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Outlying Property Detection with Numerical Attributes

Fabrizio Angiulli∗ Fabio Fassetti† Giuseppe Manco‡ Luigi Palopoli§

Abstract

The outlying property detection problem (OPDP) is the
problem of discovering the properties distinguishing a
given object, known in advance to be an outlier in a
database, from the other database objects. This prob-
lem has been recently analyzed focusing on categorical
attributes only. However, numerical attributed very rel-
evant and widely used in databases. Therefore, in this
paper, we analyze the OPDP within a context where
also numerical attributes are taken into account, which
represents a relevant case left open in the literature. As
major contributions, we present an efficient parameter-
free algorithm to compute the measure of object excep-
tionality we introduce, and propose a unified framework
for mining exceptional properties in the presence of both
categorical and numerical attributes.

1 Introduction

While anomaly detection in datasets has been one of
the most widely investigated problems in data mining,
the related problem of anomaly justification received
less attention in the literature. In a recent paper [3],
the OPDP was studied, that is, given a dataset charac-
terized by certain attributes and a single input object
known in advance to be anomalous in that dataset, find
a set of attributes explaining why this object is actually
anomalous or, in other terms, detect the unexpected
properties (if any) this anomalous object possesses. The
cited paper considers a case where attributes whose val-
ues justify the given object anomaly are categorical.
In several relevant application cases, though, the in-
put dataset has numerical attributes which may well
account for the anomaly of a given input anomalous ob-
ject. The appropiate treatment of such non-categorical
attributes was a problem left open in [3] and precisely
the problem we face in this paper.

As an example, assume you are analyzing health pa-
rameters of a sick patient, which include several numer-
ical features such as body temperature, blood pressure
measurements and others. If an history of healthy pa-
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tients is available, then it is relevant to single out that
subset of those parameters that mostly differentiate the
sick patient from the healthy population. It is important
to highlight here that the abnormal individual, whose
peculiar characteristics we want to detect, is provided
as an input to the problem, that is, this individual has
been recognized as anomalous in advance by the virtue
of some external information, mean or procedure.

The main contribution of this work amounts to pro-
vide the outlierness measure, representing a refined gen-
eralization of that proposed in [3], which is able to quan-
tify the exceptionality of a given property featured by
the given input anomalous object with respect to a ref-
erence data population. In particular, this measure is
able to quantify the degree of “unbalanceness” between
the frequency of the value under consideration and the
frequencies of the rest of the database values. This is
done by taking into account the curve of the cumula-
tive distribution function (cdf ) associated with the oc-
currence probability of the domain values. It is worth
noting that our measure is able to correctly recognize
exceptional properties independently of the form of the
underlying probability density function (pdf ), since it
compares the occurrence probabilities of the domain val-
ues rather than directly comparing the domain values
themselves. As a further contribution, we present an ef-
ficient parameter-free algorithm that computes outlier-
ness in time O(n log n). Thus, we propose an approach
able to uniformly mining exceptional properties in the
presence of both categorical and numerical attributes,
so that a fully automated support is provided to de-
code those properties determining the abnormality of
the given object within the reference data context.

To illustrate, given a dataset DB (stored in the
form of a relational table) and an object o deemed to be
abnormal (on the basis of available external knowledge),
we adopt shall the the point that a property, or set of
attributes, witnesses the abnormality of the object o if
the combination of values o assumes on these attributes
is very infrequent with respect to the overall distribution
of the attribute values in the data set: to this end, in the
following, we introduce a measure by which it is possible
to faithfully capture how much a set of attributes should
be considered relevant in explaining the abnormality of
the given object o. In the following, we shall also carry



out a discussion on the characteristics of the measure
and its relationship with related measures (Section 2).
¿From this discussion, and from some of the results
of the experiments, it shall clearly turn out that our
measure is a sensible and significant one in the context
of the analyzed abnormality explanation problems.

The rest of the paper is organized as follows. Sec-
tion 2 introduces the mining task and discusses relation-
ship and differences with outlier detection. Section 3.1
introduces the outlierness measure and the concept of
explanation. Section 4 describes the method for com-
puting outlierness and determining associated explana-
tions. Section 5 discusses experimental results, includ-
ing a real-life case study. Finally, Section 6 presents
conclusions and discusses future work.

2 Background and Related Work

To begin with, we next introduce some preliminary
definitions and fix the notation. An attribute a is an
identifier with an associated domain, also denoted D(a).
Let A = a1, . . . , am be a set of m attributes1. Then, an
object o on A is a tuple o = 〈v1, . . . , vm〉 of m values,
such that each vi is a value in the domain of ai. The
value vi associated with the attribute ai in o will be
denoted by o[ai]. A database DB on a set of attributes
A is a multi-set (that is, duplicate elements are allowed)
of objects on A.

In the following, first the outlier detection approach
is recalled and, then, the task here pursued is intro-
duced, and differences with outlier detection and related
works are pointed out.

