to the Appendix.

Theorem 6 The following dichotomies hold:

• If S ⊆ {6 }, then Acyclic-DG-Mining[S] is feasible in P. Otherwise, the
problem is NP-hard.

• If S ⊆ {→, , 6→}, then DG-Mining[S] is feasible in P. Otherwise, the prob-
lem is NP-hard.

Note that the decision version of the problems DG-Mining[S] and Acyclic-

DG-Mining[S] can be easily shown to be in NP, no matter of S. Indeed, as the
size of any solution G (resp., and of a graph Ḡ of which G is a folding) is poly-
nomially bounded, we have just to prove that deciding whether G is actually a
solution is feasible in polynomial time. In fact, by Corollary 5 (resp., Proposi-
tion ??), this can be reduced to verify whether G (resp., Ḡ) is a model of a
certain set of precedence constraints, which is of course in P.

4 Cost-Based Process Mining

In many applications, computing an arbitrary dependency graph is not enough.
Indeed, one might often like to focus on those graphs that are minimal w.r.t.
some (reflexive and transitive) order “�” over the set of all the possible graphs.

Formally, a solution G to DG-Mining (resp., Acyclic-DG-Mining) is said
�-minimal if, for each other solution G′ to DG-Mining (resp., Acyclic-DG-

Mining), it holds that G � G′. The above problems, where moreover �-minimal
solutions are to be computed, will be hereinafter denoted by Acyclic-DG-

Mining� and Acyclic-DG-Mining�, respectively.

Noticeable Examples. Let A be a set of activities. Assume that a weighting
function w : A ×A 7→ R is given, which associates a value w(e) ∈ R with each
element e ∈ A×A. Let G = (V,E) and G′ = (V ′, E′) be two directed graphs over
A. Then, we write G ⊑w G′ if, and only if,

∑

e∈E w(e) ≤
∑

e′∈E′ w(e′). Thus, we
look for graphs having associated the minimum total weight for their edges.

9

Fig. 2. Tractability Frontiers. A set S ⊆ {→, , 6→, 6 } above (resp., below) the frontier
means that the corresponding problem is NP-hard (resp., in P) on the class C[S].

As a very simple weighting function, one might consider the constant function
1 : A×A 7→ {1} assigning unitary weight to each element in A×A. Then, ⊑1-
minimal solutions are constituted by the minimum possible number of edges.

In practice, however, functions adopted in process mining applications assign
weights to the various edges based on some statistical information that can be
gathered from the input log L, and then filter those edges whose weights are
below some given threshold. Let h : A×A 7→ R be a heuristic function expressing
how likely is the existence of an edge, with 0 ≤ h(e) ≤ 1, for each e ∈ A × A.
Then, the weighting function induced by h, denoted by hσ,M (where 0 ≤ σ ≤ 1
is a real number and M > 1 is real number), is such that:

hσ,M (ai, aj) =

{

1− h(ai, aj) if h(ai, aj) > σ
M otherwise

For example, inspired to [48, 47, 2], we can define the function hmσ,M based
on the heuristics hm(ai, aj) = D(ai, aj)/|{t ∈ L | ai = t[k]}|, where

D(ai, aj) =
∑

t∈L|ai=t[h]∧aj=t[k]∧h<k

δ
k−h−1 −

∑

t∈L|ai=t[k]∧aj=t[h]∧h<k

δ
k−h−1

,

and where 0 < δ < 1 is a real number. In words, for each trace t[1]...t[n],D(ai, aj)
is incremented of a factor δk−h−1 if ai occurs k − h positions before aj , and
decremented of the same factor (in absolute value) if ai occurs k − h positions
before aj . Note that both the positive and the negative factors exponentially
decrease at the growing of the distances between ai and aj in the traces.

10

Example 5. Consider again the setting of Example 1. Then, it is easily seen that
G3 6⊑1 G2 and G3 6⊑1 G1. Moreover, note that G1 ⊑1 G2 and G2 ⊑1 G1 hold (i.e.,
these graphs are equivalent w.r.t. the given order).

Consider the log formed by the trace t0 only. Then, the graph G1 = (V1, E1)
is such that

∑

e∈E1
hm0,M (e) = 4− 4× δ0 = 0, while the graph G2 = (V2, E2) is

such that
∑

e∈E2
hm0,M (e) = 5− 3 × δ0 − 2 × δ1 = 2 × (1 − δ). It follows that

G1 ⊑hm0,M
G2, no matter of M (and δ). �

Complexity. Hardness results for the problems DG-Mining and Acyclic-

DG-Mining immediately entail the intractability of computing solution that
optimize some given minimality condition. However, it has to be addressed the
question about whether focusing on �-minimal models makes the problem any
harder. The result below evidences that this is actually the case, and that in-
tractability emerges even in absence of further constraints.

Theorem 7 DG-Mining�[∅] and Acyclic-DG-Mining�[∅] are NP-hard, even
if � is the order ⊑hmσ,M

.

Proof. Let S = {e1, ..., en} be a set of items, and let C = {c1, ..., cm} be a
collection of subsets of S, i.e., ci ⊆ S for each 1 ≤ i ≤ m. A hitting set for C
over S is a subset S′ ⊆ S such that S′ ∩ ci 6= ∅, for each 1 ≤ i ≤ m. Computing
a hitting set with minimum cardinality is a well-known NP-hard problem, even
if each subset ci ∈ C contains exactly three elements [15].

Based on S and C, we build the log L(S,C) = {asah1
ah2

ah3
at, asah1

ah3
ah2

at,
asah2

ah1
ah3

at, asah2
ah3

ah1
at, asah3

ah1
ah2

at, asah3
ah2

ah1
at, | ci = {h1, h2, h3} ∈

C} over the activities A(L) = S ∪ {as, at}. Observe now that hm(as, at) = δ3

and that hm(ah, at) = (2+2× δ+2× δ2)/6, for each ah ∈ S. Let σ = δ3 so that
hmσ,M (as, at) = δ3 = M , and define M = 3×m× (2 + 2× δ + 2× δ2)/6 + 1 so
that hmσ,M (as, at) > 3×m× hmσ,M (ah, at), for each ah ∈ S.

Let G = (V,E) be a⊑hmσ,M
-minimal dependency graph with V = A(L(S,C))

such that G ⊢ L. By construction of L(S,C) and of the weighting function, E
is such that (as, at) 6∈ E and E ⊇ {(as, ah) | ah ∈ S}. Thus, for each subset
ci = {h1, h2, h3} ∈ C, E must contain at least an edge in the set {(ah1

, at),
(ah2

, at), (ah3
, at)}. No further edge is in E.

From the properties above, it immediately follows that {h | (ah, at) ∈ E} is
a hitting set for C. Moreover, since hmσ,M (ah, at) = hmσ,M (ah′ , at), for each
pair of distinct sets h and h′, we also have that hitting sets with minimum car-
dinality one-to-one correspond with dependency graphs with minimum weight.
Hence, DG-Mining�[∅] is NP-hard. Eventually, the NP-hardness of Acyclic-

DG-Mining�[∅] just follows from the observation that dependency graphs as-
sociated with hitting sets having minimum cardinality are acyclic. 2

5 Process Mining via Constraint Programming

The complexity analysis we have conducted evidenced that polynomial time algo-
rithms are unlikely to exists for the problem of computing models (and minimal

11

models) of sets of precedence constraints. This bad news calls for very sophis-
ticated solution approaches that perform well in practice, and which possibly
integrate heuristic methods to speed up the computation.

In this section, we propose to encode precedence constraints in terms of
“standard” constraints satisfaction problems (short: CSPs) and to reuse existing
constraint programming platforms to compute models of them. Indeed, such
platforms have been developed to solve NP-hard problems declaratively specified
in terms of CSPs, and embody sophisticated solution algorithms allowing them
to scale over large datasets, as their recent application in data mining contexts
have already demonstrated [12, 27].

5.1 Constraint Satisfaction Problems

Constraint programming is a declarative programming paradigm where users are
just in charge of specifying the problem at hand in terms of a constraint satis-
faction problem, instead of formalizing the steps needed for its solution. Con-
straint programming systems exploit, indeed, general search mechanisms (such
as backtracking) enriched with powerful speed-up methods (such as constraint
propagation techniques) in order to find a solution starting with such declarative
specification [4].

Formally, a CSP instance is a triple (Var , U, C), where Var = {X1, ..., Xm}
is a finite set of variables, U is a function mapping each variable Xi ∈ Var to
a domain U(Xi) of values, and C is a finite set of constraints. In particular, a
constraint C(Xi1 , ..., Xin) is a Boolean function from the variables {Xi1 , ..., Xin}.
Let θ be an assignment for the CSP, that is, a function mapping each variable
to an element of its domain so that θ(Xj) ∈ U(Xj) holds for each Xj ∈ Var .
We say that θ satisfies the constraint C(Xi1 , ..., Xin) ∈ C if C(θ(Xi1), ..., θ(Xin))
evaluates true. Moreover, we say that θ is a solution to the instance (Var , U, C)
if it satisfies all the constraints in C.

Various kinds of constraints are supported by constraint programming sys-
tems in the literature. To our ends, we just need to consider two kinds of con-
straints defined over binary domains. Let X1, ..., Xn be n variables in Var , let
U(Xi) = {0, 1}, and let w1, ..., wn, γ be n+ 1 real numbers. Then,

(1) A summation constraint is an expression of the form
∑n

i=1 wi × Xi ≥ γ.
The constraint is satisfied by an assignment θ if

∑n

i=1 wi × θ(Xi) ≥ γ holds.
(2) A reified (summation) constraint is an expression of the form

∑n
i=1 wi×Xi ≥

θ ↔ X , where X is a variables such that U(X) = {0, 1}. The constraint is
satisfied by an assignment θ if

∑n

i=1 wi × θ(Xi) ≥ γ holds if, and only, if
θ(X) = 1.