Outlier detection. Give a database DB over an
attribute schema A, we aim at studying the notion of
outlier, i.e., an object o inDB that is “exceptional”, as
it significantly differs from the rest of the data in DB .
The notion of outlierness has been extensively studied
in the current literature.

Outlier detection is a knowledge discovery task
which has its roots in statistics, machine learning, and
data mining [14, 23, 28]. A classical definition of
outlier is provided in [14]: “An outlier is an observation
that differs so much from other observations as to
arouse suspicion that it was generated by a different
mechanism”. Thus, outlier detection in data mining
considers the following task: “Given a set of data
points or objects, find the objects that are considerably
dissimilar, exceptional or inconsistent with respect to
the remaining data”. These exceptional objects as also
referred to as outliers. Outlier detection represents

1For the sake of simplicity and without loss of generality, we

are assuming that an arbitrary ordering of the attributes in A has
been fixed.

an active research field that has many applications in
all those domains that can lead to illegal or abnormal
behavior, such as fraud detection, network intrusion
detection, medical diagnosis, and many others [15, 7].

Approaches to outlier detection can be classified in
supervised, semi-supervised, and unsupervised. Super-
vised methods exploit the availability of a labeled data
set, containing observations already labeled as normal
and abnormal, in order to build a model of the nor-
mal class [8]. Since usually normal observations are the
great majority, these data sets are unbalanced and spe-
cific classification techniques must be designed to deal
with the presence of rare classes. Semi-supervised meth-
ods assume that only normal examples are given. The
goal is to find a description of the data, that is a rule
partitioning the object space into an accepting region,
containing the normal objects, and a rejecting region,
containing all the other objects [26]. These methods
are also called one-class classifiers or domain descrip-
tion techniques, and they are related to novelty detec-
tion since the domain description is used to identify ob-
jects significantly deviating form the training examples.
Unsupervised methods search for outliers in an unla-
belled data set by assigning to each object a score which
reflects its degree of abnormality. Scores are usually
computed by comparing each object with objects be-
longing to its neighborhood. Among the unsupervised
approaches to detect outliers there are statistical-based
[5], deviation-based [4], distance-based [18], density-
based [6, 16], projection-based [1], MDEF-based [24],
angle-based [20], isolation forest-based [22], local out-
lier probability-based [19], and others [7].

Outlying property detection. It must be noticed
that the problem addressed here is completely differ-
ent from supervised and semi-supervised outlier detec-
tion, and, moreover, is to be considered orthogonal to
the unsupervised outlier detection task. Indeed, in out-
lier detection, a set of observations is given in input
and we are interested in discovering those observations
(i.e., the outliers) that are mostly dissimilar from the
remaining ones, while here the outliers (anomalous sub-
populations) are given in input and we are interested in
discovering the motivations underlying their abnormal-
ity.

As a matter of fact, the focus of this paper is the
discovery of outlying properties: In practice, we are
interested in unveiling the hidden structures that make
an object o ∈ DB special w.r.t. a population in DB .
To this purpose, we assume that the set o1, . . . , ok of
outliers are already given, and we are instead interested
in characterizing each oi. This can be accomplished by:

1. Detecting the subsets of S ⊆ DB that represent



a population, and such that oi ∈ S. Intuitively,
S represent a set of objects that share similar
features.

2. Identifying a set {ai1 , . . . , aim} ∈ A where
oi[a1, . . . , am] substantially differentiates from the
other objects in S.

In [3] a data population is assumed to be given,
characterized by a certain number of attributes, and
the information is provided that one of the individuals
in the data population is abnormal. In this context, it is
considered the problem of discovering sets of attributes
that account for the (a-priori stated) abnormality of
such an individual.

Each subset of attributes is intended to represent
a property of individuals. A property witnesses the
abnormality of an object if the combination of values
the object assumes on these attributes is very infrequent
with respect to the overall distribution of the attribute
values in the dataset, and this is measured my means
of the so called outlierness function. Global and local
properties are introduced. Global properties are subsets
of attributes explaining the given abnormality with
respect to the entire data population. With local ones,
instead, two subsets of attributes are singled out, where
the first one justifies the abnormality within the data
sub-population selected by using the values assumed by
the exceptional individual on those attributes included
in the second one.

The outlierness score introduced in [3] is based on
measuring how much the frequency of the combination
of values assumed by that object on those attributes
is rare as opposite to the frequencies associated with
the other combinations of values assumed on the same
attributes by the other objects in the population (and,
in fact, in [3] the outlierness was shown to to have some
connections with the Gini index employed to measure
the heterogeneity of a statistical distribution). The
outlierness score presented in [3] has been specifically
designed for categorical attributes and has been shown
to be effective on this kind of data.