Example 6. Consider the problem of placing n queens on (the n rows of) a
chessboard so that no queen can capture any other queen. This problem can be
formalized as a constraint satisfaction problem (Var , U, C) as follows. The set
Var contains a variable Qi,j , for each 1 ≤ i, j ≤ n, such that U(Qi,j) = {0, 1}.
Intuitively, Qi,j mapped to 1 (resp., 0) denotes that a queen is places (resp., not
placed) in the i-th row and the j-th column off the chessboard. The set C contains

12

Input: A set Π of precedence constraints over A = {a1, ..., an}, and
the type ∈ {arbitrary, acyclic} of the problem;

Output: A CSP instance (Var , U, C);

1. let Var = {e[ai, aj], p[ai, aj]
ℓ, p[ai, ak, aj]

ℓ | ai, aj , ak ∈ A, ℓ ∈ {1, ..., n}};
2. let U(X) = {0, 1} for each X ∈ Var ;
3. let C = ∅;
4. for each edge constraint S → aj in Π do

C := C ∪ {
∑

ai∈S e[ai, aj] ≥ 1};

5. for each path constraint S aj in Π do

C := C ∪ {
∑

ai∈S p[ai, aj]
n ≥ 1};

6. for each negated edge constraint ¬S → aj in Π do

C := C ∪ {e[ai, aj] = 0 | ai ∈ S};
7. for each negated path constraint ¬S aj in Π do

C := C ∪ {p[ai, aj]
n = 0 | ai ∈ S};

8. if type=acyclic then

C := C ∪ {p[ai, aj]
n + p[aj , ai]

n ≤ 1 | {ai, aj} ⊆ A};
9. for each pair of distinct activities ai and aj do

C := C ∪ {e[ai, aj] ≥ 1 ↔ p[ai, aj]
1};

C := C ∪ {e[ai, ak] + p[ak, aj]
ℓ−1 ≥ 2 ↔ p[ai, ak, aj]

ℓ | ak ∈ A, ℓ ∈ {2, ..., n}};
C := C ∪ {

∑
k
p[ai, ak, aj]

ℓ ≥ 1 ↔ p[ai, aj]
ℓ | ℓ ∈ {2, ..., n}};

10. return (Var , U, C);

Fig. 3. Algorithm PCtoCSP.

the following summation constraints (where equalities are used as a syntactics
shorthand, for they are equivalently rewritable in terms of inequalities):







∑n

i=1 Qi,j = 1, ∀1 ≤ j ≤ n
∑n

j=1 Qi,j = 1, ∀1 ≤ i ≤ n

Qi,j +Qi′,j′ ≤ 1, ∀1 ≤ i, j, i′, j′ ≤ n such that |i − i′| = |j − j′|

As an example, for n = 3 the problem does not admit solutions. Instead, for
n = 4, a solution is the assignment θ where θ(Qi,j) = 1 if, and only if, (i, j) ∈
{(1, 3), (2, 1), (3, 4), (4, 2)}. �

5.2 CSP Encoding for Precedence Constraints

Now that we have introduced the framework of constraint satisfaction problems,
we shall show how the satisfiability of precedence constraints can be restated in
terms of CSPs.

Let Π be a set of constraints over a set A = {a1, ..., an} of activities. Figure 3
illustrates an algorithm, named PCtoCSP, to encode Π into a CSP instance
(Var , U, C). The instance is such that Var contains an “edge” variable (denoted
as e[ai, aj]) and n+ n2 “path” variables (denoted as p[ai, aj]

ℓ and p[ai, ak, aj]
ℓ,

with ak ∈ A and ℓ ∈ {1, ..., n}) for each pair ai and aj of (not necessarily
distinct) activities in A. All variables are defined over the binary domain {0, 1}.
In particular, p[ai, aj]

ℓ is meant to denote the existence of a path involving ℓ
edges at most, while p[ai, ak, aj]

ℓ is meant to encode the existence of a path
of length ℓ at most and involving the node ak (possibly coinciding with an
endpoint).

Steps 4, 5, 6, and 7 in the algorithm in Figure 3 encode in a straightforward
manner edge, path, negated edge, and negated path constraints of Π , respec-
tively. As an example, for each edge constraint S → aj in Π , the constraint

13

∑

ai∈S e[ai, aj] ≥ 1 is added to C stating that at least one of the edge variables
from an activity in S to aj must be mapped to 1. Step 8 is responsible of en-
forcing acyclicity whenever the input parameter type is acyclic; indeed the
constraint states that for each pair of distinct activities ai and aj , at most one
path variable in {p[ai, aj]n, p[aj, ai]n} can be set to 1. Finally, in step 9, it is
enforced that p[ai, aj]

n can be mapped to 1, if and only if, e[ai, aj] is mapped
to 1 or there is an intermediate activity ak with e[ai, ak] + p[ak, aj]

n−1 ≥ 1. Of
course, the definition is recursive, and is explicitly unfolded in the encoding as
the maximum length of any path is n. The base case is for variables of the form
p[ai, aj]

1, whose value coincides with that of the corresponding edge variables.
The crucial property of the transformation in Figure 3 is next pointed out.

For a solution θ to the CSP (Var , U, C) computed by PCtoCSP (on input Π
and type), let Gθ = (A, E) be the graph such that (ai, aj) is in E if, and only
if, θ(e[ai, aj]) = 1.

Theorem 8 Let Π be a set of precedence constraints over A, and let (Var , U, C)
be the CSP instance computed by the algorithm PCtoCSP on input Π and
type. Then:

– Let θ be a solution to (Var , U, C). Then, Gθ |= Π. Moreover, if type=acyclic,
then G is acyclic.

– Let G be a graph (resp., acyclic graph) such that G |= Π. Then, for type=arbitrary

(resp., type=acyclic), there is a solution θ to (Var , U, C) such that G = Gθ.

Proof. Let θ be a solution to (Var , U, C), and let G = (A, E) be the graph such
that (ai, aj) is in E if, and only if, θ(e[ai, aj]) = 1. We have to show that G |= Π .
To this end, given the construction in steps 4, 5, 6, and 7, we have just to check
that θ(p[ai, aj]

ℓ) = 1 with ℓ if, and only if, there is a path in G from ai to
aj with ℓ edges at most. In fact, this property trivially holds for ℓ = 1, and
is guaranteed by the inductive construction of the constraints added in step 9.
Finally, if type=acyclic, then the constraints added in step 8 guarantee that
the graph G is acyclic.

For the converse, let G be a graph such that G |= Π . Consider the assignment
θ such that, for each 1 ≤ i, j, k ≤ n: (1) θ(e[ai, aj]) = 1 iff (ai, aj) is in E; (2)
θ(p[ai, aj]

ℓ) = 1 iff there is a path from ai to aj in G with length ℓ at most;
and (3) θ(p[ai, ak, aj]

ℓ) = 1 iff there is a path form ai to ak with length ℓ at
most and passing over the node ak. Then, it is easily seen that θ satisfies all the
constraints in C (in particular the constraints in step 8 are satisfied if G is an
acyclic graph, and type=acyclic), i.e., that θ is a solution. By construction,
G = Gθ. 2

By combining Theorem 8 and Proposition 4 (on page 7), we get that PC-

toCSP is an effective method to discover acyclic dependency graph supporting
some given input log and conforming some given high-level specifications.

Corollary 9 Let L be a log where no trace contains multiple occurrences of the
same activity. Let G be a graph (resp., acyclic graph) over A(L), and Π be a set
of precedence constraints over A(L). Then, the followings are equivalent:

14

Input: A log L, a set Π of precedence constraints over A(L) = {a1, ..., an}, and
the type of the problem;

Output: A CSP instance (Var , U, C);

1. let (Var1 , U1, C1) be the output of PCtoCSP(π(L̄),acyclic);
2. let (Var2 , U2, C2) be the output of PCtoCSP(Π,type);
3. let Var = Var1 ∪Var2 ∪ {eProjected[ai, aj] | ai, aj ∈ A};
4. let U(X) = {0, 1} for each X ∈ Var ;
5. let C = C1 ∪ C2;
6. for each pair of distinct activities ai and aj do

C := C ∪ {e[ai, aj] ≥ 1 ↔ eProjected[ai, aj]};
C := C ∪ {

∑
h,k

e[ai〈h〉, aj〈k〉] ≥ 1 ↔ eProjected[ai, aj]};
7. return (Var , U, C);

Fig. 4. Algorithm DG-DiscoveryToCSP.

(1) G is a solution to DG-Mining (resp., Acyclic-DG-Mining) on input L
and Π.

(2) G = Gθ where θ is a solution to the CSP computed by PCtoCSP on input
π(L) ∪Π with type=arbitrary (resp., acyclic).

In order to deal with arbitrary dependency graphs, i.e., not necessarily acyclic
ones, we need a slight extension to the algorithm in Figure 3. This extension is
the algorithm DG-DiscoveryToCSP illustrated in Figure 4.

The algorithm receives as input a log L, a set Π of precedence constraints
and a type. It produces a CSP instances that is obtained as the union of the
instances (Var1 , U1, C1) and (Var2 , U2, C2) produced by PCtoCSP on input
(π(L̄),acyclic) and (Π ,type), respectively—see steps 1-5. Eventually, the set
C of constraints is enriched by defining e[ai, aj] ∈ Var2 , for each pair of activities
ai, aj, as the “projection” of the corresponding variables in Var2 , i.e., e[ai, aj] =
1 if, and only if, there is a pair of indices h and k such that e[ai〈h〉, aj〈k〉] = 1,
where e[ai〈h〉, aj〈k〉] ∈ Var2 (step 6).

As with the algorithm PCtoCSP, for a solution θ to the CSP (Var , U, C)
computed by DG-DiscoveryToCSP, let Gθ = (A(L), E) be the graph such
that (ai, aj) is in E if, and only if, θ(e[ai, aj]) = 1. Moreover, let Ḡθ = (Ā(L̄), Ē)
be the graph such that (ai〈h〉, aj〈k〉) is in E if, and only if, θ(e[ai〈h〉, aj〈k〉]) = 1.
Then, the following is easily established.

Proposition 10 Let L be a log, let G be a graph over A(L), and let Π be a set
of precedence constraints over A. Then, the followings are equivalent:

(1) G is a solution to DG-Mining (resp., Acyclic-DG-Mining) on input L
and Π.

(2) G = Gθ where θ is a solution to the CSP computed by DG-DiscoveryToCSP

on input L, Π, and Type=arbitrary (resp., acyclic).

Proof. Note that the constraints in step 6 guarantees that Gθ is the folding of
the graph Ḡθ, for each solution θ. Thus, the result follows from the correctness
of algorithm PCtoCSP (cf. Theorem 8) guaranteeing that Ḡθ |= π(L̄), and by
the application of Corollary 5. 2

15

5.3 Constraint Satisfaction Optimization Problems

In some cases, among all the possible solutions to a CSP instance at hand, we
are interested in the one optimizing some given criterium. This gives rise to a
constraint satisfaction optimization problem (short: CSOP) instance, that is, a
quadruple (Var , U, C, f) where (Var , U, C) is the underlying CSP instance, and
where f is a function assigning an integer f(θ) to each solution θ to (Var , U, C).
A solution θ to the CSOP instance is then a solution to the CSP instance such
that f(θ) ≤ f(θ′), for each other CSP solution θ′.