One may suggest to use that score also on numerical
data by first discretizing numerical attributes. However,
it must be pointed out that this kind of strategy will be
unsatisfactory. First of all, the result of the analysis will
strongly depend on the kind of discretization. Second,
this drawback is aggravated by the peculiarities of
the outlierness measure, which assigns a score close
to 1 to very unbalanced distributions (as in the case
of frequencies 1

n versus n−1
n ), while its value rapidly

decreases when frequencies spread, even in presence
of rare frequencies (e.g., the score associated with the
distribution of frequencies 1

n , n−1
2n , n−1

2n is about 0.5).

It can be concluded that the discretization should be,
in some sense, guided by the outlierness score, in order
to detect in the first place the bins that would magnify
the score itself.

The notion of outlierness introduced here shares a
common rationale with that already proposed in [3],
but aims at overcoming the aforementioned drawbacks
in presence of numerical data, as accounted for in the
following section.

3 Outliers and Explanations

In the following, we shall characterize populations in a
“rule-based” fashion, by denoting the subset of DB that
embodies them.

Formally, a condition on A is an expression of the
form a ∈ [l, u], where (i) a ∈ A, (ii) l, u ∈ D(a), and
(iii) l ≤ u, if a is numeric, and l = u, if a is categorical.
If l = u, the interval I = [l, u] is sometimes abbreviated
as u and the condition as a ∈ I or a = I.

Let c be a condition a ∈ [l, u] on A. An object o
of DB satisfies the condition c, if and only if o[a] equals
l, if a is categorical, or l ≤ o[a] ≤ u, if a is numerical.
Moreover, o satisfies a set of conditions C if and only
if o satisfies each condition c ∈ C. Given a set C of
conditions on A. The selection DBC of the database
DB w.r.t. C is the database consisting of the objects
o ∈ DB satisfying C.

Next, the definition of outlierness (Section 3.1) and
of explanation (Section 3.2) are introduced.

3.1 Outlierness. We introduce now the notion of
outlierness, a measure used to quantify the exceptional-
ity of a property. The intuition underlying this measure
is that an attribute makes an object exceptional if the
relative likelihood of the value assumed by that object
on the attribute is rare if compared to the relative like-
lihood associated with the other values assumed on the
same attribute by the other objects of the database.

Let a be an attribute of A. We assume that a
random variable Xa is associated with the attribute
a, which models the domain of a. Then, with fa(x)
we denote the pdf associated with Xa. Let Xf

a denote
the random variable whose pdf represents the relative
likelihood for the pdf fa to assume a certain value. The
cdf Ga of Xf

a is:

(3.1) Ga(f) =

∫ f

0

Pr(Xf
a ≤ f) df.

Example 1. Assume that the height of the individuals
of a population is normally distributed with mean µ =
170cm and standard deviation σ = 7.5cm. Then, let
a be the attribute representing the height, Xa is a
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Figure 1: Example of function Ga(·).

random variable following the same distribution of the
domain and fa(x) is the associated pdf, reported in
Figure 1(a). The pdf fa(x) assumes value in the domain
[0, fa(µ) = 0.0532] ⊂ R. Consider, now, the random
variable Xf

a . The cdf Ga(v) associated with Xf
a denotes

the probability for fa to assume value less than or equal
to v. Then, Ga(v) = 0 for each v ≤ 0 and Ga(v) = 1 for
each v ≥ 0.0532. To compute the value of Ga(v) for a
generic v, the integral reported in Equation (3.1) has to
be evaluated. The resulting function is reported in the
Figure 1(b).

�

The outlierness outa(o,DB) (or, simply, outa(o)) of
the attribute a in o w.r.t. DB is defined as follows:

(3.2) outa(o) = Ω

(∫ +∞

fa(o[a])

(1−Ga(f)) df+

−
∫ fa(o[a])

0

Ga(f) df

)
.

where Ω denotes a suitable function mapping from R
to [0, 1] such that (i) Ω(x) = 0 for x < 0, and (ii) Ω
is monotone increasing for x ≥ 0. In the following we
employ the mapping

Ω(x) =
1− exp(−x)

1 + exp(−x)
.

The first integral measures the area above the cdf Ga(f)
for f > fa(o[a]), while the second integral measures the
area below the cdf Ga for f ≤ fa(o[a]). Intuitively,
the larger the first term, the larger the degree of
unbalanceness between the occurrence probability of
o[a] and that of the values that are more probable than

o[a]. As for the second term, the smaller it is, the more
likely the value o[a] to be rare. Thus, the outlierness
value ranges within [0, 1] and in particular it is close to
zero for usual properties; By contrast, values closer to
one denote exceptional properties.

Example 2. Consider fig. 2, reporting on the left a
Gaussian distribution fa(x) (with mean µ = 0 and
standard deviation σ = 0.1). Consider the values
v1 = −1 and v2 = −0.12, for which fa(v1) ≈ 0
and fa(v2) ≈ 2 hold. Assume that an outlier object
o exhibits value v1 on a. The associated outlier-
ness outa(o) corresponds to the whole area (filled
with horizontal lines) above the cdf curve, that is
Ω(3.06) = 0.91. For an object o′ exhibiting value v2 on
a, instead, the associated outlierness corresponds to the
difference between two areas (filled with vertical lines)
detected at frequency 2, that is Ω(1.17−0.10) = 0.49. �

For the sake of clarity, in the above example we
considered a pdf having a simple form. However, we
wish to point out that our measure is able to correctly
recognize exceptional properties irrespectively of the
form of the underlying pdf, since it compares the
occurrence probabilities of the domain values rather
than directly comparing the original domain values.

3.2 Explanations. Explanations are useful in our
framework to provide a justification of the anomalous
value characterizing an outlier. Intuitively, a attribute
a ∈ A of o that behaves normally with respect to
the database as a whole, may be unexpected when the
attention is restricted to a portion of the database.
We shall call this anomalous attribute a property of
o. Relevant subsets of the database upon which to
investigate outliernes can be hence obtained by selecting
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Figure 2: Example of outlierness measure.

the database objects satisfying a condition, and such
that a property is exceptional for o.

A condition c (set of conditions C, resp.) is,
intuitively, an explanation of the property a. if o ∈ DBc

(o ∈ DBC , resp.) and a is exceptional for o w.r.t.
DBc (DBC , resp.) (i.e., the value outa(o,DBC) is
close to 1). Finally, the outlierness of the set property
a in o w.r.t. DB with explanation C is defined as
outCa (o,DB) = outa(o,DBC) .

It is worth noticing that, according to the relative
size of DBC , not all the explanations should be con-
sidered equally relevant. In the following, we concen-
trate on σ-explanations, i.e., conditions C such that
|DBC |
DB ≥ σ, where σ ∈ [0, 1] is a user-defined param-

eter.
Thus, given an object o of a database DB on a set of

attributes A, and parameters σθ ∈ [0, 1] and Ωθ ∈ [0, 1],
the problem of interest here is: Find the pairs (E, p),
with E ⊆ A and p ∈ A \ E, such that E is a σθ-
explanation and outEp (o,DB) ≥ Ωθ. Such an attribute
p is also called an outlying property.

4 Detecting Outlying Properties

In order to detect outlying properties and their expla-
nations, we need to solve two basic problems: (1) com-
puting the outlierness of a certain multiset of values and
(2) determining the conditions to be employed to form
explanations. The strategies we have designed to solve
these two problems exploit a common framework, which
is based on Kernel Density Estimation (KDE). Specifi-
cally, given a numerical attribute a, in order to estimate
the pdf fa we exploit generalized kernel density estima-
tion [17], according to which the estimated density at

point x ∈ D(a) is

(4.3) f̂m,w,b(x) =

(
k∑
i=1

wi

)−1 k∑
i=1

wi
bi
K

(
x−mi

bi

)
,

Here, K is a kernel function, and m = (m1, . . . ,mk),
w = (w1, . . . , wk) and b = (b1, . . . , bk) are k-
dimensional vectors denoting the kernel location, weight,
and bandwidth, respectively. The above mentioned
strategies are detailed next, together with the method
for mining outlying properties.

Function EstimatePDF (x)

Input: x = x1, . . . , xn
Output: f̂ = f̂1, . . . , f̂n

1 Set h to 1.06 · std(x) · n−1/5 // Rule of thumb

2 Set β to (1, . . . , 1);
3 for t = 1 to 5 do

4 f̂ = ComputePDF(x, h,w);

5 fm = (
∏n
i=1 f̂i)

1/n;
6 for i = 1 to n do

7 Set βi to (fm/f̂i)
1/2;

8 return (f̂1, . . . , f̂n);

4.1 Outlierness computation. In order to com-
pute the outlierness, we specialize formula in Equation
(4.3) by setting m = (x1, . . . , xn) and w = 1, thus ob-
taining

(4.4) f̂a(x) =
1

n

n∑
i=1

1

bi
K

(
x−mi

bi

)
,



Function ComputePDF (x, h,w)

Input: x = x1, . . . , xn : a set of values
h : a bandwidth
w = w1, . . . , wn : a set of weights
Output: f̂ = f̂1, . . . , f̂n : the density estimate at points x

1 Sort the sequence L = xl1, . . . , x
l
n, according to the values {xi − wih

2 : 1 ≤ i ≤ n}, and record the
associated indexes l1, . . . , ln;

2 Sort the sequence U = xu1 , . . . , x
u
n, according to the values {xi + wih

2 : 1 ≤ i ≤ n}, and record the
associated indexes u1, . . . , un;

3 for i = 1 to n do
4 Find the last element xll∗ of L not greater than xi;
5 Find the first element xuu∗ of U not smaller than xi;
6 Set J to {l1, l2, . . . , l∗} ∩ {u∗, . . . , un−1, un};
7 Set f̂i to 1

nh

∑
j∈J

1
wj

;