In several constraint programming systems, the function f can be specified
in terms of a linear minimization constraint—again, we next restrict ourselves
to the special case of binary domains. Let X1, ..., Xn be n variables in Var , let
U(Xi) = {0, 1}, and let w1, ..., wn be n real numbers. Then, a linear minimization
constraint is an expression of the form

∑n
i=1 wi ×Xi. Under this function, the

cost of a CSP solution θ is the value f(θ) =
∑n

i=1 wi × θ(Xi).
By using linear minimization constraints on top of the rewriting in Figure 4,

we may compute ⊑-minimal solutions rather than arbitrary solutions. The cor-
rectness is a simple consequence of Proposition 10 and of the semantics of linar
minimization constraints.

Corollary 11 Let L be a log, let G be a graph over A(L), let Π be a set of
precedence constraints over A, and let w : A(L) × A(L) 7→ R be a weighting
function. Then, the followings are equivalent:

(1) G is a ⊑-minimal solution to DG-Mining⊑ (resp., Acyclic-DG-Mining⊑)
on input L and Π.

(2) G = Gθ where θ is to the CSOP (Var , U, C,
∑

ai,aj
w((ai, aj))× e[ai, aj], and

where (Var , U, C) is the CSP computed by DG-DiscoveryToCSP on input
L, Π, and Type=arbitrary (resp., acyclic).

5.4 Implementation Issues and System Prototype

The whole approach discussed in this section has been implemented in a system
prototype. Figure 5 offers a high-level view of the prototype, where the points
of interaction with the user and the main functional modules are emphasized.

Basically, the system receives two kinds of inputs: a process log and a set of
user-specified precedence constraints. In addition to these fundamental informa-
tion, users are allowed to set a number of parameters to tune both pre-processing
steps and the actual search method of a dependency graph model.

Log data are first processed by the Constraint Extractor module in order to
translate the given traces into a set of precedence constraints (cf. Proposition 10
and Corollary 11), and by the Dependency Evaluator module, which supports
the computation of the weighting functions of Section 4. The set of precedence
constraints can then be refined with the help of the Constraint Filter module
implementing a number of methods, possibly guided by the weighting function,
which are meant to pragmatically restrict the space of admissible dependency

16

Fig. 5. Conceptual architecture of the system prototype.

graphs. The weighting function and the (possibly refined) set of constraints is
then provided as input to the PC-Sat solver module, which reformulates the
discovery problem as a standard CSP or CSOP instance (cf. Section 5) via the
submodules, PC-CSP solver and PC-COSP solver, respectively, and which is in
charge of actually solving them. Of course, these modules takes as an additional
input all user-defined precedence constraints, and return the dependency graph.

All modules mentioned above have been implemented in Java, with the ex-
ception of the PC-SAT solver module, which has been developed in C++.

Solution Algorithms. The computation of the dependency graph that satisfy
all given precedence constraints is carried out by PC-SAT solver module, which
is thus the core of the proposed architecture. This module leverages on the pop-
ular C++ constraint programming library Gecode2, by exploiting its constraint
solving infrastructure. As a basic solution scheme, PC-CSP uses backtracking,
while PC-CSOP uses a branch-and-bound approach. During the exploration,
solution algorithms alternate branching steps, where a value is assigned to some
variables as in standard search methods, and constraint propagation steps (which
is a peculiarity of constraint programming), where different constraints can be
iteratively applied as to shrink the space of the possible dependency graphs and
propagate the consequences of choices made in the previous steps. The PC-SAT
solver module exploits standard Gecode’s propagators for all kinds of constraints
required in our framework. Instead, ad-hoc branchers have been defined. Indeed,
we first branch on the edge variables before considering path variables; and,
among these latter, variables of the form p[ai, aj]

ℓ are always before those hav-
ing the form p[ai, ak, aj]

ℓ.

Heuristics. In order to pragmatically reduce the size of the search space and
speed-up the computation, a number of heuristics have been made available to
the users. We distinguish three kinds of heuristics.

Reducing Redundancy: Users can reduce the level of redundancy in the set
of precedence constraints generated, based on two redundancy management

2 http://www.gecode.org/

17

policies, which found on different notions of constraint subsumption. Accord-
ing to the first notion, a precedence constraint of the form S → a is filtered
out if there is another precedence constraint S′ → a such that S′ ⊃ S. In a
more caution perspective, instead, we filter out S → a if there is addition-
ally a constraint S′′ → a such that S′′ ⊂ S. Notice that this latter (weaker)
notion of redundancy allows for handling effectively the presence of skip-like
control flow structures, where some synchronizing (i.e. join) activity a can
be activated either by an activity in S \ S′′ or, optionally, by an activity in
S ∩ S′′.

Closed World Assumption: In order to reduce the size of the search space,
users can ask for introducing automatically further constraints, based on a
sort of Closed World Assumption (CWA), where an edge (x, y) is not permit-
ted to appear in the model if activity y never follows activity x (directly or
indirectly) in any trace of the log. In the case of unfolding, CWA constraints
are expressed over real activities, rather than on their unfolded versions.

Constraint Size As a crucial parameter for the efficiency of the solution al-
gorithm is the maximum number of elements occurring in the body of each
constraint, a number of heuristics are implemented in order to possibly refine
the computation of the set π(t) of the precedence constraints associated with
the trace t[1]...t[n] (see Definition 3). Specifically, let {t[1], ..., t[i− 1]} → t[i]
be a constraint in π(t). Then,
– A maximal horizon H can be fixed over the number of predecessor ac-

tivities that can be involved in a causal relationship. Thus, we remove
from the body {t[1], ..., t[i− 1]} each activity t[j] such that j < i−H .

– Two thresholds σabs ≥ 0 and σr2b ≥ 0 can be defined acting as lower
bounds for the dependency score associated with a predecessor activity.
The former is an absolute threshold. Thus, we remove any activity t[j]
such that hm(t[j], t[i]) < σabs. The latter is relative to the best score
associated with any predecessor activity—subscript r2b here stands for
“relative to best”, like the heuristics defined in [2]. Thus, we remove any

activity t[j] such that
arg max1≤k<i hm(t[k],t[i])

hm(t[j],t[i]) < σr2b.

– The maximum number Ktop of activities that occur in the body can be
specified. Thus, the set {t[1], ..., t[i − 1]} is filtered by just keeping the
Ktop elements with the highest associated dependency score (w.r.t. t[j]).

Finally, a series of templates are offered to the user in order to easily formulate
some general constraints on the structure of the dependency graph model. These
include the specification of maximal/minimal bounds on the total number of
edges, and on the degree of each node.

6 Experimental Results

This section is meant to illustrate a series of experiments that were conducted,
with the help of the implemented system prototype, in order to assess the validity
and the applicability of our approach. In particular, in order to provide the

18

Fig. 6. Workflow schema for a Product-Recall process.

reader with some intuitive evidence of the practical usefulness of our approach,
we consider, as a representative application scenario, a process concerning the
recall of industry products not satisfying either safety requirements or quality
standards.

Figure 6 shows a workflow model, defined in [25] for such a product recall
process. The workflow is specified in the YAWL modelling language [49] and it
is a variant of one of the official case studies (named “YAWL4ProductRecall”)
of the homonymous workflow management system. By the way, like most work-
flow modelling languages, YAWL allows for specifying the nature of both fork
and synchronization nodes, in addition to formulate basic precedences between
activities in the form of edges. Notice that all fork nodes and join nodes in the
model of Figure 6 are AND-split and AND-join, respectively.

As pointed out in [25], the need of handling product recall operations, while
taking care of traceability and notification issues, arises in a wide variety of real
applications. In particular, the workflow model in Figure 6 was built following
the guidelines for consumer goods safety recalls established by the bi-national
Government agency “Food Standards Australia New Zealand”, and it was vali-
dated against similar guidelines by US and EU public institutions.

The model describes the main activities to be undertaken by a recall sponsor
(usually the manufacturer of a suspect product), in response to a recall incident,
possibly triggered, e.g., by consumer complaints, supplier notifications, or failed
quality tests. The problem reported has to be investigated carefully and a com-
prehensive risk analysis must be done, in order to decide whether the product
should be recalled or not. In the first case, after consulting industry guidelines,
a recall case can proceed along a number of concurrent threads, including the
following tasks: (i) stopping the distribution of the product, (ii) identifying reme-
dies, (iii) arranging the disposal of items already distributed, (iv) keeping records
for subsequent monitoring and analysis purposes, and (v) notifying third par-
ties about the recall. In addition (depending on the kinds of product and of
defect involved), it can be necessary to halt the production of the product and

19

to destroy/modify other products that might have been contaminated. Once all
these recall actions have been completed, a sequence of activities must to be
performed, which ends with the completion of the case. These activities range
from monitoring the effectiveness of the recall process, to implementing suitable
changes to prevent similar problems in the future, to the preparation of reports
for regulatory authorities and/or other third parties.

In order to study the effectiveness of our approach in rediscovering activ-
ity dependencies from log data, the above workflow model, deployed in system
YAWL, was executed a few hundreds of times with the help of 12 voluntary un-
dergraduate students — notice that in such a simulation setting all the workflow
tasks were set as manual activities.

Since we are mainly interested in testing our approach against difficult pro-
cess discovery settings —where the behavior of the analyzed process is highly
non-deterministic and is hardly captured in the given sample of log traces— our
analysis is restricted only to cases that really involved recall actions (so exclud-
ing those where the skipping edge from activity Assess risk to the final one is
followed). Moreover, for the sake of readability, a simplified version of the schema
in Figure 6 is being considered from now on, where the initial and final (sequen-
tial) phases in the process are replaced with two higher level activities, named
PROLOGUE and EPILOGUE, respectively — as graphically illustrated in Figure 6.
This simplification is meant to help the reader focus on the most variable part
of the recall process, where several activities can be performed concurrently, and
can interleave in a great number of ways.

In the following, two different simulation scenarios are discussed in detail,
which, despite their simplicity, can help appreciate the benefits of using the
technique proposed in the paper when analyzing biased or incomplete log data.
The first scenario, referred to in the following as Scenario 1, corresponds to
an idealistic process management setting, where: (i) the executions of different
process instances do not overlap over the time (i.e., a new case can start only
after all previous ones have been completed) and (ii) there is no restriction to
the assignment of activities to workers (i.e., each activity can be executed by
any worker). These two assumptions were removed in the second simulation sce-
nario (named Scenario 2), where both workers and activities were partitioned
into 5 skill-based classes (for activity assignment purposes) while admitting the
concurrent execution of multiple process instances.

Using background knowledge to deal with temporal bias (time shifts)
A first kind of violation of the log completeness assumption mentioned above
happens when any two mutually parallel activities x and y appear in the same
order in all log traces, simply because one of them always finishes after the other,
due to a different duration of x and y or of some of their respective predecessor
activities. Interestingly, such a situation was empirically found to happen in the
first simulation scenario (Scenario 1) considered in our experimentation, where
the process was enacted in a sort of clean-room setting, where the working force

20

Arrange_disposal

Complete_optional_actions

Complete_recall

EPILOGUE

Consider_optional_actions

Prepare_to_destory_or_modify Stop_production Identify_remedies

Keep_records Notify_third_parties

PROLOGUE

Start_recall

Stop_distribution

Fig. 7. Dependency graph discovered for the process in Figure 6 out of a temporally-
biased log.

available in the organization is always superior to the workload of the product
recall process.

Figure 7 shows the optimal (w.r.t. the weighting function hm) dependency
graph found by our system against a log of 100 traces, produced by enacting
the model in Figure 6 according to this setting — recall that the edge from
Assess risk to Finalize was disabled in both the experiment scenarios con-
sidered here. As a matter of facts, it is easy to see that, in this discovered
model, activity Complete Optional Activities is deemed as dependent on any
of the activities Keep records, Identifiy remedies, Notify third parties, Stop

distribution and Arrange disposal — which all appears as predecessors of the
former. This is in neat contrast with the real model of the process (cf. Figure 6
where all these activities are in parallel with each other and independent of each
other, and it descends from the fact that in the first simulation setting activity
Complete Optional Activities finished always later than other ones in the other
branches of the main forking structure.

Incidentally, the same result was obtained with other classical process mining
tools. In particular, Figure 8 shows the control-flow models found by two process
discovery plugins available in the popular process mining framework ProM [45]:
Heuristics Miner, implementing the approach in [2], and Alpha Miner, imple-
menting the α-algorithm proposed in [42].

Notably, the dependencies in the original control-flow model can be redis-
covered by simply augmenting the set of log-driven constraints with the ones in
Figure 9, expressing a-priori knowledge on the absence of dependencies between
the activity Complete Optional Actions and all of the other ones mentioned right
above here. This claim is confirmed by Figure 10, which shows the result ob-
tained by our system prototype when using, as input, the same log as before,
together with the user-specified constraints reported right above here.

21

PROLOGUE
(complete)

61

Start_recall
(complete)

61

 0,984
 61

Notify_third_parties
(complete)

61

 0,857
 28

Identify_remedies
(complete)

61

 0,941
 16

Consider_optional_actions
(complete)

61

 0,833
 5

Arrange_disposal
(complete)

61

 0,947
 21

Stop_distribution
(complete)

61

 0,889
 12

Keep_records
(complete)

61

 0,889
 19

Complete_optional_actions
(complete)

61

 0,667
 17

 0,75
 13

Prepare_to_destory_or_modify
(complete)

58

 0,889
 58

Stop_production
(complete)

58

 0,909
 58

 0,667
 17

 0,958
 16

 0,95
 16

 0,75
 15

 0,857
 15

Complete_recall
(complete)

61

 0,984
 61

EPILOGUE
(complete)

61

 0,984
 61

P
R

O
L
O

G
U

E
c
o
m

p
le

te
S

ta
rt

_
re

c
a
ll

c
o
m

p
le

te

N
o
ti
fy

_
th

ir
d
_
p
a
rt

ie
s

c
o
m

p
le

te
Id

e
n
ti
fy

_
re

m
e
d
ie

s
c
o
m

p
le

te

C
o
n
s
id

e
r_

o
p
ti
o
n
a
l_

a
c
ti
o
n
s

c
o
m

p
le

te

A
rr

a
n
g
e
_
d
is

p
o
s
a
l

c
o
m

p
le

te

S
to

p
_
d
is

tr
ib

u
ti
o
n

c
o
m

p
le

te

K
e
e
p
_
re

c
o
rd

s
c
o
m

p
le

te

C
o
m

p
le

te
_
o
p
ti
o
n
a
l_

a
c
ti
o
n
s

c
o
m

p
le

te

P
re

p
a
re

_
to

_
d
e
s
to

ry
_
o
r_

m
o
d
if
y

c
o
m

p
le

te

S
to

p
_
p
ro

d
u
c
ti
o
n

c
o
m

p
le

te

C
o
m

p
le

te
_
re

c
a
ll

c
o
m

p
le

te
E

P
IL

O
G

U
E

c
o
m

p
le

te

t:
1

Fig. 8. Control-flow models found in the first simulation scenario for the product re-
call process, by two classical process discovery algorithms: ProM’s plugins Heuristics
Miner [2] (left) and alpha [42] (right).

22

Identify Remedies 6 Complete Optional Actions

Keep Records 6 Complete Optional Actions

Stop Distribution 6 Complete Optional Actions

Notify Third Parties 6 Complete Optional Actions

Fig. 9. Some user-given constraints for improving the quality of the model in Figure 7.

Arrange_disposal

Complete_recall

EPILOGUE

Complete_optional_actions

Consider_optional_actions

Prepare_to_destory_or_modify Stop_production Identify_remedies

Keep_records

Notify_third_parties

PROLOGUE

Start_recall

Stop_distribution

Fig. 10. Dependency graph found in the first simulation scenario with the additional
expert-driven constraints in Figure 9.

Using background knowledge to deal with log scarcity In general, log
completeness does not hold in any case where the traces in the given log does
not capture all the differences in behavior that may occur in the population of
all possible process enactments (specially, as far as concerns the presence of a
minimal set of different interleavings for mutually concurrent activities). The
possibility of exploiting expert-driven constraints, offered by our framework, can
be a precious facility in such a situation, which may be quite likely to happen
when analyzing the logs of complex real-world processes with many activities
and many parallel execution branches.

For the sake of presentation, let us consider a simplified version of the pro-
cess in Figure 6, where the whole block of activities Consider Optional Actions,
Prepare to Destroy or Modify, Stop production and Complete Optional Actions

is disabled. Even though this latter workflow model does not exhibit a high de-
gree of behavior variability, any process discovery technique might well fail in
rediscovering it when provided with an incomplete sample of the process in-
stances. In order to simulate such a situation, we randomly extracted 20 log
traces from the traces generated according to Scenario 2, and removed from
them any occurrence of the “abstracted” activities (namely, Consider Optional

Actions, Stop production, Complete Optional Actions and Prepare to Destroy

or Modify).

23

Arrange_disposal

Notify_third_parties

Complete_recall

EPILOGUE

PROLOGUE

Start_recall

Identify_remedies Keep_records

Stop_distribution

Fig. 11. Dependency graph found against a “small” (20 traces), incomplete, log of the
process in Figure 6

The dependency graph discovered out of this small set of traces (still by
solving an optimization CSP problem is shown in Figure 11. Clearly this model
fails to represent the actual behavior of the original process, due to the wrong
dependence between activities Notify Third Parties and Arrange Disposal , ac-
tually belonging to concurrent branches in the process. By the way, the very
same set of inter-activity precedence relationships appear in the models found
with other process mining tools (including ProM’s plugins Heuristics Miner and
Alpha Miner mentioned above).

Again, the lack of a complete log can be counterbalanced in this case by
providing the CSP solver with a minimal amount of background information. In
fact, in this case it was sufficient to provide the system with the sole constraint
Arrange Disposal → Complete Recall in order to make it rediscover exactly the
activity dependencies in the original process model (cf. Figure 6) — apart from
the block of activities that has been disabled in this second simulation scenario.

Analyzing the capability of the approach to deal with incomplete logs
In order to assess the capability of our approach to deal with incomplete log data
in a deeper and more complete way, we extracted a number of random samples,
with different cardinalities, out of the total collection of (236) traces produced
in both simulation scenarios.

In order to have a quantitative evaluation for the quality of findings, we can
contrast the set Dout of causal dependencies discovered towards the set Din

of real dependencies existing in the a-priori known process model, by resorting
to the classical F-measure metrics, defined as 2×P×R

P+R
— where P (stating for

precision) is the fraction of the dependencies in the mined model that really exist

in the real model, i.e. P = |Dout∩Din|
|Dout|

, whereas R (standing for Recall) is the

fraction of real dependencies captured by the mined model, i.e. R = |Dout∩Din|
|Din|

.

24

Table 1 summarizes the results obtained by our approach, against different
subsets of the log traces, compared with those of two popular process discovery
methods [2, 42]. Specifically, in correspondence of each percentage value p% (with
p = 10, 20, · · · , 100), the figure reports the following measures (all averaged over
10 different samples with a p% of the traces): edge-oriented F-measure, total
number of dependencies found, and computation time.

Notably the approach proposed in the paper manages to achieve outstanding
scores for the F-measure over all the samples, and ensures a satisfactory trade-off
between precision and recall in the detection of causal dependencies. In partic-
ular, the method appears to overcome the competitor ones over smaller logs,
where traditional completeness assumption are hardly satisfied. By a finer grain
analysis, we can see that, while ensuring apparently good effectiveness results
on these logs, the alpha algorithm tends to derive from them an overwhelming
set of dependencies w.r.t. the real ones. By converse, our approach keeps staying
always very close to the actual number (i.e., 19) of dependencies.

F-measure Size Time—

trace% HM AM Ours HM AM Ours HM AM Ours

10 0.657 0.731 0.885 16, 6 26, 3 18, 5 34, 9 157, 3 1238, 6
20 0.830 0.869 0.971 18, 1 24, 1 18, 9 79, 1 216, 9 2670, 3
30 0.893 0.924 0.981 18, 4 21, 7 18, 9 112, 2 283, 8 1282, 2
40 0.931 0.943 0.989 18, 8 21, 4 19, 0 154, 3 344, 7 5982, 2
50 0.965 0.968 0.989 18, 9 20, 3 19, 0 196, 9 413, 1 3576, 6
60 0.979 0.968 0.995 19, 2 20, 3 19, 0 233, 1 539, 7 2561, 3
70 0.984 0.990 0.995 19, 0 19, 4 19, 0 269, 7 541, 9 2136, 9
80 0.984 0.992 0.995 19, 0 19, 3 19, 0 316, 2 617, 5 3370, 6
90 1.000 1.000 1.000 19, 0 19, 0 19, 0 345, 9 678, 9 3472, 7
100 1.000 1.000 1.000 19, 0 19, 0 19, 0 423, 2 710, 9 2597, 1

Average 0.911 0.929 0.975 18, 5 21, 3 18, 9 210, 0 444, 7 3108, 8

Table 1. Results obtained by the proposed approach (Ours) and by two competitor techniques, for
different percentages of traces used as input— HM and AM here denote the two ProM’s plugins
Heuristics Miner [2] and Alpha Miner [42], respectively.

Before leaving this section, it can be interesting to look closer at the results
of the tests summarized above, performed against 20% of the given log, for
which our approach managed to rediscover a fully complete and correct set of
dependencies. A rather imprecise picture of the relationships between process
activities is obtained instead by analyzing this incomplete log with classical
algorithms [2, 42], as shown in Figure 12.