8 return (f̂1, . . . , f̂n);

where x1, . . . , xn are the values in {y[a] : y ∈ DB},
each term bi is equal to hβi, with h a global bandwidth
and

∏n
i=1 βi = 1. The rationale underlying this choice

is that we want that each value at hand (m = x)
contributes in equal manner (w = 1) to the estimation
of the underlying pdf. Moreover, we employ the Parzen
window kernel function, that is K(x) = 1, for |x| ≤ 1/2,
and K(x) = 0 otherwise, since this kernel represents a
good trade off between simplicity of computation and
accuracy. Indeed, we are able to provide a parameter-
free function that computes an accurate estimate f̂a of
the pdf fa in time O(n log n). We also notice that, since
the outlierness depends on the cdf of the pdf values, this
greatly mitigates the impact of the non-smoothness of
the estimate of the pdf through Parzen windows, other
than making the measure robust w.r.t. deviations of the
estimate from the real distribution.

Let x denote the vector (x1, . . . , xn), and β denote
the vector (β1, . . . , βn). The function ComputePDF

computes the vector f̂ , whose generic element f̂i rep-
resents the value of density f̂a(xi) at point xi, as com-
puted by exploiting Equation (4.4). In particular, when
the Parzen window is employed, the computation of
f̂a(x) reduces to determine the value 1

nh

∑
j∈J

1
βj

, where

J is the set containing the indexes j of the elements xj

of x such that
∣∣∣x−xjβjh

∣∣∣ ≤ 1
2 or, in other words, such that

xj − βjh
2 ≤ x and x ≤ xj +

βjh
2 . The set J associated

with a specific value x, can be determined by perform-
ing two binary searches and one intersection, as shown
in the pseudo-code. Since this computation is executed
n times, this leads to an overall cost O(n log n).

The function EstimatePDF is in charge of comput-
ing the right values for the parameters h and β. It ex-

ploits the algorithm for calculating a variable bandwidth
KDE [25]. The method starts with a density estimate
by using a fixed-bandwidth kernel, with h determined
by means of a rule of thumb [27] (see Function Esti-
matePDF , line 1) and β = 1. Then, the bandwidths
βi are updated to a value which is inversely related to
the density estimate. It was observed [12] that iterations
produce little changes: hence, we execute it a fixed num-
ber of times in order to. keep the computational cost to
O(n log n).

The function ComputeOutlierness exploits Esti-
matePDF to compute the numerical estimate f̂ of
the pdf fa. Then, it computes the distribution
function Ga (see Equation (3.1)) by setting Gi to
|{fj ≤ f̃i : 1 ≤ j ≤ n}|/n, that is i/n, and, finally, the
outlierness value out (see Equation (3.2)), by perform-
ing a numerical integration, which costs O(n). Thus,
the dominating operations of ComputeOutlierness are
the call to the function EstimatePDF and the sort of the
elements of f̂ , with a resulting overall cost O(n log n).

4.2 Condition building. Proper conditions are the
basic building blocks for the explanations. To single
them out, our strategy consists in finding, for each
attribute a, the “natural” interval Ia including o[a],
namely, an interval of homogeneous values on a. The
rationale underlying this choice is to avoid the risk of
overfitting: a guided search for a proper condition can
easily yield an ad-hoc fragment of the data where the
outlierness measure is “artificially” maximized. On the
other side, proper conditions which encode the genuine
intervals for each attribute domain can relevantly im-
pact on the detection of significant outlier explanations.

The search for feasible intervals still relies on adopt-



Function ComputeOutlierness(o, a,DB)

Input: o : an outlier object
a : a dataset attribute
DB : a dataset
Output: out : the outlierness of the attribute a in o w.r.t. DB

1 Set x to DB [a];

2 Set f̂ to EstimatePDF(x);

3 Determine the sequence f̃1, . . . , f̃n, by sorting the elements of the set {f̂i : 1 ≤ i ≤ n};
4 for i = 1 to n do

5 Set Gi to |{fj ≤ f̃i : 1 ≤ j ≤ n}|/n = i/n;

6 Let i∗ be such that f̃i∗ is the value in f̂ associated with o[a];
7 Set out to 0;
8 for i = i∗ + 1 to n do

9 Set out = out+ (f̃i − f̃i−1)(2−Gi −Gi−1)/2;

10 for i = 2 to i∗ do

11 Set out = out− (f̃i − f̃i−1)(Gi +Gi−1)/2;

12 return Ω(out);

ing the kernel density family introduced so far. In prac-
tice, for each attribute a, we estimate fa by means of
f̂m,w,b. This latter function can be interpreted as a
mixture density over the parameter sets m,w,b. Also,
the adoption of a Gaussian kernel

K(x) = φ(x) = (2π)−1/2 exp(x2/2)

allows the estimation of the parameter set via a stan-
dard EM-based maximum likelihood approach. In par-
ticular, the approach will partition the values {y[a] :
y ∈ DB} into a set of j∗ disjoint intervals I1a , . . . , I

j∗

a

and, then, the interval Ijoa which o[a] belongs to will be
selected as the proper condition Ia for the attribute a.