7 Related Work

7.1 Process Discovery and Dependency Mining

Several process discovery approaches have been proposed in the literature, which
both differ in the language used for modelling workflows and in the specific al-
gorithms used to discover it. For example, processes are intuitively represented
in [1, 48, 47, 2, 17] via pure directed graphs, which only express precedence rela-
tionships. More expressive representations are used instead in other proposals,

25

PROLOGUE
(complete)

58

Start_recall
(complete)

58

 0,983
 58

Keep_records
(complete)

56

 0,96
 26

Consider_optional_actions
(complete)

58

 0,8
 6

Stop_distribution
(complete)

58

 0,933
 14

Arrange_disposal
(complete)

56

 0,923
 12

Complete_recall
(complete)

58

 0,857
 26

Complete_optional_actions
(complete)

58

 0,909
 30

Stop_production
(complete)

46

 0,923
 28

Prepare_to_destory_or_modify
(complete)

46

 0,96
 28

Identify_remedies
(complete)

58

 0,889
 14

 0,968
 24

 0,889
 26

 0,857
 18

Notify_third_parties
(complete)

58

 0,889
 40

 0,909
 8

EPILOGUE
(complete)

58

 0,983
 58

 0,857
 36

P
R

O
L
O

G
U

E
c
o
m

p
le

te
S

ta
rt

_
re

c
a
ll

c
o
m

p
le

te

K
e
e
p
_
re

c
o
rd

s
c
o
m

p
le

te

C
o
n
s
id

e
r_

o
p
ti
o
n
a
l_

a
c
ti
o
n
s

c
o
m

p
le

te
C

o
m

p
le

te
_
o
p
ti
o
n
a
l_

a
c
ti
o
n
s

c
o
m

p
le

te

Id
e
n
ti
fy

_
re

m
e
d
ie

s
c
o
m

p
le

te

S
to

p
_
d
is

tr
ib

u
ti
o
n

c
o
m

p
le

te

N
o
ti
fy

_
th

ir
d
_
p
a
rt

ie
s

c
o
m

p
le

te

S
to

p
_
p
ro

d
u
c
ti
o
n

c
o
m

p
le

te

A
rr

a
n
g
e
_
d
is

p
o
s
a
l

c
o
m

p
le

te

C
o
m

p
le

te
_
re

c
a
ll

c
o
m

p
le

te

P
re

p
a
re

_
to

_
d
e
s
to

ry
_
o
r_

m
o
d
if
y

c
o
m

p
le

te

E
P

IL
O

G
U

E
c
o
m

p
le

te

t:
1

Fig. 12. Control-flow models induced for the product recall process from a 20% sample,
by ProM’s plugins Heuristics Miner [2] (left) and Alpha Miner [42] (right).

ranging from expression tree models [33] and block-structured workflow mod-
els [19, 20], to special classes of Petri-nets [41, 40, 42, 11].

26

Despite the variety of approaches proposed in the literature, the discovery of
a control-flow model is typically founds on preliminary finding a set of log-driven
relations between activities (expressing precedence, parallelism and mutual ex-
clusion relationships), which can be eventually used to infer a more expressive
process model. In particular, estimating causal dependencies among the activities
is a fundamental sub-problem, particularly challenging in the case of concurrent
processes, and in presence of noise.

When mining such dependencies, most of the approaches in the literature
rely (implicitly or explicitly) on some suitable notion of log completeness, in
that they assume that the given log traces are sufficient to recognize all activity
dependencies, and to eventually reconstruct the actual structure of a process. In
particular, some classical works, including [42], assume that all pairs of activities
that are directly linked by a causal dependency, in the unknown process model,
must appear consecutively in one log trace at least. Notably, under this assump-
tion, the approach in [42] was proven to be correct, i.e., it precisely reconstructs
the process model, provided that the model enjoys certain properties (namely, it
is a so-called structured workflow (SWF) net). In more details, a basic binary re-
lation, denoted by >, is derived from the log to represent immediate-succession:
given two activities a, b, a > b holds iff a occurs immediately before b in some log
trace – incidentally, the log-completeness notion in [42] amounts to assume that
any actual activity dependency is reflected in relation >. This relation is used as
a basis for deriving causal dependencies —a is deemed as causing b if a > b and
not b > a — and for eventually detecting branching and choice patterns – assum-
ing that both a and b depend on the same activity, they are mutually concurrent
if both a > b and b > a, whereas they are mutually exclusive if neither a > b
nor b > a. Clearly, such an approach is very likely to fail in real-world scenarios,
where the logs often are incomplete (so that no evidence is provided for some
pairs of mutually dependent activities) and/or noisy (so that fake dependencies
may be derived from erroneous records).

Both issues are faced heuristically in [48, 47, 2], by introducing some degree
of fuzziness in the estimation of log-driven ordering relationships. Basically, the
approach relies on calculating simple frequency measures, prior to eventually
derive these relationships. In particular, for each pairs of activities, say a and b,
a causality counter #(a → b) is computed by considering all the (not necessarily
consecutive) occurrences of these activities in each log trace. More specifically,
every time a appears before b, with n intermediate activities, a contribution δn

is added to #(a → b) and subtracted from #(b → a). Any causality counter
#(a → b) is then normalized by dividing it by the minimum between the fre-
quencies of activities a and b in the entire log. Clearly, using such an exponential
weighting scheme is meant to give more relevance to closer occurrence pairs, in
the estimation of causal dependencies between activities – i.e. the closer two ac-
tivities occur in log traces, the more likely they depend on each other, provided
that they (almost) always appear in the same order. In order to find reliable
causal dependencies against noisy logs, two significance thresholds N and θ can
be used. Specifically, a causal link between two any activities a and b is eventu-

27

ally created if: (i) the corresponding causality scores is higher than N ; and : (ii)
there are at least θ traces where a directly precedes b and the opposite does not
hold — by the way, the latter criterion implicitly relies on the log completeness
notion of [42]. Strong causal dependencies can be directly shown to the user,
in the form of a dependency graph model (named “Heuristics Net”), or can be
exploited to derive a WF net, similarly to[42].

A variant of this approach is presented in [2], where the user can require
the dependency graph to be connected (“All-activities-connected” heuristics) —
i.e., any activity, but starting and final ones, has at least one predecessor and
at least one successor. Specifically, for each not-starting activity a, the approach
in [2] selects the best predecessor, as the one having the highest dependency
score towards a; similarly, if a is not final, a dependency link is also drawn
from a to the activity a′ such that the dependency score (a, a′) is maximal. In
order to allow for an activity to have multiple predecessors/successors, a further
heuristics is introduced, which consists in selecting also a predecessor/successor
with a lower dependency score, provided that it is close enough to the maximum
— a “relative-to-best” threshold is used to this end, as an upper bound to the
relative distance between the score of a candidate and the maximal one.

It is worth noticing that our approach can take advantage of heuristics-based
log-driven dependency scores like those in [48, 47, 2] — function hm in Section
4 implements indeed the same exponential weighting scheme. However, these
scores are only used as a guide in the search of an optimal dependency graph by
way of constraint programming techniques. Moreover, in order to cope with noisy
data, our approach can also employ analogous relevance thresholds — namely,
σabs and σr2b, which are similar to parameters N and relative-to-best in [2], re-
spectively. These thresholds are meant to possibly remove unlikely dependencies
from log-driven precedence constraints, and prune portions of the search space.
Such a pruning can be made stronger by introducing negative CWA constraints,
ensuring that, if an activity never precedes another in the log traces, there will
not be a path from the former to the latter in the resulting dependency graph.
By the way, such a (optional) completeness assumption is looser than the one
used in [42] – which prevents an edge between two activities that do not directly
follows one another in some trace.

7.2 Declarative (constraint-based) process modelling

Activity dependencies (both control-flow and data-flow) are a fundamental kind
of information used in all process modeling frameworks, which can be used di-
rectly by constraint-based process modelling and process management environ-
ments. In the last years there has been a surge of interest towards declarative
constraint-based process modelling frameworks, which can turn out particularly
suitable for the management of loosely structured collaboration processes[29], as
a flexible and intuitive alternative to the usage of traditional procedural (e.g.,
workflow-oriented) process models. Clearly, in such a context, the possibility of
extracting a control-flow model out of historical log data is of great value, in

28

that it gives a more precise and complete picture of the typical ways of exe-
cuting such lowly-structured processes. However, it can be important as well to
take advantage of background knowledge encoded in constraint-oriented models
when learning a new model by way of process discovery techniques. Due to space
limitation, only a few constraint-based modelling approaches are described in the
following.

In [32] a process modelling framework is presented which provides constraints
for specifying ordering, fork, exclusion and inclusion requirements on the execu-
tion of process activities. Here authors put emphasis on the declarative modelling
paradigm as a means for achieving a high level of flexibility. In particular, the
process is represented by combining basic constraints, encoding control-flow de-
pendencies, and partially specified blocks, called “pockets” of flexibility. Such a
pocket consists of activities, sub-processes and a set of both order and inclusion
constraints, which can be fully specified/implemented at run-time by human
end-users. The approach supports verification techniques for the detection of
redundant and conflicting constraints, and has been implemented as a part of a
workflow management system prototype named Chameleon.

A declarative constraint-based language, named ConDec (CONstraintDEClar-
ative), has been proposed in [30] in order to support the modeling, enactment,
and verification of declarative process specifications. A ConDec model is com-
posed by a set of activities, representing atomic units of work, and of a set of
mandatory and/or optional constraints, specifying relationships among activi-
ties. Several constraint types are available as templates, which include: existence
constraints, relation constraints, negation constraints and choice constraint. Ex-
istence constraints are cardinality constraints on activities, specifying how many
times an activity can be executed in any process instance. Relation constraints
allows to specify ordering and co-occurrence dependencies between activities.
Negation constraints are the negative version of relation constraints, which can
be used, e.g., to state that the occurrence of some activities exclude some other
ones. Choice constraints finally allow for expressing the necessity to execute
some activities as a set of alternative choices. All these constraints are formally
specified as Linear Temporal Logic (LTL) formulas – LTL is a temporal logic
providing, besides classical logical operators, several temporal operators (always,
eventually, until and next time). As a result, a ConDec model is a graph-based
model, which can be translated into a combination of LTL expressions, each
corresponding to a single constraint. A variant of ConDec, named DecSerFlow,
has been developed for web service domain [28]. Both ConDec and DecSerFlow
languages are supported by Declare [29] , a workflow management system for
designing and enacting processes based on declarative specifications.

CLIMB (Computational Logic for the verIfication and Modeling of Business
processes and choreographies) language [8] is another declarative language for
specifying and verifying a process model. CLIMB is a subset of the Social Con-
strained IFF Framework (SCIFF) language, a FOL-based language originally
conceived for heterogeneous Multi-Agent Systems. Here, rule-based constraints
are used again as a basic means for expressing desired and forbidden execution

29

patterns. Constraints are imposed on activities in terms of Integrity Constraints
(ICs in short), a sort of reactive rules which can mention, in the body, the oc-
currence of activities (i.e., events) and constraints on their associated variables,
in the style of Constraint Logic Programming (CLP). A model in this language
is a set of logical ICs in the form of implications.

7.3 Declarative and/or constraint-based process discovery

An open challenge for Process Mining community is to make Process Discovery
declarative, allowing the user to easily and declaratively encode background
knowledge and to control the inductive bias and language bias of the learning
algorithms.

Recently, some works related to the field of Inductive Logic Programming
(ILP) show how process discovery can be formulated as an ILP learning task.
For example, this is done in [14] by combining ILP classifier induction techniques
with partial order planning. Here, the activities of a business process are seen as
planning operators with pre-conditions and post-conditions. Given the current
definition of activities’ pre-conditions and post-conditions, a plan for achieving
the business goal is generated and presented to the user, who is in charge of
specifying whether each activity in the plan can be really executed. In this
way the system collects positive and negative examples for activities executions
(events), which can be then used in the learning phase. By interplaying planning
and learning techniques, a process model is discovered eventually.

In [7, 5, 3], some ILP-based process discovery approaches are presented, where
a partial model of process behavior is discovered, consisting of a set of ICs (as
a sort of behavioral rules). In particular, the approach proposed in [7] takes as
input a set of execution traces, previously labeled as compliant or not, and pro-
duces a set of SCIFF rules which correctly classify them. By ensuring a mapping
of SCIFF rules to a declarative process languages such as DecSerFlow or ConDec,
these rules are then used to build a model in the corresponding graphical nota-
tion (as a possible support to a declarative specification of a business process).
The whole process of induction plus translation has been implemented in the
DecMiner plug-in of ProM. In [5], the discovered process model is a constraint-
based probabilistic process model, expressed in Markov Logic [13] — roughly
speaking, this is an extension to first-order logics where each formula can be
associated with a weight, and can be seen as a set of soft constraints on possi-
ble worlds, so that, if a world violates one formula, it is less probable but not
impossible. The approach consists in three steps: learning a SCIFF theory (as
in [7]), translating it into Markov Logic formulas, and learning formulas’ weights
through the discriminative weight learning algorithm of [13].

AGNEs (standing for Artificial Generation of Negative Events)[16] is another
declarative process mining algorithm which makes use of an ILP classification-
oriented learner, with the final aim of building a a Petri-net model. The algo-
rithm consists in four steps: First, a sort of basic temporal constraints (based
on frequent patterns and association rules) are extracted from the input log, in

30

order to capture local dependency, non-local dependency, and parallelism rela-
tionships between activities; notably, some of such constraints can be provided
directly by domain experts, as a form of background knowledge. Second, the
input log and the temporal constraints induced at the previous step are used
to generate negative examples, based on some threshold-driven generalization
operators, which reason on possible variants of a given activity sequence (owing
to the presence of parallel branches and/or of cycles). More precisely, for each
prefix of a given log trace, negative events are generated, stating which activities
are not allowed to be executed as subsequent step in the trace. Third, by using
all input log traces log (as positive examples) together with the artificial negative
events described above, a logic program is induced which allows for predicting
whether for a given activity a is allowed to occur or not, at a given position of a
given sequence. To this aim the multi-relational induction algorithm TILDE is
employed, which constitutes a first-order generalization of popular for decision
tree induction algorithm C4.5. As a final step, the logic program produced by
TILDE is transformed into a Petri net.

A last approach which is somewhat related to ours, and to the general family
of constraint-based process mining, is the one presented in [44], where language-
based region theory is applied to process discovery – regarding each log trace as a
word and the log itself as a prex-closed language. Under this perspective, a Petri-
net model can be searched for the language (whose words correspond to firing
sequences of the net), while regarding each language region as a possible place of
the net. Starting with the most liberal (and overgeneralized) net, with as many
transitions as the process activities and no place, a more refined workflow model
can be obtained by iteratively adding a new place to restricting the allowed
behavior. A place (and its associated edges) can be chosen in a greedy way, by
requiring that is as expressive as possible, i.e., it has a minimum number of
incoming edges and a maximum number of outgoing edges. The insertion of a
new place can be then faced by solving a system of linear inequations, under
Integer Linear Programming. In order to curb the growth of the discovered
model 3, the search of places is guided by causal dependencies derived from
the log (by using the metrics in [42]). More precisely, at each step, a single
log-driven dependency is considered, which expresses a causal linking between
two activities, say a and b. Then, an optimal place is searched for, by solving
the Integer Linear Programming problem mentioned above, complemented with
the additional constraint that the place is linked to a (via an incoming edge)
and to b (via an outgoing edge). The approach makes use of an off-the-shelf
LP solver, performing a branch-and-bound search. Notably, in [44] the user is
allowed to constrain the general structure of the process model, by restricting the
search to one among a pre-defined set of Petri-net classes (including SWF-nets,
Marked Graphs, Free-Choice nets, Pure nets, Elementary nets). Beside offering
the possibility of choosing among a subset of the Petri net classes mentioned right
above, the ProM plugin implementing the approach allows the user to enforce

3 In principle, the number of places may be exponential in the number of transitions
(i.e., activities)

31

finer grain constraints by manually modifying the basic activity dependencies
extracted from the log — prior to deriving a novel (refined) workflow model.

7.4 Distinctive features of the proposed approach

A few major aspects of our approach are summarized next:

– According to the general spirit of declarative process mining, our approach
allows the user to formulate high-level prior knowledge in the form of posi-
tive/negative dependencies (either direct or indirect) for single pairs of ac-
tivities 4 — but he/she is not required to manually provide the system with a
large enough collection of negative examples (as in the classification-oriented
learning frameworks like [7, 5, 3, 14]),

– The final result of our approach is a sort of global process model, showing,
in a concise and summarized way, the dependencies that are likely to link
the activities in a given process log. Moreover, this basic information on ac-
tivity relationships may be reused (in the place of count-based log-ordering
relations) within consolidated approaches to the construction of a more ex-
pressive control-flow model (such as, e.g., the Petri-net oriented ones in [40,
42]) This differentiates our approach from the ones in [7, 5, 3], where the aim
is to induce a set of constraints, as a sort of business rules capturing parts
of the behavior of the process analyzed.

– A number of tunable heuristics (like, e.g., in [48, 47, 16]) – namely frequency
threshold σabs, all-activities-connected heuristics and associated relative-to-
best threshold (σr2b) – can be exploited to cope with the presence of noise
in the input log.

– (?) Some degree of control on inductive bias (and hence on the level of
generalization w.r.t. the input log) is given to the user, who can possibly
ask for the automated addition of negative CWA constraints. It is worth
noticing that this latter kind of artificially generated constraints follows a
looser notion of log-completeness than classical ones(cf.[42]). Moreover, since
such constraints are not extracted from the log directly, but are derived
from positive log-driven constraints (which can abstract over log contents
via window-based and threshold-based heuristics), the aggressiveness degree
in the pruning of search space can be controlled by the user. Notably, such
a feature is absent in classical approaches, while a similar goal is pursued in
[16] by allowing the user for controlling somewhat the generation of negative
examples.

– A key distinguishing aspect of our approach is that the user can directly act
on the optimality criterion, used in the search of a process model, by pro-
viding the reasoner with a collection of (possibly semantic/domain -driven)
dependency weights between the activities. To the best of our knowledge,
such a capability lacks in all existing process discovery approaches, where

4 By the way, the constraint language currently used does not allow for concisely
specifying mutual exclusion or co-occurrence constraints

32

the optimality criterion is stated in a fixed (non-parametric) manner, and
often encoded, implicitly and approximatively, into greedy search heuristics,
and the user is not even allowed to express any preference criteria.

8 Conclusion

Current research is rather active in proposing mining techniques supporting
even richer modeling languages. However, very few efforts have been spent to
analyze the foundational problem of dependency graph discovery. In fact, the
vast majority of process discovery approaches extract activity dependencies by
resorting to greedy heuristics, and adopt log completeness assumption to re-
strict the search space, so risking to be ineffective against incomplete, noisy,
and/or temporally-biased logs. In order to make the mining of a dependency
graph more effective, efficient and robust, we have proposed a constraint-based
process discovery framework, where a-priori knowledge can be encoded in the
form of precedence constraints, and the search of dependencies can be stated
as a constraints satisfaction problem or a constraints satisfaction optimization
problem. The computational complexity of these problems has been studied in
details w.r.t. different types of constraints, and the tractability frontier of them
both has been identified. The whole approach has been implemented in a pro-
totype system, which has been tested on different log data. Preliminary results
confirmed the validity of the approach and the opportunity of investigating on
the development of declarative process discovery tools, capable of taking full
advantage of background knowledge and of user preferences/guidance in order
to improve both scalability and quality of results.

As to future work, we observe that the whole framework proposed in the
paper is essentially propositional, for it assumes a simplification of the schema
and of the enactments in which many real-life details are omitted. This is a stan-
dard assumption in current research in process mining. Therefore, an interesting
avenue for further research is to extend make the automatic extraction of de-
pendency weights more semantics-/domain- oriented by both exploiting context
information (about, e.g., parameters and functional features of the activities)
and/or pre-existing process ontologies. Moreover, we plan to investigate on ex-
tending our constraint-based framework towards more expressive control-flow
models and execution constraints.

Acknowledgements

We would like to thank Andrea Burattin and Alessandro Sperduti (?) for pro-
viding us with the source code of their process log generator [6]. ◮Se mostriamo

gli esperimenti su dati sintetici◭

33

References

1. R. Agrawal, D. Gunopulos, and F. Leymann. Mining process models from workflow
logs. In Proc. 6th Intl. Conf. on Extending Database Technology (EDBT’98), pages
469–483, 1998.

2. A.J.M.M. Weijters, W.M.P. van der Aalst, and A.K. Alves de Medeiros. Process
mining with the heuristicsminer algorithm. Technical report, Eindhoven University
of Technology, Eindhoven, 2006.

3. Marco Alberti, Marco Gavanelli, Evelina Lamma, Fabrizio Riguzzi, and Sergio
Storari. Learning specifications of interaction protocols and business processes
and proving their properties. Intelligenza Artificiale, 5(1):71–75, 2011.

4. Krzysztof Apt. Principles of Constraint Programming. Cambridge University
Press, New York, NY, USA, 2003.

5. Elena Bellodi, Fabrizio Riguzzi, and Evelina Lamma. Probabilistic declarative
process mining. In KSEM, pages 292–303, 2010.