The resulting iterative scheme draws from [17],
and updates locations and bandwidths according to the
following equations:

mj =
1∑
i γij

n∑
i=1

xiγij ,(4.5)

b2j =
1∑
i γij

n∑
i=1

γij(xi −mj)
2.(4.6)

Here, γij represents the mixing probability that value i
is associated with the j-th interval and, in its turn, is
computed at each iteration as:

(4.7) γij =
wjφbj (xi −mj)

f̂m,w,b(xi)

We also adapt the annihilation procedure proposed in
[11], which allows for an automatic estimation of the

optimal number j∗ of intervals, as well as to ignore the
initialization issues. The estimation of the parameters
is accomplished iteratively for each interval Ija, where
each weight is computed as

(4.8) wj =
max{0,

∑n
i=1 γij −

n
2 }∑j∗

j=1 max{0,
∑n
i=1 γij −

n
2 }

Whenever a weight equals to 0, the contribution of its
component annihilates in the density estimation. As
a consequence, the iterative procedure can start with
a high initial value j∗, and the initialization of each
mixing probability can be done randomly without com-
promising the final result. Function ComputeInterval
reports the overall scheme. We also call the interval re-
ported by this function, the natural interval of a in o
w.r.t. DB .

4.3 The mining method. Putting things together,
in order to search for outlying properties, we employ
the following strategy. Given a dataset DB on the set
of attributes A = {a1, . . . , am}, an outlier object o,
parameters σθ ∈ [0, 1], Ωθ ∈ [0, 1], and positive integer
kθ ≤ m (representing an upper bound to the size of an
acceptable explanation):

1. For each attribute ai ∈ A, the interval Iai and,
hence, the associated condition ai ∈ Iai , is deter-
mined by means of the function ComputeInterval ;

2. Given the set of conditions S = {a1 ∈ Ia1 , . . . , am ∈
Iam} on the m attributes in A, we exhaustively
enumerate all the pairs (E, p), with E ⊆ I, |E| ≤



Function ComputeInterval(o, a,DB)

Input: o : an outlier object
a : a dataset attribute
DB : a dataset
Output: out : the natural interval of the attribute a in o w.r.t. DB

1 set x to DB [a];
2 set j∗ to

√
n;

3 initialize γij randomly, ∀i ∈ [1..n] and ∀j ∈ [1..j∗];
4 repeat
5 for j = 1 to j∗ do
6 update wj // Equation (4.8)
7 if wj > 0 then
8 update mj , bj // Equation (4.6)
9 update γij , ∀i ∈ [1..n] // Equation (4.7)

10 else
11 eliminate the jth component;
12 set j∗ to j∗ − 1;

13 until increase in likelihood is negligible;
14 assign xi to the interval Ijia s.t. ji = arg maxj γij ;
15 let Ijoa be the interval which o[a] belongs to;
16 set la to mini{xi | xi ∈ Ijoa };
17 set ua to maxi{xi | xi ∈ Ijoa };
18 return [la, ua]

kθ, and p ∈ A\E and maintain in the set OP those
pairs such that

(a) E is a σθ-explanation, and

(b) the outlierness outEp (o,DB) is greater than
Ωθ; the outlierness is measured by means of
the function ComputeOutlierness;

3. The set OP is returned.

As for the cost of the above procedure, the first step
is basically depends on the rate of convergence of the
EM algorithm. The basic iteration (see lines 4-12 of
function ComputeInterval) is O(n3/2). Notice, however,
that interval components annihilate early in the first
iterations, so practically we can assume that the number
of intervals j∗ is bounded to a constant value. Thus,
the overall complexity of the first step is linear in
the size of the data and the number of iterations.
Clearly, the rate of convergence of the algorithm is
of practical interest, and it is usually slower than the
quadratic convergence typically available with Newton-
type methods. [10] shows that the rate of convergence
of the EM algorithm is linear and the it depends on the
proportion of information in the observed data.

As far as the second step is concerned, point (a)
costs at most nkθ, while we have already seen that

point (b) costs O(n log n). Since these two sub-steps
are executed at most O(mkθ ) times, the overall cost of
step 2 is O(mkθn log n).

As for the parameter kθ, it is needed in order to
bound the size of an acceptable explanation. As a
matter of fact, allowing more than a few conditions
will lead to unintelligible explanations. Hence, in the
experimental results section we will set it to the value
kθ = 3.

5 Experimental results

In this section, experimental results conducted by
employing the proposed methodology are described.
Specifically, first, Section 5.1 evaluates the technique on
some datasets from the UCI Machine Learning reposi-
tory and, then, Section 5.2 describes a specific real-life
case study where the technique was profitably exploited.