6. Andrea Burattin and Alessandro Sperduti. Plg: A framework for the generation of
business process models and their execution logs. In Business Process Management
Workshops, volume 66 of Lecture Notes in Business Information Processing, pages
214–219. Springer Berlin Heidelberg, 2011.

7. Federico Chesani, Evelina Lamma, Paola Mello, Marco Montali, Fabrizio Riguzzi,
and Sergio Storari. Exploiting inductive logic programming techniques for declar-
ative process mining. T. Petri Nets and Other Models of Concurrency, 2:278–295,
2009.

8. Federico Chesani, Paola Mello, Marco Montali, and Paolo Torroni. Modeling and
verifying business processes and choreographies through the abductive proof pro-
cedure sciff and its extensions. Intelligenza Artificiale, 5(1):101–105, 2011.

9. H. Davulcu, M. Kifer, C.R. Ramakrishnan, and I.V. Ramakrishnan. Logic based
modeling and analysis of workflows. In Proc. of the 17th ACM Symposium on
Principles of Database Systems (PODS’98), pages 25–33, 1998.

10. Sandra de Amo and Daniel A. Furtado. First-order temporal pattern mining
with regular expression constraints. Data & Knowledge Engineering, 62:401–420,
September 2007.

11. A. K. A de Medeiros, B. F. van Dongen, W. M. P. van der Aalst, and A. J. M. M.
Weijters. Process mining: Extending the α-algorithm to mine short loops. Technical
report, University of Technology, Eindhoven, 2004. BETA Working Paper Series,
WP 113.

12. Luc De Raedt, Tias Guns, and Siegfried Nijssen. Constraint programming for
itemset mining. In Proceeding of the 14th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD ’08, pages 204–212, New York,
NY, USA, 2008. ACM.

13. Pedro Domingos, Stanley Kok, Daniel Lowd, Hoifung Poon, Matthew Richardson,
and Parag Singla. Markov logic. In Probabilistic Inductive Logic Programming,
pages 92–117, 2008.

14. Hugo M. Ferreira and Diogo R. Ferreira. An integrated life cycle for workflow man-
agement based on learning and planning. Int. J. Cooperative Inf. Syst., 15(4):485–
505, 2006.

15. M.R. Garey and D.S. Johnson. Computers and Intractability. A Guide to the
Theory of NP-completeness. Freeman and Comp., NY, USA, 1979.

16. Stijn Goedertier, David Martens, Jan Vanthienen, and Bart Baesens. Robust pro-
cess discovery with artificial negative events. Journal of Machine Learning Re-
search, 10:1305–1340, 2009.

34

17. G. Greco, A. Guzzo, L. Pontieri, and D. Saccà. Discovering expressive process
models by clustering log traces. IEEE Trans. on Knowledge and Data Engineering,
18(8):1010–1027, 2006.

18. Tias Guns, Siegfried Nijssen, and Luc De Raedt. Itemset mining: A constraint
programming perspective. Artif. Intell., 175:1951–1983, 2011.

19. J. Herbst and D. Karagiannis. Integrating machine learning and workflow man-
agement to support acquisition and adaptation of workflow models. Journal of
Intelligent Systems in Accounting, Finance and Management, 9:67–92, 2000.

20. J. Herbst and D. Karagiannis. Workflow mining with InWoLvE. Computers in
Industry. Special Issue: Process/Workflow Mining, 53(3):245ñ–264, 2003.

21. Lei Jia, Renqing Pei, and Dingyu Pei. Tough constraint-based frequent closed item-
sets mining. In Proceedings of the 2003 ACM symposium on Applied computing,
SAC ’03, pages 416–420, New York, NY, USA, 2003. ACM.

22. Mohan Kamath and Krithi Ramamritham. Correctness issues in workflow man-
agement. Distributed Systems Engineering, 3(4):213–221, 1996.

23. G. Keller, M. Nüttgens, and A. W. Scheer. Semantische Processmodellierung auf
der Grundlage Ereignisgesteuerter Processketten (EPK). University of Saarland,
Saarbrücken, 1992.

24. Dan Klein, Sepandar D. Kamvar, and Christopher D. Manning. From instance-
level constraints to space-level constraints: Making the most of prior knowledge in
data clustering. In Proceedings of the Nineteenth International Conference on Ma-
chine Learning, ICML ’02, pages 307–314, San Francisco, CA, USA, 2002. Morgan
Kaufmann Publishers Inc.

25. M.T. Wynn, C. Ouyang, A.H.M. ter Hofstede, and C.J. Fidge. Workflow support
for product recall coordination. Technical report, BPMcenter.org, 2009.

26. P. Muth, J. Weifenfels, M.Gillmann, and G. Weikum. Integrating light-weight
workflow management systems within existing business environments. In Proc.
15th IEEE Int. Conf. on Data Engineering (ICDE’99), pages 286–293, 1999.

27. Siegfried Nijssen, Tias Guns, and Luc De Raedt. Correlated itemset mining in
roc space: a constraint programming approach. In Proceedings of the 15th ACM
SIGKDD international conference on Knowledge discovery and data mining, KDD
’09, pages 647–656, New York, NY, USA, 2009. ACM.

28. Maja Pesic, Dragan Bosnacki, and Wil M. P. van der Aalst. Enacting declarative
languages using ltl: Avoiding errors and improving performance. In SPIN, pages
146–161, 2010.

29. Maja Pesic, Helen Schonenberg, and Wil M. P. van der Aalst. Declare demo: A
constraint-based workflow management system. In BPM (Demos), 2009.

30. Maja Pesic, M. H. Schonenberg, Natalia Sidorova, and Wil M. P. van der Aalst.
Constraint-based workflow models: Change made easy. In OTM Conferences (1),
pages 77–94, 2007.

31. Vid Podpečan, Miha Grčar, and Nada Lavrač. Semi-supervised constrained cluster-
ing: an expert-guided data analysis methodology. In Proceedings of the 11th Pacific
Rim international conference on Trends in artificial intelligence, PRICAI’10, pages
219–230, Berlin, Heidelberg, 2010. Springer-Verlag.

32. Shazia Wasim Sadiq, Maria E. Orlowska, and Wasim Sadiq. Specification and
validation of process constraints for flexible workflows. Inf. Syst., 30(5):349–378,
2005.

33. G. Schimm. Mining most specific workflow models from event-based data. In Proc.
of Int. Conf. on Business Process Management, pages 25–40, 2003.

34. H. Schuldt, G. Alonso, C. Beeri, and H. Schek. Atomicity and isolation for trans-
actional processes. ACM Trans. Database Syst., 27(1):63–116, 2002.

35

35. P. Senkul, M. Kifer, and I.H. Toroslu. A logical framework for scheduling workflows
under resource allocation constraints. In Proc. 28th Int. Conf. on Very Large Data
Bases (VLDB’02), pages 694–702, 2002.

36. Arnaud Soulet and Bruno Crémilleux. Mining constraint-based patterns using
automatic relaxation. Intelligent Data Analysis, 13:109–133, 2009.

37. Anthony K. H. Tung, Raymond T. Ng, Laks V. S. Lakshmanan, and Jiawei Han.
Constraint-based clustering in large databases. In Proceedings of the 8th Inter-
national Conference on Database Theory, ICDT ’01, pages 405–419, London, UK,
2001. Springer-Verlag.

38. W. M. P. van der Aalst, J. Desel, and E Kindler. On the semantics of EPCs: A
vicious circle. In Proc. EPK 2002: Business Process Management using EPCs,
pages 71–80, 2002.

39. W. M. P. van der Aalst, A. Hirnschall, and H. M. W. Verbeek. An alternative way
to analyze workflow graphs. In Proc. 14th Intl. Conf. on Advanced Information
Systems Engineering, pages 534–552, 2002.

40. W. M. P. van der Aalst, B. F. van Dongen, J. Herbst, L. Maruster, G. Schimm,
and A. J. M. M. Weijters. Workflow mining: A survey of issues and approaches.
Data & Knowledge Engineering, 47(2):237–267, 2003.

41. W. M. P. van der Aalst and K. M. van Hee. Workflow Management: Models,
Methods, and Systems. MIT Press, 2002.

42. W. M. P. van der Aalst, A.J.M.M. Weijters, and L. Maruster. Workflow mining:
Discovering process models from event logs. IEEE Transactions on Knowledge and
Data Engineering (TKDE), 16(9):1128–1142, 2004.

43. W.M.P. van der Aalst. The application of petri nets to worflow management.
Journal of Circuits, Systems, and Computers, 8(1):21–66, 1998.

44. J. M. E. M. van der Werf, B. F. van Dongen, C. A. J. Hurkens, and A. Serebrenik.
Process discovery using integer linear programming. Fundamenta Informaticae,
94:387–412, 2009.

45. B. van Dongen, A. de Medeiros, H. Verbeek, A. Weijters, and W. van der Aalst. The
prom framework: A new era in process mining tool support. In Gianfranco Ciardo
and Philippe Darondeau, editors, Applications and Theory of Petri Nets 2005,
volume 3536 of Lecture Notes in Computer Science, pages 1105–1116. Springer
Berlin / Heidelberg, 2005.

46. Kiri Wagstaff, Claire Cardie, Seth Rogers, and Stefan Schrödl. Constrained k-
means clustering with background knowledge. In Proceedings of the Eighteenth
International Conference on Machine Learning, ICML ’01, pages 577–584, San
Francisco, CA, USA, 2001. Morgan Kaufmann Publishers Inc.

47. A. J. M. M. Weijters and W. M. P. van der Aalst. Rediscovering workflow models
from event-based data using Little Thumb. Integrated Computer-Aided Engineer-
ing, 10(2):151–162, 2003.

48. A.J.M.M. Weijters and W.M.P. van der Aalst. Process mining: Discovering work-
flow models from event-based data. In Proceedings of the 13th Belgium-Netherlands
Conference on Artificial Intelligence (BNAIC 2001), pages 283–290, 2001.

49. W.M.P. van der Aalst and A.H.M. ter Hofstede. YAWL: Yet another workflow
language. Information Systems, 30(4):245–275, 2005.

50. Unil Yun and John J. Leggett. Wfim: Weighted frequent itemset mining with
a weight range and a minimum weight. In Proceedings of the Eleventh SIAM
International Conference on Data Mining, SDM ’05, pages –1–1, 2005.

36

A Proof of Theorem 6

We start the proof with the Acyclic-DG-Mining problem. In this case, the
only tractability result is for a rather narrow class of constraints.

Theorem 12 Acyclic-DG-Mining[{6 }] is feasible in polynomial time.

Proof. Let L be a log and Π be a set of precedence constraints. We have to
decide whether there is an acyclic dependency graph G for L such that G |= Π ,
i.e., whether there is a graph G such that G ⊢ L and G |= Π . If L = ∅, then a
graph with no edges is a trivial solution. On the other hand, if L contains some
trace with multiple occurrences of the same symbol, then no solution exists at
all. Thus, assume that L 6= ∅ is a log for an underlying acyclic process, and let
a⊥ be the starting activity of each trace in L. We distinguish two cases.

If Π contains a negated path constraint of the form ¬(S a), with a⊥ ∈ S,
then Acyclic-DG-Mining admits no solution. Indeed, let t be a trace con-
taining a, and assume by contradiction that G is a solution. Then, there is a
subgraph I of G that is a process instance over A(L) (and is such that I ⊢ t).
This is impossible, since a cannot be reached by a⊥ in G and, hence, in I. Other-
wise, i.e., if Π contains no such constraint, let us consider the dependency graph
G = (V,E) such that E = {a⊥} × (V \ {a⊥}). Of course, G is acyclic and we
trivially have that G ⊢ L and G |= Π , no matter of L and Π . 2

The following two hardness results can be established even if the given log L
contains no trace. Hence, the intrinsic difficulty is just confined in the problem
of finding an acyclic model for a given set of precedence constraints.

Theorem 13 Acyclic-DG-Mining[{→}] and Acyclic-DG-Mining[{ }] are
NP-hard, even if the input log L contains no trace.

Proof. Recall that deciding whether a Boolean formula in conjunctive normal
form Φ = c1 ∧ . . . ∧ cm over the variables X1, . . . , Xn is satisfiable, i.e., deciding
whether there exists a truth assignment to the variables making each clause cj
true, is an NP-hard problem. The problem remains NP-hard, even if each clause
contains at most three distinct (positive or negated) variables [15]. Thus, in the
following, any arbitrary clause cj is assumed to be of the form tj,1 ∨ tj,2 ∨ tj,3,
where tj,i (1 ≤ i ≤ 3) is either a variable (e.g., Xh) or a negated variable (e.g.,
¬Xh), and where tj,1, tj,2, and tj,3 are not necessarily distinct.

Based on Φ, we build the set A(Φ) consisting of the clauses and the variables
in Φ (viewed as activities). Formally, A(Φ) = {c1, ..., cm, } ∪ {tj,1, tj,2, tj,3 | 1 ≤
j ≤ m}. Moreover, we build the setΠ(Φ) ⊆ C[{→}] of edge constraints as follows:

– For each clause cj , Π(Φ) contains the constraint {tj,1, tj,2, tj,3} → cj ;
– For each pair of clauses cj and cj′ such that tj,i = ¬tj′,i′ for any two indices

1 ≤ i, i′ ≤ 3, Π(Φ) contains the constraints {cj} → tj′,i′ and {cj′} → tj,i;
– No further constraint is in Π(Φ).

We now claim that: Φ is satisfiable ⇐⇒ there is an acyclic graph G such that
G |= Π(Φ).

37

(⇒) Assume that Φ is satisfiable, and let σ be a satisfying truth assignment for
the variables X1, ..., Xn. Consider the graph G = (A, E) such that:
– For each clause cj , if tj,i evaluates true in σ, then (tj,1, cj) ∈ E;
– For each pair of clauses cj and cj′ such that tj,i = ¬tj′,i′ for any two

indices 1 ≤ i, i′ ≤ 3, the two edges (cj , tj′,i′) and (cj′ , tj,i) are both in E;
– No further edge is in E.

It is immediate to check that G satisfies all the constraints inΠ(Φ). Moreover,
we note that G is acyclic. Indeed, if an edge of the form (tj,i, cj) occurs in E,
then we are guaranteed that there is no clause cj′ with an index 1 ≤ i′ ≤ 3
such that tj,i = ¬tj′,i′ and (tj′,i′ , cj′) ∈ E. In fact, this follows from the fact
that σ is a satisfying assignment and by construction of E.

(⇐) Assume that G is an acyclic graph satisfying all the constraints in Π(Φ),
and let us build a truth assignment σ for Φ. Consider any pair of clauses
cj and cj′ such that tj,i = ¬tj′,i′ for any two indices 1 ≤ i, i′ ≤ 3. Since
G |= Π(Φ), G either contains the edge from tj,i to cj , or it contains the edge
from tj′,i′ to cj′ . Assume that tj,i = Xh. Then, in the former case, we set
σ(Xh) to true (thereby satisfying cj), and in the latter case to false (thereby
satisfying cj′). Note that σ is well defined. Moreover, since for each clause
cj , Π(Φ) contains the constraint {tj,1, tj,2, tj,3} → cj , the truth assignment
σ eventually satisfies all the clauses of Φ.

From this claim and since the reduction is feasible in polynomial time it follows
that Acyclic-DG-Mining[{→}] is NP-hard, even if the input log contains no
trace. To conclude the proof, we just notice that the salient properties of the
reduction are not altered if we replace each edge constraint in Π(Φ) with the
analogous path constraint. Hence, Acyclic-DG-Mining[{ }] is NP-hard. 2

In the case of negated edge constraints, the hardness can be given only for
non-empty logs, for otherwise the graph with no edges is a trivial solution.

Theorem 14 Acyclic-DG-Mining[{6→}] is NP-hard.

Proof. The line of the proof is to show that any set of positive edge constraints
can be encoded via the constraints associated with a suitably defined log plus a
set of negated edge constraints. Then, the result will follow from Theorem 13.

Let Π = {{b1i , ..., b
ki

i } → ai | i ∈ {1, ...,m}} ⊆ C[{→}] be a set of edge
constraints over a set A of activities. Let a⊥ 6∈ A be a fresh activity, and for each
constraint {b1i , ..., b

ki

i } → ai, let ci 6∈ A be a fresh activity associated to it. Based

on Π , we build a log L(Π) with traces t1, ..., tm such that ti = a⊥cib
1
i , ..., b

ki

i ai,
for each i ∈ {1, ...,m}. Moreover, consider the set Π ′ of negated edge constraints
including {a⊥} 6→ a, for each activity a 6∈ {c1, ..., cm}, and {ci} 6→ a, for each
a 6∈ {b1i , ..., b

ki

i } and each i ∈ {1, ...,m}.
We now claim that: there is an acyclic graph G such that G |= Π ⇔ there is

an acyclic graph G′ such that G′ ⊢ L(Π) and G′ |= Π ′.

(⇒) Assume that G is an acyclic model ofΠ . Let G′ be a graph over the activities
in A ∪ {a⊥, c1, ..., cm} defined as follows. The subgraph of G′ induced over

38

A coincides with G. Moreover, G′ contains the edges (a⊥, ci), for each i ∈
{1, ...,m}, and the edges (ci, b

j
i) for each i ∈ {1, ...,m} and j ∈ {1, ..., ki}. By

construction, G′ |= Π ′. It remains to show that G′ ⊢ L(Π), or equivalently
(by Proposition 4) G′ |= π(L). To this end, consider a trace ti with i ∈
{1, ...,m}, and note that π(ti) consists of the constraints: (i) {a⊥} → ci, (ii)
{a⊥, ci, b1i , ..b

j−1
i } → bji , for each 1 ≤ j ≤ ki, and (iii) {a⊥, ci, b1i , ..b

ki

i } → ai.
Note that (i) and (ii) are satisfied by the edges originating from the nodes
a⊥ and ci. Moreover, observe that (iii) combined with the negated edge
constraints in Π ′ imply the constraint {b1i , ..b

ki

i } → ai, which is in fact a
constraint in the original set Π . This constraint is satisfied by G, and thus
by construction by G′ as well. It follows that G′ ⊢ L(Π).

(⇐) Assume there is an acyclic graph G′ such that G′ ⊢ L(Π) and G′ |= Π ′.
As G′ is a model of Π ′, we can again notice that each constraint (iii)
{a⊥, ci, b1i , ..b

ki

i } → ai is actually equivalent to {b1i , ..b
ki

i } → ai. Let G be the

subgraph of G′ induced over the nodes in A. As G′ satisfies {b1i , ..b
ki

i } → ai,
for each i ∈ {1, ...,m}, and since such constraints are defined over A, it
follows that G |= Π .

In the light of the claim above, the result follows by the NP-hardness ofAcyclic-

DG-Mining[{→}] (cf. Theorem 13). 2

We can now turn to the DG-Mining problems, where arbitrary dependency
graphs are considered. In this case, the counterpart of Theorem 12 can be es-
tablished over a larger class of constraints.

Theorem 15 DG-Mining[{→, , 6→}] is feasible in polynomial time.

Proof (Sketch). Let Π be a set of constraints in C[{→, , 6→}] and L be a log.
We start by building a graph G = (V,E) over the nodes involved in Π and L and
where an edge (a, a′) is in E if, and only if, there is no negated edge constraint
S 6→ a′ with a ∈ S. Then, we check whether all the other (edge and path)
constraints are satisfied by G. If this is not the case, then there is not solution
at all. Otherwise, it remains just to check whether G is the folding of a graph Ḡ
such that Ḡ ⊢ L. This can be carried out by trying to simulate the enactment
of t = t[1]....t[n] over G. For each activity a 6= a⊥, initialize a variable wa = 0,
and let wa⊥

= 1. We incrementally process each 1 < i ≤ n, and if there is an
edge (a, t[i]) such that wa −wti > 0, then we increment wti by 1; otherwise, we
stop the process with a failure. It can be shown that if no failure occurred over
all the possible traces, then G is the folding of a graph Ḡ such that Ḡ ⊢ L. 2

The picture is now easily completed concerning the NP-hardness results, as
negated path constraints can be used to enforce acyclicity.

Theorem 16 DG-Mining[{→, 6 }], DG-Mining[{ , 6 }], and DG-Mining[{6→
, 6 }] are NP-hard.

39

Proof. We exhibit a reduction to theAcyclic-DG-Mining[{→}] (resp.,Acyclic-

DG-Mining[{ }], Acyclic-DG-Mining[{6→}]) problem. Let Π be a set of
constraints in C[{→}] (resp., C[{ }], C[{6→}]), and consider the problem of de-
ciding whether there is an acyclic graph G such that G |= Π .

Based on Π , we build the set Π ′ of constraints including all the constraints
in Π , plus the novel constraint {a} 6 a, for each activity a. Of course, Π ′

belongs to C[{→, 6 }] (resp., C[{ , 6 }], C[{6→, 6 }]). Moreover, the role of the
fresh constraints is just to enforce the acyclicity of the desired graph. Indeed,
G |= Π ′ if, and only if, G |= Π and G is acyclic. The result then follows from
Theorem 13 and Theorem 14. 2

40