In both cases, The ground truth is represented by
outlier tuples, detected by resorting to the feature bag-
ging algorithm described in [21]. Briefly, the technique
detects outliers by iteratively running a base outlier de-
tection algorithm on a subset of the available attributes.
Outlier detected in the various runs are then scored by
adopting a combine function which assigns a score to
each outlier.

The bagging technique was instantiated by explot-



ing the base OD method described in [2], where the
parameters are set to produce just a single outlier. Fur-
ther, the combine technique adopted simply scores out-
liers on the basis of the positive responses they get
within the iterations.2

Notice that the feature bagging technique boosts
the robustness of base outlier detection techniques. at
the same time, it makes quite difficult to manually infer
(e.g., by means of visualization techniques) the reasons
why a specific tuple was deceted as an outlier. In fact,
a tuple can be reputed an outlier for a combination
of factors which in turn depend on different subsets
of the attributes. As a consequence, the analysis of
the outliers produced with such a technique provides a
significant benchmark on the effectiveness of the outlier
explanation technique.

5.1 Evaluation and execution time. We employ
three real datasets from the UCI Machine Learning
repository [13]. The first and the second databases,
called Ecoli (with 336 instances and 7 attributes) and
Yeast (with 1,484 instances and 8 attributes) respec-
tively, contain information about protein localization
sites. The third database, called Cloud, contains infor-
mation about cloud cover and includes 1,024 instances
with 10 attributes.

The support threshold σθ has been set to 0.2 and the
maximum number kθ of conditions in the explanation to
3. The following table reports the explanation-property
pairs scoring the maximum value of outlierness.

DB o outEp (o) p E

Ecoli 223 1.000 a4 ∅
Yeast 990 0.997 a3 { a2 ∈ [0.13, 0.38] }

Cloud 354 1.000 a6

{ a1 ∈ [1.0, 6.7],
a2 ∈ [134.9, 255.0],
a5 ∈ [2,450.5, 3,211.5] }

In the third column, we report the outlierness value,
in the fourth column the attribute associated with
the property, and in the fifth column the explanation.
Figure 3 reports the functions Ga(f) associated with
the objects considered in the experiments.

Figure 3 at the top left reports the area associated
with the property a4 and empty explanation for the
object 223 in the Ecoli database. The property a4 is the
attribute Presence of charge on N-terminus of predicted
lipoproteins. The object 223 is the only object assuming
value 0.5 on this attribute, while all the other objects

2In practice, if a tuple is detected as an outlier in a given
iteration, it gets a positive score. Scores are then summarized

in the combine function, and tuples are sorted according to the
scores.

assume value 1.0. As a consequence, this attribute is
a clear outlying property with respect to the whole
database and, in fact, the associated explanation is
empty.

Figure 3 at the top right reports the area associated
with the property a3 for the object 990 in the Y east
database. The attribute a3 is Score of the ALOM
membrane spanning region prediction program. The
solid line represents the curve Ga3(f) obtained when the
explanation {a2} is taken into account, while the dashed
line represents the curve Ga3(f) obtained for the empty
explanation. We note that, by taking the explanation
into account, an improvement of the outlierness value
is achieved, even if the property a3 is quite interesting
also with respect to the whole database.

Finally, Figure 3 at the bottom left reports the area
associated with the property a6 and the explanation
{a1, a2, a5} for the object 354 in the Cloud database.
The attribute a6 is the Visible entropy, while the
explanation attributes are Visible mean, Visible max
and Contrast. Figure 3 on the bottom right reports
the area associated with the same property, but for the
empty explanation. In this case, it is worth noting that
the property a6 is not exceptional with respect to the
whole database (the outlierness value is approximatively
0.3) but it becomes very exceptional with respect to the
subpopulation selected by the explanation.

The following table reports the execution times
associated with the experiments.3

DB
Condition Total Outlier Mean Outlier
Building Computation Computation

Ecoli 6.39 sec 16.76 sec 0.04 sec

Yeast 54.38 sec 138.51 sec 0.19 sec

Cloud 702.67 sec 91.08 sec 0.05 sec

The second column shows the total time required
to compute the proper conditions, the third one the
time required to compute the outlierness of all the
explanation-property pairs, and the fourth the corre-
sponding mean time.

5.2 A case Study. We tested the above methodol-
ogy on a real-life dataset about doctors and their as-
sociated medical prescriptions. In the scenario under
considerations, each doctor is associated with a group of
patients, and can prescribe drugs to people belonging to
that group. There are several respects in which the de-
tection of anomalous prescriptions can be of interest in
this scenario: from fraud detection (doctors prescribing

3Experiments have been performed on a Intel Xeon 2.33GHz
based computer.



0 50 100 150
0

0.5

1

f
4
(x)

G
4(f

)

Ecoli, o
id

=223, E={}

0 5 10 15
0

0.5

1

f
3
(x)

G
3(f

)

Yeast, o
id

=990, E={a
2
}

0 50 100
0

0.5

1

f
6
(x)

G
6(f

)

Cloud, o
id

=354, E={a
1
,a

2
,a

5
}

0 5 10
0

0.5

1

f
6
(x)

G
6(f

)

Cloud, o
id

=354, E={}

Figure 3: Experimental results on the Ecoli, Yeast, and Cloud datasets.

more than expected, e.g., with regards to a specific phar-
maceutical company) to the diagnosis unknown health
issues. The specific goal here is to find doctors whose
behaviour is different than expected. Outlier explana-
tion plays a crucial role here, since we are interested in
knowing both the reference population of doctors with
similar prescribing behavior, and the reason why a doc-
tor is considered anomalous in that population. For ex-
ample, a doctor can be considered anomalous because
its number of prescriptions for a given drug is signif-
icantly higher than average or he/she he is prone to
prescribe drugs from a particular company.

The data we analyze contains information about
three different entities:

� doctors: demographic information, along with with
information about its patients;

� drugs: the active element and the pharmaceutical
company that produces the drug

� prescriptions: this is the facts table containing
information about prescriptions made by doctors
to their patients

The resulting table contains 2020 tuples, where each
tuple represents the number of prescriptions that a
specific doctor made on 106 drugs. To better model
patients’ influence on prescriptions, prescriptions were
weighted according to their age and sex. In practice,
tuples are normalized in order to make fair comparisons
among doctors exhibiting different classes of patients.

By analyzing the data with the aforementioned
algorithm we found 5 top outliers exhibiting a significant
outlierness score. Two of these outliers are particularly
interesting to analyze with the explanation techniques,
namely tuple 34 and 651.

In particular, the outlierns of tuple 34 is charac-
terized by attributes a26, a102 and a103. Within the
population detected by the intervals for the attributes
a102 and a103, the tuple however exhibits a significantly
low value for a26. This is clearly shown in Figure 4.

A different behavior is instead exhibited by tuple
651, characterized by attributes a1, a2, a5, a6. select-
ing the population by means of attributes a1, a2, a5 and
studying the distribution for attribute a6 in this popu-
lation, we can notice that the value exhibited by tuple



Figure 4: Outlier explanations in the Doctors Dataset, for tuples a34 and a651.

651 is at the upper extreme. Again, this represents a
deviation from the normal behavior in that population,
as shown in the leftmost graph of Figure 4.

6 Conclusions and Future Work

The purpose of this paper has been that of devising
techniques by which the outlying properties detection
problem can be solved in the presence of both categor-
ical and numerical attributes, which represents a step
forward with respect to available literature. The core
of our approach has been the definition of a sensible
outlierness measure, representing a refined generaliza-
tion of that proposed in [3], which is able to quantify
the exceptionality of a given property featured by the
given input anomalous object with respect to a reference
data population. Also, we have developed algorithms to
detect properties characterizing the anomalous object
provided in input. The experimental results we have
obtained confirm that the presented approach is more
than promising.

As a matter of fact, there are several application
scenarios where the proposed technique can be prof-
itably applied. In the doctors scenario, for example,

it can be used to find explanations for anomalous or
frauding behavior. Further scenarios include rank learn-
ing problems like in [9]: there, we investigate the prob-
lem of detecting rules for characterizing individuals who
are scored as exceptional according to a specific scoring
function (like, e.g., the amount of fraud they commit
in a fraud detection scenario). It is clear that if excep-
tional objects are reputed as outliers, then the outlier
explanation technique described in this paper is a basic
building block for rule learning in that domain.

Also, it is worth highlighting the importance of deal-
ing with numerical attributes other than categorical one
in outlier explanation, especially from an application
viewpoint. In the aforementioned scenarios, for exam-
ple, data express basically measurements on empirical
situations, and the underlying data is made of several
numerical attributes describing such measurements.

As future work, we are interested in designing an
efficient mining algorithm exploiting suitable pruning
rules, in exploring other strategies for generating proper
conditions, and in performing a more extensive experi-
mental campaign.
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Exploring the use of variable bandwidth kernel density
estimators. Stata Journal, 3(2):133–147, 2003.

[26] B. Schölkopf, C. Burges, and V. Vapnik. Extracting
support data for a given task. In Proc. of the ACM
SIGKDD International Conference on Knowledge Dis-
covery and Data Mining (KDD), pages 252–257, Mon-
treal, Canada, 1995.

[27] B. W. Silverman. Density Estimation for Statistics and
Data Analysis. Chapman and Hall, 1986.

[28] P.-N. Tan, M. Steinbach, and V. Kumar. Introduction
to Data Mining. Addison-Wesley Longman, 2005.


	RT-ICAR-CS-11-05copertina
	RT-ICAR-CS-11-05paper_sdm12

